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 This paper introduces fullerenes and heterofullerenes and explains how to enumerate the 

possible structures of specific patterned heterofullerenes using forms of Burnside’s Lemma, 

Pólya’s Theorem, and the generalized character cycle index (GCCI) in reference to “The 

Enumeration of heterofullerenes” by Zhang et al. Note all generic formulas are highlighted in 

blue and all formulas specific to an example or to heterofullerenes are highlighted in green. 

1. A Brief Explanation of Fullerenes and Heterofullerenes 

Fullerenes, discovered in 1985, are spherical, ellipsoidal, or tubular shaped hollow carbon 

structures. Spherical fullerenes consist of 60 carbon atoms arranged in a hollow sphere with 

hexagonal and pentagonal bonds. Ellipsoidal fullerenes are made up of 70 carbon atoms with 

hexagonal bonds only. Fullerenes that form in a tube shape are called carbon nanotubes and are 

used in a variety of ways, from reinforcing materials to being used as a container to transport 

drugs that are harmful to human cells to a tumor. Some scientists have also studied fullerene-like 

molecules, which are made up of elements other than carbon. For example, discovered in 1992, 

tungsten disulfide can form a fullerene-like structure. When its planar form is folded, it stabilizes 

into a spherical, hollowed-out structure. 

Heterofullerenes were first discovered in the 1990s when scientists found that replacing 

some atoms of carbon in a spherical fullerene was possible and could lead to a variety of useful 

molecules with various properties. Two of the most common elements used in this replacement 

are boron and nitrogen. One reason to use these two elements is that nitrogen, boron, and carbon 

atoms are similar in size so replacing these atoms in the fullerene allows it to retain its shape and 

electron structure. These atoms, which are doped (substituted) into the spherical carbon 

fullerene, are called heteroatoms, hence the name heterofullerenes. Since this discovery, 
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scientists have wanted to enumerate the possibilities of heterofullerenes to theoretically 

determine the number of positional and chiral isomers for a compound. 

2. The Enumeration of Heterofullerenes 

A graph consists of two sets: one of vertices and the other of edges. In a molecular graph, 

the atoms are represented by vertices and the bonds are the set of edges. Any hydrogen atoms 

may be omitted from this graph. A spherical fullerene can be represented as a connected graph 

with order 60. All of the vertices in this graph are carbon atoms. The most well-known fullerene 

is formed by 20 hexagonal and 12 pentagonal faces. According to Ashrafi et al. in chapter 16 of 

their book, Topological Modeling of Nanostructures and Extended Systems, the number of edges 

(bonds) in a fullerene graph is 

𝑞 =
5𝑝+6ℎ

2
=  

3𝑛

2
. 

Note that p is the number of pentagonal faces, h is the number of hexagonal faces, and n is the 

number of vertices (atoms) in the fullerene. So, for the aforementioned fullerene, C60, with p = 12 

and h = 20, 

𝑞 =  
5∗12+6∗20

2
=  

3∗60

2
= 90. 

Now consider a heterofullerene, which has the same number of edges, q, and the same number of 

vertices, n.  However, one or more of these vertices are replaced with heteroatoms such as boron 

or nitrogen. This can be depicted by assigning a color to each heteroatom and coloring the 

substituted vertices with the color that represents its replacement atom. Isomers are molecules 

with the same formula that have different structural arrangements of their atoms. To enumerate 

the possibilities of different heterofullerene structures, called isomers, the symmetries of the 

representative graphs must be calculated. Chirality is one symmetric property of molecular 

graphs. Isomers are said to be chiral when they have the same atoms and connections but are not 
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superimposable. A chiral center is found at the position of an atom whose connections are 

causing chirality. The number of possible chiral isomers is 2t where t is the number of chiral 

centers a molecule has. Chirality only exists when no improper rotations, improper axis, centers 

of inversion, or mirror planes are present in the molecule. 

There are two groups that must be considered for the enumeration of heterofullerene 

structures, the rotation group and the whole automorphism group, or point group, which includes 

the rotation group and the improper rotation group. The rotational group for C60 is called the 

icosahedral group, denoted Ik. It is made up of the number of different positional isomers and 

chiral isomers. In the paper “The Enumeration of heterofullerenes”, by Zhang et al., Ik is 

calculated using Pólya’s Theorem and its generalization. 

The Generic Cycle Index 

Note: All g ∈ G can be uniquely written as a product of disjoint cycles. The image of i 

under the permutation g is gi. With 1 ≤ 𝑘 ≤ 𝑛, let jk(g) be the number of i of length k in g. The 

generic cycle index formula is given: 

ZG(z1, z2,…, zn) = 
1

|𝐺|
 ∑  𝑧1

𝑗1(𝑔)
𝑧2

𝑗2(𝑔)
… 𝑧𝑛

𝑗𝑛(𝑔)
)𝑔 ∈𝐺  

For a heterofullerene, I (the identity element), C2: 𝜋-rotation, C3: 
2

3
𝜋-rotation, and C5: 

2

5
𝜋-

rotation are the rotation types for Ik. In the calculation of rotations, the identity element (I) is a 

product of 60 length1-cycles, contains 1 element, and has cycle index notation 𝑧1
60. C2 is a 

product of 30 length 2-cycles, has 15 elements, and is denoted 𝑧2
30. C3 is a product of 20 length 

3-cycles, has 20 elements, and is denoted 𝑧3
20. C5 is a product of 12 length 5-cycles, has 24 

elements, and is denoted 𝑧5
12.  Therefore the cycle index for Ik is: 

ZG(z1, z2, …, zn) = 
1

60
( 𝑧1

60 + 15 𝑧2
30 + 20 𝑧3

20 + 24 𝑧5
12) 
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The cycle index above calculates the rotation group for a heterofullerene. Next we will look at 

the automorphism group (Sn), or point group, which includes proper and improper rotations. The 

point group of C60, Sn = {Ik, PIk}, where PIk, representing the improper rotations of the fullerene, 

is Ik multiplied with the inversion operator (P).  

General Form of GCCI 

Note: All g ∈ G can be uniquely written as a product of disjoint cycles. The image of i under the 

permutation g is gi. With 1 ≤ 𝑘 ≤ 𝑛, let jk(g) be the number of i of length k in g. 

 𝑃𝐺
𝑋(z1, z2, z3, …, zn) = 

1

|𝐺|
 ∑ [ 𝑋(𝑔)𝑔𝜖𝐺  ∏ 𝑧𝑘

𝑗𝑘(𝑔)
 𝑛

𝑘=1 ] 

The linear character of the irreducible representation of G, denoted X(g), is 1 for a proper 

rotation and -1 for an improper rotation. 

In the calculation of improper rotations, R0 = PI has 1 element and is denoted 𝑧2
30. R1 = PC2 has 

15 elements and is denoted 𝑧1
4𝑧2

28. R2 = PC3 has 20 elements and is denoted 𝑧6
10. R3 = PC5 has 24 

elements and is denoted 𝑧10
6 . The terms from the cycle index of rotations and the terms R0, R1, 

R2, and R3 create the generalized character cycle index (GCCI). 

GCCI for Sn of C60 the antisymmetric representation: 

𝑃𝐺
𝑋 (z1, z2, z3,…, zn) = 

1

120
 ( z1

60 + 15z2
30 + 20z3

20 + 24z5
12 - z2

30 - 15z1
4z2

28 - 20z6
10 - 24z10

6) 

Simplified  𝑃𝐺
𝑋 (z1,…, zn) = 

1

120
 (z1

60 + 14z2
30  + 20z3

20 - 15z1
4z2

28 + 24z5
12 - 20z6

10 - 24z10
6) 

Note: There exists another representation of the Sn, the point group, of C60 where X(g) is always 

one. This changes the GCCI by adding 2z2
30 leading to a GCCI: 

𝑃𝐺
𝑋 (z1,…, zn ) = 

1

120
(z1

60 + 16z2
30  + 20z3

20 - 15z1
4z2

28 + 24z5
12 - 20z6

10 - 24z10
6) 
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Now let A denote the set of vertices in the graph of C60 (all carbon). Let C = {c1, c2,…, 

cm) be the set of all possible elements of the heteroatoms to be substituted into the fullerene. Let 

m = |C|. The enumeration is simply the coloring of one or more vertices in A by C, in other 

words replacing a carbon with a heteroatom. Note: CA is a mapping from A to C. 

Zhang et al.’s version of Pólya’s Theorem 

Let F be the set of all orbits of (G, CA).  Then: |F| = ZG(m, m,…, m). 

The number of positional isomers is the number of different orbits of Ik (icosahedral group) 

acting on AC, so the cycle index of the icosahedral group substituting m for every z is: 

ZG(m, m,…, m) = 
1

60
 (m60 + 15m30 + 20m20 + 24m12). 

 Now, consider a specific pattern of heteroatoms being inserted into the fullerene. Let ki 

be the number of ci elements (number of heteroatoms), where I = 1, 2,…, m. And let the pattern 

for a the chemical formula for a specific heterofullerene be (k1, k2, k3,…, km). In other words let 

each ki represent the number of each atom of distinct elements in the heterofullerene. The 

number of distinct positional isomers is equal to the coefficient of (k1, k2, k3,…, km) in the 

following expression: 

ZG( ∑ 𝑥𝑖𝑖=1…𝑚 , ∑ 𝑥𝑖
2

𝑖=1…𝑚 , …, ∑ 𝑥𝑖
𝑛

𝑖=1…𝑚 )  

=((∑ 𝑥𝑖𝑖=1…𝑚 ,) 60 + 15(∑ 𝑥𝑖
2

𝑖=1…𝑚 )m30 + 20(∑ 𝑥𝑖
3

𝑖=1…𝑚 ) 20 + 24(∑ 𝑥𝑖
4

𝑖=1…𝑚 )12). 

The coefficient is denoted N(k1 + k2 + k3+…+ km) = 
1

60
 ∑ |Fix(g)|𝑖=1…𝑚 , 

Fix(g) is the set of fixed points of g. 

Consider counting the number of distinct chiral isomers of C60 by applying ∑ 𝑥𝑖𝑖=1…𝑚 , 

∑ 𝑥𝑖
2

𝑖=1…𝑚 ,…, ∑ 𝑥𝑖
𝑛

𝑖=1…𝑚 to the GCCI: 

𝑃𝐺
𝑋 (∑ 𝑥𝑖𝑖=1…𝑚 , ∑ 𝑥𝑖

2
𝑖=1…𝑚 ,…, ∑ 𝑥𝑖

𝑛
𝑖=1…𝑚 ) 
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= 
1

120
((∑ 𝑥𝑖𝑖=1…𝑚 )60 + 14(∑ 𝑥𝑖

2
𝑖=1…𝑚 )30  + 20(∑ 𝑥𝑖

3
𝑖=1…𝑚 )20 + 24(∑ 𝑥𝑖

5
𝑖=1…𝑚 )12 - 

15(∑ 𝑥𝑖𝑖=1…𝑚 )4(∑ 𝑥𝑖
2

𝑖=1…𝑚 )28 - 20(∑ 𝑥𝑖
6

𝑖=1…𝑚 )10 - 24(∑ 𝑥𝑖
10

𝑖=1…𝑚 )6) 

The coefficient of this will be N(k1 + k2 + k3+…+ km) = 
1

120
∑ |Fix(g)|𝑖=1…𝑚 . 

The number of orbits under its entire automorphism group, PSn
1 is equal to the difference 

between the number of distinct positional isomers and the number of distinct chiral isomers 

giving us: 

PSn
1  = ZIk – PSn

x. 

 This method will find the number of possible structures for a specific patterned 

heterofullerene. 
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