
Northern Michigan University Northern Michigan University 

NMU Commons NMU Commons 

All NMU Master's Theses Student Works 

8-2015 

AN ANALYSIS OF THE DIFFERENTIAL METHYLATION AND AN ANALYSIS OF THE DIFFERENTIAL METHYLATION AND 

EXPRESSION OF IMPRINTED GENES IN M. M. MUSCULUS, M. M. EXPRESSION OF IMPRINTED GENES IN M. M. MUSCULUS, M. M. 

DOMESTICUS, AND THEIR HYBRIDS DOMESTICUS, AND THEIR HYBRIDS 

Anna P. Rice 
annarice.ar@gmail.com 

Follow this and additional works at: https://commons.nmu.edu/theses 

 Part of the Biology Commons, and the Genetics and Genomics Commons 

Recommended Citation Recommended Citation 
Rice, Anna P., "AN ANALYSIS OF THE DIFFERENTIAL METHYLATION AND EXPRESSION OF IMPRINTED 
GENES IN M. M. MUSCULUS, M. M. DOMESTICUS, AND THEIR HYBRIDS" (2015). All NMU Master's 
Theses. 60. 
https://commons.nmu.edu/theses/60 

This Open Access is brought to you for free and open access by the Student Works at NMU Commons. It has been 
accepted for inclusion in All NMU Master's Theses by an authorized administrator of NMU Commons. For more 
information, please contact kmcdonou@nmu.edu,bsarjean@nmu.edu. 

https://commons.nmu.edu/
https://commons.nmu.edu/theses
https://commons.nmu.edu/student_works
https://commons.nmu.edu/theses?utm_source=commons.nmu.edu%2Ftheses%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=commons.nmu.edu%2Ftheses%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/27?utm_source=commons.nmu.edu%2Ftheses%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.nmu.edu/theses/60?utm_source=commons.nmu.edu%2Ftheses%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kmcdonou@nmu.edu,bsarjean@nmu.edu


 

 

 

 

 

AN ANALYSIS OF THE DIFFERENTIAL METHYLATION AND EXPRESSION OF 
IMPRINTED GENES IN M. M. MUSCULUS, M. M. DOMESTICUS, AND THEIR 

HYBRIDS 

 

By 

 

Anna P. Rice 

 

 

 

 

 

 

 

 

 

THESIS 

 

Submitted to 
Northern Michigan University 

In partial fulfillment of the requirements 
For the degree of 

 

MASTER OF SCIENCE 

 

Office of Graduate Education and Research 

 

August 2015 



 

 

SIGNATURE APPROVAL FORM 
 
 

 
Title of Thesis: An Analysis of the Differential Methylation and Expression of Imprinted 
Genes in M. m. musculus, M. m. domesticus, and their Hybrids 
 
 
 
This thesis by Anna P. Rice is recommended for approval by the student’s Thesis 
Committee and Department Head in the Department of Biology and by the Assistant 
Provost of Graduate Education and Research. 
 
 
 

____________________________________________________________ 
     Committee Chair: Dr. Katherine Teeter                                                 Date  

                                                                                    
 
 

____________________________________________________________ 
First Reader: Dr. Alec Lindsay                                                               Date                                                                                            

 
 
 

____________________________________________________________ 
  Second Reader (if required): Dr. John Rebers                                        Date                                                                    

 
 
 

____________________________________________________________ 
Department Head: Dr. John Rebers                                                        Date                                                                                  

 
 
 
 
 
 
 

____________________________________________________________ 
Dr. Brian D. Cherry                                                                                Date 

            Assistant Provost of Graduate Education and Research 
 



 

i 
 

ABSTRACT 

AN ANALYSIS OF THE DIFFERENTIAL METHYLATION AND EXPRESSION OF 
IMPRINTED GENES IN M. M. MUSCULUS, M. M. DOMESTICUS, AND THEIR 

HYBRIDS 
 

By 

Anna P. Rice 

 Epigenetics has been found to have an effect on many aspects of biology.  

Epigenetics refers to modifications of the double-stranded DNA molecule, which do not 

change the nucleotide sequence but do affect gene expression.  DNA methylation is a 

type of epigenetic modification.  Genomic imprinting is a pattern of gene expression that 

is primarily achieved through DNA methylation, and it results in the expression of only 

one allele at a particular locus.  In this study, I analyzed the methylation patterns of five 

imprinted genes in the hybrids of two different lab strains of the house mouse subspecies, 

M. m. musculus and M. m. domesticus.  To detect methylated DNA, bisulfite modification 

was performed on the genes of the hybrids and parental species.  The genes I examined 

were Mcts2, Nap1l5, Peg10, Zac1, and Zim2.  The results were compared between the 

parental and hybrid samples.  Two of the hybrid samples yielded disruption in the 

methylation patterns within at least two genes.  Each of the parental samples showed 

disruption in the methylation patterns.  I next analyzed the expression levels of five 

imprinted genes.  Quantitative reverse transcription PCR (qRT-PCR) was performed on 

the genes of the hybrids and parental samples.  The genes I examined were H19, Nap1l5, 

Igf2r, Mcts2, and Mest.  Differences in the expression levels of each of these genes were 

observed within the parental and hybrid samples. 
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INTRODUCTION 

 

 

 

 Epigenetics has been found to have an effect on many aspects of biology, and 

research interest in this area has grown rapidly over the last two decades.  Epigenetics 

refers to modifications of the double-stranded DNA molecule that do not change the 

nucleotide sequence but do affect gene expression.  DNA methylation and histone 

modifications are forms of epigenetic modifications (Gos, 2013; Das and Singal, 2004).  

Methylation typically occurs on cytosine bases present within dinucleotides consisting of 

cytosine and guanine (Das and Singal, 2004).  DNA methylation typically causes changes 

in the structure and grooves of DNA, which leads to alterations in the levels of gene 

expression (Jones and Takai, 2001).   

 Genomic imprinting is a pattern of gene expression that is primarily achieved 

through DNA methylation at a differentially methylated domain (DMD).  It causes one 

copy of a gene to be silenced in a parent-of-origin dependent manner (Reinhart et al., 

2006).  Genomic silencing results in the expression of only one allele at a particular 

locus, and this expression pattern causes the genes to be functionally haploid (Ashbrook 

and Hager, 2013; Reinhart et al., 2006; Tilghman, 1999).  The silencing of alleles 

increases the probability that individuals will develop serious conditions caused by 

recessive alleles at imprinted genes including certain cancers, Prader-Willi Syndrome, 

and Beckwith-Wiedermann Syndrome (Morison et al., 2005; Virani et al., 2012). 

 In this experiment, two different subspecies of house mice, M. m. musculus and 

M. m. domesticus, were examined.  I analyzed the DNA methylation pattern and the 

expression levels of imprinted genes in the embryos and adult livers of mouse hybrids.  
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The methylation patterns and expression levels of the parental organisms were also 

identified.  Eight imprinted genes, which have important functions in growth and 

development, were examined in these organisms.  The eight genes I examined were: 

Zac1, Mest, Zim2, Peg10, Mcts2, H19, Igf2r, and Nap1l5.  Table 1 lists these genes along 

with their expression pattern and function (Ch.1).  In order to detect alterations in the 

methylation patterns of hybrids and parental species, the differentially methylated 

domains of the Mcts2, Nap1l5, Peg10, Zac1, and Zim2 genes were compared after 

bisulfite modification.  This information indicated if DNA methylation has indeed been 

disrupted between the hybrids and parental species.  Quantitative reverse transcription 

polymerase chain reaction (qRT-PCR) was performed for the Mcts2, Nap1l5, H19, Igf2r, 

and Mest genes in order to ascertain gene expression levels in hybrids.  This information 

indicated if gene expression had indeed been disrupted between the hybrids and parental 

species.  I analyzed only the methylation patterns within the Peg10, Zac1, and Zim2 

genes, while I examined only the expression levels within the H19, Igf2r, and Mest genes.  

Both the methylation and expression patterns were analyzed within the Mcts2 and Nap1l5 

genes.  
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CHAPTER ONE: LITERATURE REVIEW 

 

 

 

Epigenetics and DNA Methylation Background 

 The fields of Genetics and Epigenetics are growing rapidly.  Epigenetics refers to 

modifications of the double-stranded DNA molecule that do not change the nucleotide 

sequence but do affect gene expression (Gos, 2013; Das and Singal, 2004).  DNA 

methylation and histone modifications are forms of epigenetic modifications.  DNA 

methylation is involved in the silencing of gene expression as well as chromosome X 

inactivation.  Such methylation is involved in genomic imprinting and regulates 

chromatin structure.  Modifications of the histone proteins that form DNA nucleosomes 

can change chromatin structure and can have activating or inhibiting effects on gene 

expression.  Alterations in epigenetic modifications are associated with many diseases 

including cancers (Gos, 2013; Das and Singal, 2004). 

 DNA methylation typically occurs on cytosine bases present within dinucleotides 

consisting of cytosine and guanine (Das and Singal, 2004).  Methyl groups are added to 

the fifth position of the cytosine base.  The major groove of the DNA molecule is altered 

through this process and necessary proteins are thus not able to bind to the DNA 

molecule to initiate transcription and translation (Jones and Takai, 2001).  DNA 

methylation can be propagated to daughter cells (Tycko and Morison, 2002).  

Methylation of the cytosine bases is a contributor to germ-line and somatic mutations 

associated with cancer and diabetes mellitus (Arima et al., 2006; Jones and Takai, 2001).  

DNA methylation is needed for mammalian development and is established through a 

DNA methyltransferase enzyme.  Methylation patterns are reset during gametogenesis 
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and can be repressed (Lucifero et al., 2002; Tycko and Morison, 2002).  Methylation is 

complete by the metaphase stage of gametogenesis.  With females, methylation patterns 

are initiated and completed in non-replicating oocytes.  However, in males, methylation 

patterns continue to be acquired as germ cells begin to replicate.  After fertilization, part 

of the genome undergoes demethylation (Lucifero et al., 2002).  

Genomic Imprinting Background 

 Genomic imprinting is a pattern of gene expression where only the allele inherited 

from the mother or the father is expressed.  It is primarily achieved through DNA 

methylation at a differentially methylated domain (DMD) (Reinhart et al., 2006).  DMDs 

are regions about 1 to 5 kb in size.  They are often located near the promoters of 

imprinted genes, and they control gene expression.  Imprinted genes are sometimes found 

in clusters around DMDs.  The presence of repeats within these regions is conserved 

across mammals (Hutter et al., 2010a, 2010b).  Within one allele of an imprinted locus, at 

least 50% of the CG dinucleotides in these regions are methylated, while in the other 

allele the CG dinucleotides are not methylated.  The allele with the methylated 

nucleotides is unable to be expressed and is therefore silenced (Choufani et al., 2011; 

Hutter et al., 2010c; Reinhart et al., 2002, 2006; Tycko and Morison, 2002).  Genomic 

silencing results in the expression of only one allele at a particular locus, and this 

expression pattern causes the genes to be functionally haploid (Ashbrook and Hager, 

2013; Reinhart et al., 2006; Tilghman, 1999).  Imprinted genes were first identified in the 

mid-1980s (Edwards and Ferguson-Smith, 2007; Tycko and Morison, 2002).  

Approximately 100 to 2000 imprinted mouse genes have been identified (Morison et al., 

2005; Renfree et al., 2013; Wang et al., 2008, 2011).  DNA methyltransferase establishes 
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imprinting marks.  There are three functional DNA methyltransferases in mammals, 

Dnmt3a, Dnmt3b, and Dnmt3l.  The enzymes Dnmt3a and Dnmt3l are essential for the 

establishment of imprints (Edwards and Ferguson-Smith, 2007).   

 Imprinted genes are involved in growth, development, metabolism, and are 

associated with several diseases (Morison et al., 2005; Reinhart et al., 2006; Tilghman, 

1999).  It is suggested that imprinted genes regulate maternal nutrient supply during 

embryonic development (Hutter et al., 2010a).  In humans, the silencing of alleles 

increases the probability that serious conditions caused by recessive alleles, including 

certain cancers, Prader-Willi Syndrome, and Beckwith-Wiedermann Syndrome, will 

develop (Morison et al., 2005; Virani et al., 2012). 

 Genomic imprinting and DNA methylation are associated with conditions and 

diseases.  Relaxation or loss of imprinting could represent a new epigenetic mutational 

mechanism in carcinogenesis.  Loss of heterozygosity within imprinted loci is found 

within a wide variety of tumors and cancers (Edwards and Ferguson-Smith, 2007; Haig, 

2004; Rainier et al., 1993).  Loss of methylation is observed within patients with diabetes 

mellitus and hypermethylation is associated with cancers (Arima et al., 2006; Edwards 

and Ferguson-Smith, 2007).  Hypermethylation is often associated with infertility, and 

methylation patterns have been found to change in offspring conceived through assisted 

reproductive technologies (Huntriss et al., 2013; Mayer et al., 2000). 

 Genomic imprinting has been observed within mammals and plants (Hutter et al., 

2010a).  Several hypotheses have been proposed to explain the emergence of genomic 

imprinting in mammals.  One hypothesis is the parent-offspring conflict (kinship) 

hypothesis (Ashbrook and Hager, 2013; Burt and Trivers, 1998; Haig, 2000, 2004; 
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Tilghman, 1999).  This hypothesis was proposed in the 1990s.  It posits that mothers 

evolved genomic imprinting to ensure that sufficient resources were provided to them 

during development of their offspring despite the negative effects alleles inherited from 

the fathers might have on the health of the mothers.  The hypothesis also posits that 

fathers evolved genomic imprinting to ensure that sufficient resources were provided to 

their offspring during development despite the effects alleles inherited from the mothers 

might have on the distribution of maternal resources.  This hypothesis suggests that there 

are opposite maternal and paternal drives controlling the distribution of maternal 

resources to each offspring (Ashbrook and Hager, 2013; Haig, 2000, 2004; Tilghman, 

1999; Tycko and Morison, 2002).  The best support for the kinship theory is the 

contrasting expression pattern observed within the Igf2 and Igf2r imprinted genes.  It is 

believed that maternal-fetal genomic conflict can be involved in mammalian speciation 

and can cause rapid divergent evolution (Kropáčková et al., 2015). 

 Another proposed hypothesis is the coadapatation hypothesis (Ashbrook and 

Hager, 2013; Renfree et al., 2013; Wolf and Hager, 2006).  In this model, genes 

controlling maternal phenotype may affect the offspring, while genes controlling the 

offspring may affect maternal interactions.  This hypothesis posits that the coadaptation 

observed between offspring and mother is responsible for imprinting.  Genomic 

imprinting would therefore be important in ensuring proper development and the 

expression of such genes (Ashbrook and Hager, 2013; Renfree et al., 2013; Wolf and 

Hager, 2006). 

 A third proposed hypothesis to explain the development of genomic imprinting is 

the intralocus sexual conflict hypothesis (Ashbrook and Hager, 2013; Day and 
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Bonduriansky, 2004).  This hypothesis suggests that many sexually selected loci should 

be controlled through imprinting.  The hypothesis posits that paternal traits with high 

fitness will be passed on to sons, while maternal traits with high fitness will be passed on 

to daughters.  Therefore, genomic imprinting evolved due to selection in males and 

females at particular loci (Ashbrook and Hager, 2013; Day and Bonduriansky, 2004). 

Changes in DNA Methylation and Genomic Imprinting Observed within Mouse 

Hybrids 

              

 Previous studies have shown that disruptions in imprinting and methylation 

patterns are present in the mouse hybrids of the Peromyscus and Mus genera.  In P. 

polionotus – P. maniculatus hybrids, researchers discovered through imprinting assays a 

loss of imprinting of several genes normally imprinted in both parental species.  The 

identity of the maternal and paternal parental species also was found to determine the 

offspring and placenta phenotype.  These results along with abnormal X-inactivation 

explain the inviability of these Peromyscus hybrids (del Rio et al., 2000; Vrana et al., 

1998).  In M. musculus – M. spretus hybrids, researchers discovered a loss of imprinting 

through real-time PCR in the Peg1 or Mest gene, which is normally paternally expressed 

and is important for growth, as well as in the Peg3 and Snrpn genes through real-time 

PCR and bisulfite sequencing, which are also normally paternally expressed (Shi et al., 

2004, 2005).  In M. musculus – M. caroli hybrids, researchers have found through 

hybridization studies that there was loss of methylation in retroelements, such as 

mVL301 and those on chromosome 10, which are able to move around the genome when 

methylation is lost and affect gene expression (Brown et al., 2008, 2012).  Through 
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bisulfite DNA methylation analyses, the promoters of Oct4 and Nanog genes were found 

to be demethylated in M. musculus – M. caroli hybrids (Battulin et al., 2009). 

Speciation and Reproductive Isolation 

 Reproductive isolation consists of prezygotic and postzygotic stages, and these 

stages or barriers lead to reproductive barriers.  There are several mechanisms of these 

reproductive barriers.  These mechanisms include mate preference, habitat specialization, 

and spawning synchrony (Palumbi, 1994).  When genetic differences between the 

evolving lineages accumulate, reproductive barriers are created.  Reproductive isolation 

is required for speciation to occur (Palumbi, 1994).  Prezygotic barriers include reduced 

sperm number, defects in sperm form or function, and decreased competitive ability 

(Turner et al., 2012).  Such barriers are not sufficient to cause reproductive isolation 

(Good et al., 2008a; Turner et al., 2012).  Postzygotic reproductive barriers involve 

hybrid sterility and often involve the X chromosome.  The X chromosome in mice 

includes loci involved in reproductive isolation (Good et al., 2008a; Janoušek et al., 

2012).  The genetic basis of hybrid sterility is considered complex (Good et al., 2008a, 

2008b; Turner et al., 2012).  Hybrid placental dysplasia (HPD) is another postzygotic 

barrier and is associated with increased or decreased placental and fetal growth within 

hybrids of Mus musculus females and Mus spretus, Mus macdonicus, or Mus spicilegus 

males.  It is believed that epigenetic modification of the X chromosome might be the 

mechanism behind HPD; however, HPD does not occur in the progeny of crosses 

between Mmm and Mmd.  This suggests that hybrid sterility and HPD evolved 

independently (Kropáčková et al., 2015).   
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 Genetic differences between populations can be created through a number of 

events or occasions.  Absolute physical barriers such as oceans or long distance can 

create genetic differences (Geraldes et al., 2011; Palumbi, 1994).  Gene flow between 

populations can be reduced due to the fitness of certain alleles, which can contribute to 

reproductive isolation (Geraldes et al., 2011).  Selection can shape the distribution of 

variation across groups of organisms.  Imprinted genes might react differently under 

natural selection as compared to biallelically-expressed genes, potentially leading to 

genetic differences and reproductive isolation and speciation (Geraldes et al., 2011; 

Hutter et al., 2010a). 

 The linkage between genetic variation and reproductive isolation is not fully 

understood within the separate subspecies M. m. musculus and M. m. domesticus 

(Geraldes et al., 2011; Good et al., 2008a; Turner et al., 2012).  However, it is known that 

the accumulation of genetic differences can lead to reproductive isolation.  Genetic 

differences leading to reproductive isolation have been observed within genes involved in 

gamete production, development, and mate recognition (Palumbi, 1994).  Most imprinted 

genes are associated with development (Gregg et al., 2010; Hutter et al., 2010b, 2010c).  

Some studies suggest that the Prdm9, Hstx1, and HS loci are involved in creating hybrid 

sterility and speciation of the house mouse subspecies (Bhattacharyya et al., 2013; Flachs 

et al., 2012, 2014; Mihola et al., 2009).  Many genetic differences and genetic 

incompatibilities are believed to contribute to the hybrid sterility and reproductive 

isolation of the house mouse (Good et al., 2008a, 2008b; Turner et al., 2012).  A single 

locus, GA19777, was found to create reproductive isolation within Drosophila 
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pseudoobscura pseudoobscura and Drosophila pseudoobscura bogotana subspecies (Oka 

et al., 2007; Phadnis and Orr, 2009). 

Mus musculus musculus and Mus musculus domesticus Subspecies 

 In this experiment, two different subspecies of the house mouse, M. m. musculus 

and M. m. domesticus, were examined.  These two subspecies diverged from a common 

ancestor in the Middle East 350,000 to 500,000 years ago (Geraldes et al., 2011; 

Janoušek et al., 2012; Kropáčková et al., 2015).  They met again at a secondary contact 

near a narrow hybrid zone in Europe (Geraldes et al., 2011; Janoušek et al., 2012; 

Kropáčková et al., 2015; Rajabi-Maham et al., 2008).  Hybrid zones are considered to be 

a narrow region where two diverse populations meet and interact, and they are 

maintained through selection against hybrids.  Hybrid zones offer an excellent tool in 

order to study gene flow and to study the role of various genomic regions in forming 

reproductive barriers (Božíková et al., 2005; Turner et al., 2012).  The hybrid zone of 

these two populations extends from Bulgaria to Denmark.  Hybrids can also be found in 

Norway (Jones et al., 2010).  Research has identified regions of the X chromosome as 

well as the Hstl/Prdm9 loci as important regions harboring loci involved in creating 

reproductive isolation between these two genetically distinct populations (Bhattacharyya 

et al., 2013; Flachs et al., 2012, 2014; Janoušek et al., 2012; Mihola et al., 2009).  Hybrid 

sterility and reproductive isolation of the house mouse is believed to be caused by a 

complex network of genetic factors (Good et al., 2008a, 2008b; Turner et al., 2012).  

Hybrid sterility has been proposed to contribute to hybrid failure and thus reproductive 

isolation (Janoušek et al., 2012; Kropáčková et al., 2015).   
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 Hybrid placental dysplasia (HPD), or increased or decreased placental and fetal 

growth in interspecific crosses, constitutes a reproductive barrier.  Peromyscus polionotus 

and Peromyscus maniculatus hybrids experienced disruptions in embryonic and placental 

growth (Vrana et al., 1998, 2000).  HPD is best-studied within the Mus genus; however, it 

does not occur in crosses between Mmm and Mmd (Janoušek et al., 2012; Kropáčková et 

al., 2015).  It is suggested that DNA methylation is not a feature of HPD (Schütt et al., 

2003).   

Function and Location of Examined Imprinted Genes 

 Imprinted genes are important in growth and development.  These genes are 

suggested to control maternal nutrient supply and are often involved in development and 

metabolism (Morison et al., 2005; Reinhart et al., 2006; Hutter et al., 2010a).  Around 

100 to 2000 imprinted genes have been identified within the mouse genome (Morison et 

al., 2005; Renfree et al., 2013; Wang et al., 2008, 2011).  Within this experiment, the 

methylation patterns and then the expression levels of multiple genes were attempted to 

be tested.  A number of primer sets did not successfully amplify the templates (Table 15 

and Table 16).  A total of eight imprinted genes were actually able to be examined in this 

experiment.  These genes were H19, Igf2r, Mcts2, Mest, Nap1l5, Peg10, Zac1, and Zim2 

(Table 1).   

 The imprinted gene H19 is expressed within the blastocyst but is repressed after 

birth.  This gene is located on chromosome 7 of the mouse (Bartolomei et al., 1991; 

Ferguson-Smith et al., 1993).  Methylation of the H19 paternal promoter occurs after 

fertilization.  This gene’s imprinting status is conserved across rodents and humans 

(Bartolomei et al., 1991; Ferguson-Smith et al., 1993).  This gene has an important role in 
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the development of the mouse, and it encodes one of the most abundant RNAs in the 

developing mouse embryo.  The H19 gene does not encode a protein (Bartolomei et al., 

1991; Ferguson-Smith et al., 1993).  Within humans, the transcription product of the H19 

gene functions as RNA, and overexpression of this gene is associated with bladder cancer 

and choriocarcinoma (Brannan et al., 1990; Gregg et al., 2010; Rachmilewitz et al., 1992; 

Reis et al., 2013). 

 The Igf2r (Insulin-like growth factor 2 receptor) gene is located on chromosome 

17 of the mouse genome (Birger et al., 1999; Wutz et al., 1997).  The gene is expressed 

from the maternal allele beginning 6.5 days after fertilization.  This gene’s imprinting 

status is conserved across mammals (Birger et al., 1999; Wutz et al., 1997; Xu et al., 

1993).  The mouse Igf2r gene contains two DMRs.  DMR2 is a target for de novo 

methylation and is the primary imprinting mark established within the gametes.  DMR1 is 

not independently associated with imprinting.  The Igf2r gene encodes the insulin-like 

growth factor type-2 receptor, which is important in growth and development (Birger et 

al., 1999; Wutz et al., 1997).  In humans, the Igf2r gene is imprinted in only a small 

portion of humans, and it encodes a receptor that binds lysosomal enzymes (Xu et al., 

1993). 

 The Mcts2 (Malignant T cell amplified sequence 2) gene is located on 

chromosome 2 of the mouse genome (Huang et al., 2014).  The gene is expressed from 

the paternal allele only and thus methylated on the maternal allele.  This gene’s 

imprinting status is conserved across rodents and humans (Huang et al., 2014; Wood et 

al., 2007).  The Mcts2 gene contains a domain involved in RNA binding, cell 

proliferation, and T-cell function (Huang et al., 2014; Wood et al., 2007).  Within 
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humans, this gene is also detected within several forms of cancers (Huang et al., 2014; 

Wood et al., 2007). 

 The imprinted Mest (Mesoderm specific transcript) gene is located on 

chromosome 6 of the mouse genome (Nishita et al., 1999; Rajabpour-Niknam et al., 

2013).  This gene is methylated on the maternal allele and is thus expressed from the 

paternal allele only.  This gene’s imprinting status is conserved across mammals (Mayer 

et al., 2010; Nishita et al., 1999; Rajabpour-Niknam et al., 2013).  Within mice, the Mest 

gene is expressed within the mesodermal derivatives of the embryo and is turned off 

within adult tissues.  This gene encodes a hydrolase enzyme and regulates placental and 

fetal growth (Nishita et al., 1999; Rajabpour-Niknam et al., 2013).  Within humans, 

aberrant DNA methylation of the Mest gene is associated with female and male 

infertility, and this gene is expressed during angiogenesis (Huntriss et al., 2013; Mayer et 

al., 2000). 

 The imprinted Nap1l5 (Nucleosome assembly protein 1-like 5) gene is located on 

the sixth chromosome of the mouse genome.  This gene is methylated on the maternal 

allele and is therefore expressed from the paternal allele only (Cowley et al., 2012; Gu et 

al., 2011).  The Nap1l5 gene encodes the nucleosome assembly protein 1-like 5.  The 

protein encoded by this gene is involved in transcriptional activation and mitotic events, 

and it is involved in liver cancer (Gu et al., 2011).  It has been observed that the function 

and imprinting status of this gene is conserved within mammals (Cowley et al., 2012; Gu 

et al., 2011).  Within humans, Nap1l5 is associated with hepatoblastoma, and other such 

nucleosome assembly proteins have been found to be associated with histone chaperones 

(Harada et al., 2002). 
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 The imprinted Peg10 (Paternally expressed gene 10) gene is derived from a 

retrotransposon that integrated into the mammalian genome.  This gene is located on the 

sixth chromosome of the mouse genome (Hishida et al., 2007; Ono et al., 2001).  The 

Peg10 gene is methylated on the maternal allele and is thus expressed from the paternal 

allele only.  This gene’s imprinting status is conserved across mammals (Hishida et al., 

2007; Ono et al., 2001).  The Peg10 gene is involved in gene regulation.  The Peg10 

region is also involved in the Silver-Russell Syndrome and choriocarcinoma (Hishida et 

al., 2007; Ono et al., 2001).  Within humans, this gene affects cell cycle progression and 

apoptosis (Hino et al., 2006; Ono et al., 2001). 

 The imprinted Zac1 (Zinc finger protein 1) gene is located on the tenth 

chromosome of the mouse genome (Du et al., 2012; Varrault et al., 2006).  This gene is 

methylated on the maternal allele and is therefore expressed from the paternal allele only.  

This gene’s imprinting status is conserved across mammals (Du et al., 2012; Varrault et 

al., 2006).  Zac1 encodes a zinc finger transcription factor, which induces apoptosis and 

cell-cycle arrest.  This gene is thus involved in controlling embryonic growth as well as 

intrauterine grown and bone formation (Du et al., 2012; Varrault et al., 2006).  Within 

humans, the Zac1 gene is associated with neonatal diabetes mellitus, and it serves as a 

coregulator for nuclear receptors (Daniel et al., 2015).  

 The imprinted Zim2 (Zinc finger, imprinted 2) gene is located on the seventh 

chromosome of the mouse genome (Kim et al., 2004).  This gene is expressed from the 

maternal allele only and is methylated within the paternal allele.  The imprinting status of 

the Zim2 gene is not conserved across mammals and little is known about its function 

(Kim et al., 2004).  This gene does encode a zinc-finger protein (Kim et al., 2004).  In 
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humans, the Zim2 gene is expressed primarily from the paternal allele, and it serves as a 

transcription factor (Kim et al., 2000, 2004). 

 DNA methylation and genomic imprinting are interesting areas of study.  Genes 

that are genomically imprinted are involved in growth, development, metabolism, and 

allocation of maternal nutrients (Hutter et al., 2010a; Morison et al., 2005; Reinhart et al., 

2006).  These genes are expressed at key times and ensure embryos survive and develop 

properly.  Disruption in the expression and imprinting patterns of these genes are 

observed within mouse hybrids and often explain the hybrid inviability and speciation of 

the organisms involved (Janoušek et al., 2012; Kropáčková et al., 2015; Morison et al., 

2005; Reinhart et al., 2006).  This study, by examining imprinted genes, helps determine 

the evolution and speciation of M. m. musculus and M. m. domesticus subspecies.  The 

conclusions of these experiments could have implications for humans, since many of the 

genes studied are shared with humans (Morison et al., 2005).  Within humans, changes in 

the DNA methylation pattern of the Mest gene are associated with female and male 

infertility (Huntriss et al., 2013; Mayer et al., 2000).  The subspecies of mice used in this 

study are commonly used in laboratory experiments, thus the study will inform the 

scientific community about the genomes of these animals as well (Hagan et al., 2004; Shi 

et al., 2004, 2005).            
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Gene Chromosome 

Location and 

Position of Gene 

Transcript (bp) 

Maternal or 

Paternal 

Expression in 

the Embryo 

Location of 

Expression 

 

Function Reference 

H19 Chromosome 7; 

149661584 – 

149861732   

Maternally 

Expressed 

Embryo, 

Placenta, 

Trophoblast, 

and Yolk Sac 

Has various roles 

in cancer 

development 

Shoshani et 

al., 2012 

Igf2r Chromosome 17; 

12875272 – 

12962572  

Maternally 

Expressed 

Embryo, 

Telencephalon, 

Cerebrum, 

Placenta, Liver, 

and Oocyte 

Leads to a 

receptor for a 

growth factor 

important in 

development 

Wutz et al., 

1998 

Mcts2 Chromosome 2; 

152512884 – 

152513678   

Paternally 

Expressed 

Embryo, Brain, 

Testes, and 

Oocyte 

Involved in T 

cell function 

Wood et 

al., 2007 

Mest Chromosome 6; 

30688063 – 

30698457   

Paternally 

Expressed 

Embryo, 

Placenta, Yolk 

Sac, Colon, 

Heart, Liver, 

Lung, and 

Oocyte 

Leads to a 

hydrolase linked 

to certain types 

of cancer 

Ineson et 

al., 2012 

Nap1l5 Chromosome 6; 

58855227 – 

58857120  

Paternally 

Expressed 

Adrenal Gland, 

Brain, Kidney, 

Leads to a 

nucleosome 

assembly protein 

Cowley et 

al., 2012 

Table 1. Description of Genes. Genes that were examined in this experiment.  The 

chromosome location and gene position were found within the UCSC Genome Browser 

under Build 37 (Kent et al., 2002). 
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Oocytes, and 

Sperm 

important in 

DNA packaging 

Peg10 Chromosome 6; 

4697306 – 

4710516   

Paternally 

Expressed 

Embryo, 

Placenta, Yolk 

Sac, and Brain 

Important in 

parthenogenetic 

development 

Hishida et 

al., 2007 

Zac1 Chromosome 10; 

12810591 – 

12851501   

Paternally 

Expressed 

Embryo, Brain, 

Gut, Heart, 

Kidney, Liver, 

Lung, Muscle, 

Tongue, and 

Oocyte 

Leads to a zinc 

finger protein 

that acts as a 

tumor suppressor 

Du et al., 

2012 

Zim2 Chromosome 7; 

6604459 – 

6615079    

Maternally 

Expressed 

Embryo, Brain, 

and Testes 

Encodes a zinc 

finger protein 

and its 

imprinting status 

is not conserved 

among mammals 

Kim et al., 

2004 
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CHAPTER TWO: DNA METHYLATION OF IMPRINTED GENES IN MOUSE  

HYBRIDS 

 

 

 

Introduction  

 DNA methylation is a form of epigenetic modification and typically occurs within 

mammals and plants.  It results in the addition of a methyl group on a cytosine nucleotide 

(Gos, 2013; Das and Singal, 2004).  The methyl group is often added through the activity 

of a DNA methyltransferase enzyme (Jones and Takai, 2001; Gos, 2013).  The DNA of 

an organism’s primordial germ cells typically loses methylation obtained in the previous 

generation, and then methylation is regained during gametogenesis (Tilghman, 1999).  

Studies have shown methylation changes within human patients diagnosed with diabetes 

and cancers (Arima et al., 2006; Rainier et al., 1993).  Within humans, the DNA 

methylation patterns of the Mest gene have been found to be associated with infertility 

(Huntriss et al., 2013; Mayer et al., 2000). 

 Methylation typically occurs on cytosine bases present within dinucleotides 

consisting of cytosine and guanine (Das and Singal, 2004).  Methylation can cause 

changes in the structure and grooves of DNA, which often alters the level of gene 

expression as enzymes and other cofactors cannot bind to the DNA (Jones and Takai, 

2001).  This change in expression is usually observed when methylation takes place 

within a portion of the DNA called the differentially methylated domain (DMD) 

(Reinhart et al., 2006).  DMDs are usually 1 to 5 kb in size and contain important 

structural components that are conserved across mammals (Reinhart et al., 2002, 2006; 

Paoloni-Giacobino, 2007). 
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 Genomic imprinting is a pattern of gene expression in which only one allele is 

expressed.  It is primarily achieved through DNA methylation at a DMD (Reinhart et al., 

2006).  With this pattern, one allele at a particular locus typically experiences DNA 

methylation, which causes it to be silenced and no longer expressed.  This genomic 

silencing results in the expression of only one allele at that particular locus.  Genomic 

imprinting is hypothesized to be important for the growth and development of mammals 

(Ashbrook and Hager, 2013; Reinhart et al., 2006; Tilghman, 1999). 

 In this experiment, I compared the DNA methylation pattern of imprinted genes 

within mouse hybrids to that of their parents.  Disruptions of both genomic imprinting 

and DNA methylation have been found to be present in mouse hybrids (Vrana et al., 

1998, 2000).  Previous studies have shown that the promoters of Oct4 and Nanog genes 

were demethylated in M. musculus-M. caroli hybrids (Battulin et al., 2009).  In M. 

musculus-M. spretus hybrids, researchers discovered a loss of imprinting in the Peg1 or 

Mest, Peg3, and Snrpn genes (Shi et al., 2004, 2005).  Studies have even shown 

methylation changes within human patients diagnosed with diabetes and cancers. 

 I performed bisulfite modification of DNA for this experiment.  Bisulfite 

modification converts any unmethylated cytosines to thymines.  The cytosines that 

remain are therefore methylated.  By identifying and comparing the cytosine sites within 

the DMDs of the samples, this process allowed me to determine if there was any 

disruption in methylation within the hybrids as compared to the parental species (Sun et 

al., 2013).  Normally, within DMDs, one allele is methylated while the other allele is not 

methylated.  If the hybrids showed a decrease in methylation, I expected to see both 

alleles containing TGs at CG sites.  If the hybrids yielded an increase in methylation, I 
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expected to see both alleles containing CGs at CG sites.  If the methylation pattern within 

the hybrids was maintained, I expected to see one allele with CGs and the other allele 

with TGs at the CG sites. 

Materials and Methods 

 The samples that were obtained were Mmm x Mmd-♀ (1164), Mmd-♀ (1172), 

Mmd-♂ (1175), Mmm-♂ (1185), Mmm x Mmd-♂ (1205), Mmd x Mmm-♀ (1216), Mmd x 

Mmm-♂ (1260), and Mmm-♀ (1400).  The female parents are listed first in the hybrid 

notation.  One male and one female of the two parental samples and one male and one 

female of the two hybrid samples were obtained.  The Mmd samples were of the WSB 

strain, while the Mmm samples were of the PWD strain.  Mouse livers from these adult 

samples were obtained from Dr. Bret Payseur of UW-Madison.  DNA was previously 

extracted from these samples through a Qiagen kit. 

 Zymo Research’s EZ DNA Methylation Kit was used to bisulfite-modify the 

DNA.  This kit converts all unmethylated cytosines to uracil.  The cytosines that remain 

in the samples are therefore considered methylated.  Using the modified DNA, PCR 

reactions using a thermocycler were performed to amplify a 300-500 bp portion of the 

DMDs of five imprinted genes of interest.  The five genes of interest were Mcts2, 

Nap1l5, Peg10, Zac1, and Zim2 (Table 1).  A ZymoTaq Premix was used to perform 

these reactions, and the primers utilized in these reactions were previously physically 

obtained from IDT (Table 12).  The DMDs and primer sequences were identified through 

the WAMIDEX website (Schulz et al., 2008).  A number of primers did not successfully 

amplify the template (Table 15).  I had to initially perform a 10 minute denaturation step 
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while using this Taq.  The PCR products were then purified through gel extractions via 

the QIAquick® Gel Extraction Kit. 

 Gel extractions of the PCR products were cloned through Life Technology’s 

TOPO® TA Cloning Kit (Invitrogen).  I cloned the PCR products in order to separately 

examine the alleles of each sample.  Using this kit, DNA was ligated to a vector, and then 

E. coli cells were transformed with the vector.  The E. coli cells were then plated on 

plates containing 0.5 µg/µl Ampicillin and LB Agar.  For each gene, five clones of each 

sample underwent PCR with the M13 primers to amplify the vector’s insert (Table 12).  

GoTaq (Promega) was used to perform these reactions, and a 10 minute initial 

denaturation step was used.  The PCR products of the clones were purified through gel 

extractions, and the purified products were then sent to GeneWiz in New Jersey to be 

sequenced with the M13 primers.  I also sequenced the purified, bisulfite-modified DNA 

for the samples and genes (Mmd-♀)-Nap1l5, (Mmm x Mmd-♂)-Nap1l5, (Mmd x Mmm-

♀)-Zim2, (Mmd x Mmm-♂)-Zim2, (Mmm-♀)-Zim2, (Mmm-♂)-Mcts2, (Mmm x Mmd-♂)-

Mcts2, (Mmd x Mmm-♀)-Mcts2, (Mmd x Mmm-♂)-Mcts2, and (Mmd-♀)-Zac1 to 

determine if there was one methylated allele and one unmethylated allele. 

 The PCR products were sequenced in the forward and reverse directions.  The 

reverse sequences were reverse complemented, so they were identical to the forward 

sequences.  All sequences were reviewed through the Geneious 7 and Mega 6 programs 

(Kearse et al., 2012; Tamura et al., 2013).  Sequences for each gene were input into 

BLAST to ensure the correct sequence had been amplified (Altschul et al., 1990).  The 

primers were identified and removed from these sequences.  Each CG and non-CG site 
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that experienced methylation in at least one allele of a sample was identified and 

compared across the samples.   

Results 

Mcts2 Gene 

 A 310 bp segment of the DMD of the Mcts2 gene was sequenced from bisulfite-

modified DNA.  This DMD region is located within an intron of the H13 gene and an 

exon of Mcts2.  Two clones for the samples Mmm-♂, Mmd x Mmm-♂, and Mmm x Mmd-

♂; three clones for sample Mmm-♀; four clones for sample Mmm x Mmd-♀; and five 

clones for samples Mmd-♀, Mmd-♂, and Mmd x Mmm-♀ were sequenced.  The 

sequences produced were of good quality.  I examined 30 CG sites, of which 25/30 

showed methylation on only one allele within each sample, and 5/30 showed no 

methylation on either allele within at least one sample.  The parental sample Mmd-♀ had 

3 CG sites with only TG while sample Mmd-♂ had two sites with only TG, and the 

remaining 27 and 28 respective CG sites had CG and TG (Table 2).  The parental sample 

Mmm-♂ had CG and TG at two sites and TG at the remaining 28 available CG sites.  The 

parental sample Mmm-♀ had TG at one site and CG and TG at the remaining 29 available 

sites.  The hybrid sample Mmm x Mmd-♀ had only TG at 1 site and CG and TG at the 

remaining available 29 sites, while Mmd x Mmm-♂ had TG at each of the available 30 

CG sites.  Hybrid sample Mmm x Mmd-♂ had CG and TG at two sites and TG at 28 sites 

while Mmd x Mmm-♀ had CG and TG at 3 sites and TG at the remaining available 27 

sites.  The Mmd x Mmm-♀ sample did show partial methylation on both alleles.  The 

discrepancy between the alleles was observed at two sites (Table 2).  When the amplified 

bisulfite-modified DNA was sequenced without being cloned, each of the available sites 
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had CG and TG for the samples Mmm-♂, Mmm x Mmd-♂, Mmd x Mmm-♀, and Mmd x 

Mmm-♂ (Table 3).  In terms of the 3 non-CG sites examined, most samples for most sites 

had T (Table 2 and Table 3).  However, Mmm x Mmd-♀ had C and T at site 33; Mmd-♀ 

had C and T at site 33; Mmd-♂ had C and T at sites 31 and 33; Mmm-♂ had C and T at 

site 32 and C at site 33; Mmm x Mmd-♂ had C and T at site 33; Mmd x Mmm-♀ had C 

and T at site 32 and C at site 33; Mmd x Mmm-♂ had C and T at site 32 and C at site 33; 

and Mmm-♀ had C and T at sites 32 and 33 (Table 2 and Table 3). 

Nap1l5 Gene 

 A 234 bp segment of the DMD of the Nap1l5 gene was sequenced from bisulfite-

modified DNA.  This DMD region is located within an exon and intron of the Nap1l5 

gene and an intron of Herc3.  Five clones for each sample were sequenced.  The 

sequences produced were of good quality.  I examined 22 CG sites, of which 7/22 

showed methylation on only one allele within each sample, and 15/22 showed disruption 

in methylation within at least one sample.  The parental sample Mmd-♀ had CG and TG 

at each of the 22 CG sites examined, while sample Mmd-♂ had CG and TG at each site 

except one site with only CG.  The Mmd-♀ sample yielded partial methylation on both 

alleles (Table 4).  The parental samples Mmm-♂ and Mmm-♀ had 9 sites with CG and 13 

sites with CG and TG.  The hybrid sample Mmd x Mmm-♂ had CG and TG at each of the 

22 CG sites.  The hybrid sample Mmm x Mmd-♀ had CG at 11 sites and CG and TG at 11 

sites, while Mmd x Mmm-♀ had TG at 2 sites and CG and TG at the remaining sites 

(Table 4).  According to table 4, sample Mmm x Mmd-♂ had only CG at 14 sites; 

however, when the amplified bisulfite-modified DNA was sequenced without being 

cloned, each of the available sites had CG and TG (Table 5).  Table 5 also affirmed that 
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hybrid sample Mmd-♀ had CG and TG at each site.  In terms of non-CG sites, every 

sample had a T at these sites except Mmd-♀, which had C and T at site 23; Mmm x Mmd-

♂, which had C and T at sites 24-26; Mmd x Mmm-♂, which had C and T at site 25; and 

Mmm-♀, which had C and T at site 26 (Table 4 and Table 5). 

Peg10 Gene 

 A 228 bp segment of the DMD of the Peg10 gene was sequenced from bisulfite-

modified DNA.  This DMD region is located within an exon of the Peg10 gene.  Three 

clones for sample Mmm-♀; four clones for sample Mmd x Mmm-♂; and five clones for 

samples Mmd-♀, Mmd-♂, Mmm-♂, Mmd x Mmm-♀, Mmm x Mmd-♀, and Mmm x Mmd-

♂ were sequenced.  The sequences produced were of good quality.  I examined 22 CG 

sites, and each sample except Mmm-♀ experienced methylation on only one allele within 

each site.  Sample Mmm-♀ showed methylation on both alleles for 21/22 CG sites and 

methylation on only one allele for 1/22 site.  All of the parental samples except Mmm-♀ 

had CG and TG at each of the 22 CG sites examined (Table 6).  The sample Mmm-♀ had 

CG and TG at one site and CG at the remaining 21 sites.  All of the hybrid samples had 

CG and TG at each of the 22 sites (Table 6).  In terms of non-CG sites, at site 23 and 25, 

each sample had C and T.  At site 24, sample Mmm-♂ had T, while the other samples had 

C and T.  At site 30, sample Mmm-♀ had C, while the other samples had C and T.  At the 

sites 26-29, all samples had T except one sample for each site had C and T (Table 6). 

Zac1 Gene 

 A 254 bp segment of the DMD of the Zac1 gene was sequenced from bisulfite-

modified DNA.  This DMD region is located within an intron of the Zac1 gene.  Two 
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clones for sample Mmd-♀; three clones for sample Mmm x Mmd-♀; four clones for 

samples Mmm-♀, Mmd x Mmm-♀, and Mmm x Mmd-♂; and five clones for samples 

Mmd-♂, Mmm-♂, and Mmd x Mmm-♂ were sequenced.  The sequences produced were 

of good quality.  I examined 15 CG sites, of which 7/15 showed methylation on only one 

allele within each sample, and 8/15 showed no methylation on either allele within at least 

one sample.  All of the parents except Mmd-♀ had CG and TG at each of the 15 CG sites 

examined (Table 7).  The hybrid Mmm x Mmd-♀ had 7 sites with TG and 8 sites with CG 

and TG, while the hybrid Mmd x Mmm-♀ had two sites with TG and 13 sites with CG 

and TG.  The Mmm x Mmd-♀ sample showed partial methylation on both alleles.  The 

discrepancy between the alleles was observed on only one site.  The hybrids Mmm x 

Mmd-♂ and Mmd x Mmm-♂ had CG and TG at each of the sites (Table 7).  According to 

Table 7, Mmd-♀ had only TG at each of the 15 CG sites; however, when the amplified, 

bisulfite-modified DNA was sequenced without being cloned, each of the available sites 

had CG and TG (Table 8).  In terms of non-CG sites, every sample had T except Mmd-♂, 

which had C and T at site 18, Mmm x Mmd-♂, which had C and T at site 17, and Mmd x 

Mmm-♀, which had C and T at site 16 (Table 7 and Table 8). 

Zim2 Gene 

 A 278 bp segment of the DMD of the Zim2 gene was sequenced from bisulfite-

modified DNA.  This DMD region is located within an intron and exon of the Peg3 gene.  

Two clones for samples Mmd-♀, Mmd x Mmm-♂, and Mmm x Mmd-♂; three clones for 

sample Mmm-♀; four clones for sample Mmm-♂; five clones for samples Mmd-♂ and 

Mmm x Mmd-♀; and seven clones for sample Mmd x Mmm-♀.  The sequences produced 

were of good quality.  I examined 21 CG sites, of which 11/21 showed methylation on 
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only one allele within each sample, and 10/21 showed methylation on both alleles within 

at least one sample.  The parental samples Mmd-♂ and Mmm-♂ had CG and TG at each 

of the 21 CG sites examined (Table 9).  The parental sample Mmd-♀ had 10 sites with 

CG and 11 sites with CG and TG, while sample Mmm-♀ had two sites with CG and TG 

and 19 sites with CG.  The hybrid sample Mmm x Mmd-♀ had CG and TG at each of the 

21 CG sites examined.  The hybrid samples Mmm x Mmd-♂, Mmd x Mmm-♀, and Mmd 

x Mmm-♂ had CG and TG at each of the available 21 sites (Table 9).  When the 

amplified, bisulfite-modified DNA was sequenced without being cloned, the samples 

Mmd x Mmm-♀, Mmd x Mmm-♂, and Mmm-♀ had CG and TG at each of the available 

sites (Table 10).  In terms of the 7 non-CG sites examined, most samples for most sites 

had T (Table 9 and Table 10).  However, Mmm x Mmd-♀ had C and T for 3 sites and C at 

one site; Mmd-♀ had C for one site; Mmd-♂ had C and T for two sites; Mmm-♂ had C 

and T for two sites; Mmm x Mmd-♂ had C and T for one site; Mmd x Mmm-♀ had C and 

T for three sites; Mmd x Mmm-♂ had C and T for 4 sites; and Mmm-♀ had C and T for 

two sites and C for one site (Table 9 and Table 10). 

Discussion 

 I examined the methylation patterns of five genes within the M. m. musculus and 

M. m. domesticus subspecies and their hybrids.  The genes I examined were Mcts2, 

Nap1l5, Peg10, Zac1, and Zim2.  I amplified the DMD region of each of these genes, and 

then I cloned and sequenced the regions.  I compared the results obtained within the 

hybrids to that observed within the parental samples.  I expected each sample to yield one 

methylated and one unmethylated allele for each gene.  I also expected there to be some 

CG sites that were methylated on both alleles.  I observed decreases and increases of 
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methylation within the hybrids and parents.  There were changes in methylation within 

the hybrids for each gene except Mcts2, Peg10, and Zim2.  There was disruption in 

methylation within the parental samples for each gene except Zac1.  The hybrid sample 

Mmm x Mmd-♀ showed disruption in methylation within two genes while the parental 

organisms had similar methylation levels.  The Mmd x Mmm-♂ and Mmm x Mmd-♂ 

hybrid samples did not yield disruption in methylation within any of the genes. 

 Those samples that yielded changes in methylation possibly have had disruption 

in expression.  DNA methylation can cause changes in the structure of the DNA 

molecule, which can prevent gene expression (Das and Singal, 2004; Jones and Takai, 

2001).  An increase in methylation could possibly result in a decrease in the gene 

expression level.  A decrease in methylation, however, could possibly result in an 

increase in the gene expression level.  The decrease in methylation will not necessarily 

cause biallelic expression (Jones and Takai, 2001; Tycko and Morison, 2002; Rainier et 

al., 1993).  The hybrid and parental samples showed both increases and decreases in 

methylation, which suggests that those samples had increases and decreases in expression 

within each corresponding gene. 

 Previous studies have shown that disruptions in methylation patterns are present 

in mouse hybrids within the Mus genus.  In M. musculus – M. caroli hybrids, researchers 

have discovered a loss of methylation in retroelements (Brown et al., 2008, 2012).  The 

promoters of the Oct4 and Nanog genes were found to be demethylated in M. musculus – 

M. caroli hybrids (Battulin et al., 2009).  Loss of methylation is observed within patients 

with diabetes mellitus and hypermethylation is associated with cancers (Arima et al., 

2006).   
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 DNA methylation has been found to vary among individuals.  This individual 

variation was observed in a study which examined Wilms’ tumors within humans, in 

which two imprinted genes, Igf2 and H19, showed a change in expression in only a 

portion of the individuals studied (Rainier et al., 1993).  Individual variation was also 

observed within a study using Mus musculus and Mus spretus hybrids, in which only a 

percentage of the samples examined yielded a disruption in the expression of the Peg1 

imprinted gene (Shi et al., 2004, 2005).  Therefore, the disruptions in methylation 

observed within this experiment may be due to individual variation.   

 Reproductive isolation can be created as genetic differences accumulate.  Such 

reproductive isolation is required for speciation to occur (Good et al., 2008a, 2008b; 

Palumbi, 1994; Turner et al., 2012).  Genetic differences between populations can be 

created through a number of events or occasions.  The linkage between genetic variation 

and reproductive isolation is not fully understood within the separate subspecies M. m. 

musculus and M. m. domesticus.  However, genetic differences leading to reproductive 

isolation have been observed within genes, such as the Prdm9 locus, involved in gamete 

production, development, and mate recognition (Bhattacharyya et al., 2013; Flachs et al., 

2012, 2014; Geraldes et al., 2011; Mihola et al., 2009; Palumbi, 1994).  The genes that 

showed disruption within the mouse hybrids of this experiment were Nap1l5 and Zac1, 

which are associated with development and several diseases.  The Mcts2, Nap1l5, Peg10, 

and Zim2 genes also yielded differences in methylation between the two parental 

subspecies.  The Mcts2, Peg10, and Zim2 genes are also important in growth and 

development.  In total, the parents showed five increases and three decreases in 

methylation, while the hybrids yielded one increase and four decreases.  All of this data 
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suggests that each of these genes showed differences between the methylation patterns of 

the parental and/or hybrid samples.  Because each of the genes have similar functions, 

there is not a clear association between gene functions and methylation patterns. 

 The Zim2 gene showed an increase in methylation in one parental sample and 

does not have a fully understood function.  The Zim2 gene is the only maternally 

expressed gene examined.  Among mammals, conservation in methylation has been 

observed within paternally expressed imprinted genes; however, there is a lack of 

conservation within maternally expressed genes (Hutter et al., 2010b, 2010c).  There does 

not seem to be an association between the genomic imprinting pattern of the gene and the 

methylation pattern observed in this experiment.  Both maternally and paternally 

expressed imprinted genes yielded disruption in methylation within the hybrids and 

parental species.  I believe more maternally expressed genes should be examined to 

identify if there is a link with the conservation observed.  Within the hybrids and parents, 

there does also appear to be differences in methylation between the males and females.  

More methylation changes appear to occur within females versus males, which possibly 

suggests that there is variation between individuals. I feel that more parental and hybrid 

samples and clones should be examined to ensure that both alleles were sequenced and to 

determine if individual variation had been observed.   
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Gene Primer Name Primer Sequence Annealing 

Temperature 

Mcts2 

Mcts2-Bi-3-F GGATTTTYGGGGATGTTTGGGA

TAG 
51oC 

Mcts2-Bi-3-R ACTTTACRACTATATAAAATCC

AATAACTTCC 

Nap1l5 

Nap1l5-Bi-3-F AYGGAATTGGGTAAGTTTTTTA

TAAAG 
46oC 

Nap1l5-Bi-3-R CACAACTACAAAACCTCTCTAA

ACC 

Zim2 

Zim2-Bi-4-F YGTAGTTTGTAGTTTTGTTAGTT

ATTTTTGGGAG 
52oC 

Zim2-Bi-4-R AAATATCCCRCAACCCTTACTA

CAAAC 

Peg10 

Peg10-Bi-2-F TTGGYGTTTTTTTTTTTAGGATT

TTTTTATATAAGG 
48oC 

Peg10-Bi-2-R AAAAAATCCTAACCATACTCAC

CACAC 

Zac1 

Zac1-Bi-3-F AATTTGGGTGTTTTAGTTGTAG

TTAGAGATGTAG 
52oC 

Zac1-Bi-3-R ATTACRCTCTAAATTCTCCCAA

AAATTC 

Cloning 

Vector 

M13F GTAAAACGACGGCCAGTGAATT

GTAATACGACTCACTATAGGGC

GAATTGAATTTAGCGGCCGCGA

ATTCGCCCTT 

52oC M13R CAGGAAACAGCTATGACCATG

ATTACGCCAAGCTCAGAATTAA

CCCTCACTAAAGGGACTAGTCC

TGCAGGTTTAAACGAATTCGCC

CTT 

 

 

 

 

Table 12. Primers used in PCR to Amplify Bisulfite-Modified DNA and E. coli 

Vectors.  A description of the primers used in PCR.  The name of the primers, the 

name of the gene associated with the primers, and the primer sequences are listed 

here.  The primer sequences were obtained from WAMIDEX or the TOPO TA 

Cloning Kit (Invitrogen) (Schulz et al., 2008).  The symbol “Bi” indicates that the 

particular primer was associated with bisulfite-modified template and amplified the 

DMD associated with the gene. 
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CHAPTER THREE: EXPRESSION OF IMPRINTED GENES IN MOUSE HYBRIDS 

 

 

 

Introduction  

 Genomic imprinting is a pattern of gene expression that is primarily achieved 

through DNA methylation at a differentially methylated domain (Reinhart et al., 2006).  

DNA methylation causes changes in the structure and grooves of DNA, which alters gene 

expression as enzymes and other cofactors cannot bind to the DNA (Jones and Takai, 

2001).  This change in binding causes one copy of a gene, or allele, to be silenced.  

Genomic silencing results in the expression of only one allele at a particular locus, and 

this expression pattern causes the genes to be functionally haploid (Ashbrook and Hager, 

2013; Reinhart et al., 2006; Tilghman, 1999).  The silencing of alleles increases the 

probability that individuals will develop serious conditions caused by recessive alleles 

(Morison et al., 2005; Virani et al., 2012).  Most imprinted genes are associated with 

growth and pathways involved in metabolism and cell adhesion (Gregg et al., 2010). 

 Previous studies have shown that disruptions in genomic imprinting are present in 

mouse hybrids of the Mus genus.  In M. musculus-M. spretus hybrids, researchers 

discovered a loss of imprinting in the Mest, Peg3, and Snrpn genes (Shi et al., 2004, 

2005).  These three genes are normally paternally expressed and are important in growth 

and development (Shi et al., 2004, 2005). 

 In this experiment, two-step qRT-PCR was performed for five imprinted genes 

within mouse hybrids in order to ascertain gene expression levels.  The five genes I 

examined were Mcts2, Mest, Nap1l5, H19, and Igf2r (Table 1).  RNA was isolated from 
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mouse pup tissues obtained from a lab in Eastern Michigan University.  The RNA was 

then converted to cDNA through reverse transcriptase, which then underwent real-time 

PCR (Dong et al., 2013).  Because RNA represents the genes that have been expressed 

and have undergone transcription, this process examined gene expression levels.  Real-

time PCR then examined the PCR amplification process in real-time (Machado et al., 

2013).  The reagent SYBR Green was utilized in this process.  SYBR Green is a 

fluorescent intercalating dye that binds to newly synthesized double-stranded DNA.  

When the dye binds to the DNA, it fluoresces, and the fluorescence from this dye is then 

monitored (Dong et al., 2013; Machado et al., 2013).   

 Within this experiment, a value termed Ct was then analyzed, which represents 

the PCR cycle number in which a relative level of fluorescence was detected.  The higher 

the Ct value, the lower the amount of RNA there is, while low Ct values represent a large 

amount of RNA (Dong et al., 2013; Machado et al., 2013).  These Ct values were then 

normalized through the Pfaffl method, and the relative expression level was analyzed 

(Pfaffl, 2001).  If the hybrid samples showed a loss of imprinting, I expected to see a 

higher relative expression as compared to the parental samples since the genes will yield 

greater expression and therefore there would be more RNA/cDNA.  If the hybrid samples 

did not have any changes in genetic imprinting, I expected the relative expression values 

to be the same in the hybrids as compared to the parents.  Instead, if the hybrid samples 

showed methylation in both alleles, I expected to see a lower relative expression since the 

gene will not be expressed as much from either allele as compared to the parental 

samples (Shi et al., 2005).  Performing real-time PCR allowed me to examine the 

expression levels of the five imprinted genes and to determine if the DNA methylation 
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changes I observed for the genes Mcts2 and Nap1l5 affected the expression levels of 

those genes.   

Materials and Methods 

 Embryo body tissues were obtained from Dr. David Kass of Eastern Michigan 

University.  The body tissues were obtained for the samples Mmd-♀ (R1), Mmd-♂ (R2), 

Mmm-♀ (R3), Mmm-♂ (R4), Mmd x Mmm-♂ (R5), Mmm x Mmd-♀ (R6), and Mmm x 

Mmd-♂ (R7).  The female parents are listed first in the hybrid notation.  One male and 

one female of the two parental samples and an individual representing three of their four 

hybrids were obtained.  The tissues were from 13-16 day old mouse embryos.  The Mmd 

samples were of the LEWES strain, and the Mmm samples were of the PWK strain.  RNA 

was isolated and extracted from these house mouse samples using the Qiagen RNAeasy® 

mini kit.  All equipment and surfaces were wiped down with RNAase Zap.  Two-step 

qRT-PCR was performed.  First-strand cDNA was synthesized using ThermoScientific 

RevertAid Reverse Transciptase.  Primers for qRT-PCR were obtained from the 

PrimerBank database and the IDT PrimeTime® database (Table 13) (PrimeTime® 

program, 2015; Spandidos et al., 2008, 2010; Wang and Seed, 2003).  A number of 

primers did not successfully amplify the template (Table 16).  I ran real-time PCR for six 

genes H19, Igf2r, Mcts2, Mest, Nap1l5, and eEF-2 (Table 1).  The Eukaryotic elongation 

factor 2 (eEF-2) gene, which is a housekeeping gene, was used in order to normalize the 

real-time PCR data.   

 A primer efficiency test was done initially to ensure the primers worked properly.  

For each of the 6 primer sets, 4 serial dilutions (1:1, 1:10, 1:100, 1:1000 or 1:1, 1:5, 1:25, 

1:125) of the template were made and then each template was run in triplicate.  There 
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were a total of 12 reactions per primer set.  RNA for the primer efficiency test was 

obtained from adult liver tissues of balb/c and Black57 C57/B6 mouse hybrids.  These 

mice were obtained from Dr. Erich Ottem’s lab at NMU.  This template was labeled as 

R8.  The efficiency of each primer was between 89.0% and 110%, and the R2 value was 

larger than 0.900.  The primer efficiency test was done with USB VeriQuestTM SYBR 

Green qPCR Master Mix (2X), and this reagent required an initial 2 min 50oC incubation 

where any leftover RNA was broken down.  The 50oC incubation was followed by a 10 

minute 95oC incubation and a melting curve analysis.  Samples were pipetted into 96-

well semi-skirted plates, and the results were examined within the program BioRad iQ5. 

 After the primer efficiency tests, qPCR was performed.  USB VeriQuestTM SYBR 

Green qPCR Master Mix (2X) was used in this process, and the samples were run in 

triplicate.  There were 24 reactions per primer set where the 7 samples along with the 

control sample were run.  For each gene or primer set, the Ct numbers of each sample 

were compared across the samples.  The Pfaffl method was used to normalize the data, 

and the standard deviation of each sample’s data set was calculated.  The Pfaffl 

calculation, which produces a ratio, is 
(𝐸𝑡𝑎𝑟𝑔𝑒𝑡)

∆𝐶𝑡 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡𝑟𝑒𝑎𝑡𝑒𝑑)

(𝐸𝑟𝑒𝑓)
∆𝐶𝑡 𝑟𝑒𝑓 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑡𝑟𝑒𝑎𝑡𝑒𝑑)  (Pfaffl, 2001).  For 

each gene’s data set, I performed a one-way ANOVA statistical test as well as a post-Hoc 

Tukey HSD test in order to see if the differences observed in the expression were 

significant (Kramer, 1956; Tukey, 1949). 

Results 

 I performed two-step qRT-PCR on the cDNA obtained from seven samples.  I 

used primers to amplify a section of the coding region of the respective H19, Igf2r, 
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Mcts2, Mest, and Nap1l5 genes.  I used the Pfaffl method to normalize the Ct data.  I used 

data for the housekeeping, eEF-2 gene to normalize the data.  The data for the eEF-2 

gene caused differences between the relative expression level scales of the genes despite 

any similar Ct values.  I then performed a one-way ANOVA statistical test and post-Hoc 

Tukey HSD test on each gene’s data set.  I did observe that within each of the genes, 

there were differences in the expression levels of at least one of the hybrid samples as 

compared to some of the parents.  Within each gene, except Nap1l5, at least one of the 

hybrid samples showed a similar expression level as compared to some of the parents.  

There were also differences between the expression levels of the two parental subspecies. 

H19 Gene 

 I observed that each sample yielded decreased expression in the H19 gene as 

compared to the control sample (Figure 1).  The Mmd-♀ (R1) sample had the largest 

decrease in expression, and this sample had 10.57 times lower H19 expression as 

compared to the control sample.  This sample had significantly different expression levels 

as compared to the other samples (p < 0.01).  Samples Mmd-♂, Mmm-♀, Mmm-♂, Mmd 

x Mmm-♂, and Mmm x Mmd-♀ (R2-R6) showed similar expression levels (p > 0.05) that 

were 5 to 8 times greater than that of sample Mmd-♀ (R1).  The sample Mmm x Mmd-♂ 

(R7) yielded two times higher H19 expression as compared to that of the Mmd-♀ (R1) 

sample (Figure 1).  The Mmm x Mmd-♂ (R7) sample had significantly different 

expression levels as compared to the other samples (p < 0.01).  Sample Mmd-♀ (R1) 

showed the greatest standard deviation of 3.54 while the sample Mmd-♂ (R2) yielded the 

lowest standard deviation of 0.44 (Figure 1).  In looking at the raw Ct values observed 

within the H19 qRT-PCR experiment, sample Mmd-♀ (R1) showed the largest average Ct 
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value of 34.95 (Table 14A).  Samples Mmm-♀, Mmm-♂, Mmd x Mmm-♂, Mmm x Mmd-

♀, and Mmm x Mmd-♂ (R3-R7) yielded similar average Ct values between 26.57 and 

28.98.  The control sample (R8) showed the lowest Ct value of 23.17 (Table 14A). 

Mcts2 Gene 

 I observed that the samples Mmd-♀ (R1), Mmd-♂ (R2), Mmm x Mmd-♀ (R6), 

and Mmm x Mmd-♂ (R7) yielded increased expression in the Mcts2 gene as compared to 

the control sample (Figure 2).  The samples Mmm-♀ (R3), Mmm-♂ (R4), and Mmd x 

Mmm-♂ (R5) showed decreased expression.  The Mmd-♂ (R2) sample yielded the largest 

increase in expression, and this sample had 5.0 times higher Mcts2 expression as 

compared to the expression of the control sample (Figure 2).  This sample had 

significantly different expression levels as compared to the other samples (p < 0.01).  

Samples Mmm x Mmd-♀ (R6) and Mmm x Mmd-♂ (R7) showed similar expression 

levels (p > 0.05) that were approximately four times lower than that of the Mmd-♂ (R2) 

sample.  The sample Mmd-♀ (R1) also yielded similar expression levels to the Mmm x 

Mmd hybrids (R6 and R7), but this was not supported with the p-values.  The samples 

Mmm-♀ (R3), Mmm-♂ (R4), and Mmd x Mmm-♂ (R5) showed very similar expression 

levels (p < 0.05) that were between 1.2 and 1.7 times lower as compared to that of the 

control sample (Figure 2).  Each of the hybrids yielded a similar expression pattern as 

compared to the paternal parent, so the hybrids showed parent-specific expression 

patterns within the Mcts2 gene.  Sample Mmd-♀ (R1) showed the greatest standard 

deviation of 1.33 while sample Mmm x Mmd-♂ (R7) yielded the smallest standard 

deviation of 0.29 (Figure 2).  In looking at the raw Ct values observed within the Mcts2 

qRT-PCR experiment, sample Mmd-♀ (R1) showed the largest average Ct value of 31.78 
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(Table 14B).  Samples Mmd-♂ (R2), Mmm-♀ (R3), Mmm-♂ (R4), Mmd x Mmm-♂ (R5), 

Mmm x Mmd-♀ (R6), and Mmm x Mmd-♂ (R7) yielded similar average Ct values 

between 26.72 and 29.48.  The control sample (R8) showed the lowest Ct value of 23.84 

(Table 14B). 

Igf2r Gene 

 I observed that each sample showed increased expression in the Igf2r gene as 

compared to the control sample (Figure 3).  The Mmd-♂ (R2), Mmd x Mmm-♂ (R5), and 

Mmm x Mmd-♀ (R6) samples had the largest increases in expression, and these samples 

had between 21.1 and 24.9 times greater Igf2r expression as compared to that of the 

control sample.  The Mmd-♀ (R1) and Mmm x Mmd-♂ (R7) samples had similar levels of 

expression (p > 0.05) that were around 7 times lower than that of the Mmd x Mmm-♂ 

(R5) sample.  The remaining two samples, which were the Mmm parental samples (R3 

and R4), yielded similar expression levels, but this was not supported by the p-values 

(Figure 3).  Sample Mmd x Mmm-♂ (R5) showed the greatest standard deviation of 6.44 

while sample Mmd-♀ (R1) yielded the smallest standard deviation of 0.97 (Figure 3).  In 

looking at the raw Ct values observed within the Igf2r qRT-PCR experiment, sample 

Mmd-♀ (R1) showed the largest average Ct value of 33.1 (Table 14C).  Samples Mmm-♀ 

(R3) and Mmm-♂ (R4) yielded the lowest Ct value of 25.3 and 25.54 respectively.  The 

samples Mmd-♂ (R2), Mmd x Mmm-♂ (R5), Mmm x Mmd-♀ (R6), Mmm x Mmd-♂ (R7), 

and the control (R8) showed similar average Ct values between 26.44 and 29.94 (Table 

14C). 
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Nap1l5 Gene 

 I observed that each sample yielded increased expression in the Nap1l5 gene as 

compared to the control sample (Figure 4).  The Mmd-♂ (R2) sample had the largest 

increase in expression, and this sample had 80.2 times higher Nap1l5 expression as 

compared to the expression of the control sample.  Sample Mmd-♀ (R1) also showed 

71.2 times higher Nap1l5 expression (Figure 4).  The expression levels of both of the 

Mmd parental samples (R1 and R2) were significantly different from that of the other 

samples (p < 0.01).  Samples Mmd x Mmm-♂ (R5), Mmm x Mmd-♀ (R6), and Mmm x 

Mmd-♂ (R7) had similar expression levels (p > 0.05) that were over 10 times lower than 

that observed within the Mmd-♂ (R2) sample.  Samples Mmm-♀ (R3) and Mmm-♂ (R4) 

showed expression levels 4 times lower than that of the Mmd-♂ (R2) sample (Figure 4).  

Each of the hybrids yielded lower levels of expression as compared to the parental 

subspecies, so the hybrids showed species-specific expression patterns within the Nap1l5 

genes.  Sample Mmd-♂ (R2) had the greatest standard deviation of 29.53 while Mmd x 

Mmm-♂ (R5) showed the smallest standard deviation of 1.17 (Figure 4).  In looking at 

the raw Ct values observed within the Nap1l5 qRT-PCR experiment, Mmd-♀ (R1), Mmd-

♂ (R2), Mmd x Mmm-♂ (R5), Mmm x Mmd-♀ (R6), and the control sample (R8) yielded 

average Ct values greater than 30 (Table 14D).  Samples Mmm-♀ (R3), Mmm-♂ (R4), 

and Mmm x Mmd-♂ (R7) showed average Ct values between 26.8 and 29.1 (Table 14D). 

Mest Gene 

 I observed that each sample yielded increased expression in the Mest gene as 

compared to the control sample (Figure 5).  The Mmd-♂ (R2) sample had the largest 

increase in expression, and this sample had 18976 times higher Mest expression as 
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compared to the expression of the control sample.  This sample had a significantly 

different expression level as compared to the other samples (p < 0.01).  The Mmd x 

Mmm-♂ (R5) sample also had a significantly different expression level as compared to 

the other samples (p < 0.01). Samples Mmm-♀ (R3) and Mmm-♂ (R4) showed similar 

expression levels (p > 0.05) that were over 7 times lower than that observed within the 

Mmd-♂ (R2) sample.  The samples Mmd-♀ (R1), Mmm x Mmd-♀ (R6), and Mmm x 

Mmd-♂ (R7) yielded very similar expression levels (p > 0.05) that were 240 and 600 

times greater as compared to that of the control sample (Figure 5).  Sample Mmd-♂ (R2) 

showed the greatest standard deviation of 4047.24 while sample Mmd-♀ (R1) yielded the 

smallest standard deviation of 53.76 (Figure 5).  In looking at the raw Ct values observed 

within the Mest qRT-PCR experiment, the control sample (R8) showed the largest 

average Ct value of 31.17 (Table 14E).  Samples Mmd-♀ (R1) and Mmd-♂ (R2) yielded 

similar average Ct values of 28.72 and 25.71.  Samples Mmm-♀ (R3), Mmm-♂ (R4), 

Mmd x Mmm-♂ (R5), Mmm x Mmd-♀ (R6), and Mmm x Mmd-♂ (R7) showed similar 

average Ct values between 19.75 and 22.3 (Table 14E). 

Discussion 

 Within the H19, Igf2r, and Mest genes, samples Mmd-♀ and Mmm x Mmd-♂ had 

very similar expression levels, which differed from nearly all the other samples (p < 

0.01).  These samples had the lowest level of expression within each of the genes.  

Within the Mcts2 gene, samples Mmd-♀, Mmd-♂, Mmm x Mmd-♀, and Mmm x Mmd-♂ 

showed an increase in expression relative to the control, while the remaining samples had 

a similar decrease (p > 0.05).  In terms of the Nap1l5 gene, the Mmd parental samples 

yielded the greatest level of expression, while each of the hybrid samples showed similar 
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low levels (p > 0.05).  Each gene had differences in expression between the hybrid and 

parental samples. 

 The hybrids experienced interesting, specific expression patterns within the Mcts2 

and Nap1l5 genes.  Within the Nap1l5 genes, each of the hybrids experienced similar 

levels of expression that were significantly lower than that of both parental subspecies.  

Thus, the hybrids experienced species-specific expression patterns within the Nap1l5 

gene.  Within the Mcts2 gene, each of the hybrids experienced a similar expression 

pattern as compared to the paternal parent.  The hybrids within this gene showed parent-

specific expression patterns.  These expression patterns suggest that there are disruptions 

in the Mcts2 and Nap1l5 genes within the parental subspecies.   

 Within each gene, those samples that yielded differing expression levels as 

compared to the other samples may have possibly experienced disruption in DNA 

methylation patterns.  DNA methylation within the promoters of genes can cause changes 

in the structure of the DNA molecule, which can prevent gene expression (Das and 

Singal, 2004; Jones and Takai, 2001).  Those samples, such as frequently Mmd-♂, which 

showed a higher expression level as compared to the other samples, possibly have less 

methylation than the remaining samples.  However, those samples, often Mmd-♀ and 

Mmm x Mmd-♂, which experienced a smaller expression level as compared to the other 

samples, possibly have greater methylation than the other samples.  I have analyzed the 

methylation patterns of the Mcts2 and Nap1l5 genes within adult tissues of the Mmd and 

Mmm parental subspecies as well as their hybrids.  In terms of the Mcts2 gene, the 

samples Mmd-♂, Mmd-♀, and Mmm x Mmd-♀ showed a decrease of methylation, which 

corresponded to an increase in expression within the corresponding samples as compared 
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to the other samples.  The Mmm-♀ sample also yielded a decrease in methylation; 

however, instead of an increase in expression, this sample showed a decrease as 

compared to the other samples.  This suggests that the changes in expression observed 

within the samples Mmm x Mmd-♂, Mmm-♀, Mmd x Mmm-♂, and Mmm-♂ were not 

related to methylation changes.  In terms of the Nap1l5 gene, the samples Mmd-♂, Mmm-

♂, Mmm-♀, and Mmm x Mmd-♀ yielded an increase in methylation which should have 

corresponded to a decrease in expression.  However, I observed that each sample showed 

an increase in expression relative to the adult control.  Within each gene, there were 

differences between the expression levels of the parental and hybrid samples. 

 Previous studies have shown that differences in the expression levels of imprinted 

genes are present in mouse hybrids of the Mus genus.  In Mus musculus and Mus spretus 

hybrids, researchers discovered that the imprinted Peg1, Peg3, and Snrpn genes showed a 

loss of imprinting and experienced biallelic expression (Shi et al., 2004, 2005).  

Researchers discovered that there was aberrant over-expression of X-linked retroelements 

within Mus musculus and Mus caroli hybrids (Brown et al., 2008, 2012).  Studies have 

also shown that within the M. m. musculus CzechII/Ei and M. m. domesticus hybrids 

there were no disruptions within the expression of the Igf2r and CdknI2 genes (Hagan et 

al., 2004).   

 As my control sample, I used genetic material isolated from the livers of adult 

mice.  Differential expression is observed between adult mice and mice embryos.  The 

expression of Mest and H19 is down-regulated in adult samples (Bartolomei et al., 1991; 

Nishita et al., 1999; Rajabpour-Niknam et al., 2013).  The use of this control explains the 

large fold changes observed in the Mest gene results.  This pattern of expression suggests 
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that the adult samples may have not been the most ideal control for this experiment.  

However, I was interested in comparing the relative expression levels across the samples. 

 Genetic expression levels of imprinted genes have been found to vary among 

individuals.  This individual variation was observed in studies which examined Mus 

musculus and Mus spretus hybrids.  These studies showed that only a percentage of 

tissues examined yielded an increase in the expression of the Peg1, Peg3, and Snrpn 

imprinted genes (Shi et al., 2004, 2005).  Therefore, the differences in expression 

observed within this experiment may be due to individual variation.   

 Reproductive isolation, which can be created as genetic differences accumulate 

between populations, can lead to speciation (Good et al., 2008a, 2008b; Palumbi, 1994; 

Turner et al., 2012).  The linkage between genetic variation and speciation is not fully 

understood within the Mmm and Mmd subspecies.  However, genetic differences leading 

to reproductive isolation have been observed within genes, such as the Prdm9 gene, 

involved in growth and development (Bhattacharyya et al., 2013; Flachs et al., 2012, 

2014; Geraldes et al., 2011; Mihola et al., 2009; Palumbi, 1994).  Each of the genes 

examined are very important in growth and development.  The hybrids showed parent-

specific and species-specific expression patterns within the Mcts2 and Nap1l5 genes.  

These data suggest that there are genetic differences within the Mcts2 and Nap1l5 genes 

that potentially contribute to the reproductive isolation and speciation of the Mmm and 

Mmd organisms.  The differences observed between males and females suggests that 

there is variation between individuals.  The H19 and Igf2r genes are maternally expressed 

while the other three genes are paternally expressed.  Because all of the genes yielded 

expression levels that differed between the parents and hybrids, there does not appear to 
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be an association between the maternal/paternal imprinting pattern and the expression 

levels.  Because each of the genes have similar functions, there is not a clear association 

between gene functions and expression levels.  In the future, I feel more parental and 

hybrid samples should be examined to determine if individual variation had been 

observed.       
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Gene Chromosome 

Location and 

Position of 

Coding 

Sequence (bp) 

Primer Name Primer Sequence 

 

H19 

 

Chromosome 7; 

149762966 – 

149763364  

Mm.PT.58.5167014 GTAGCCTCCGTATTTAGCATCC 

 TGCCTTGTGAATATCTCTCCTTG 

Mcts2 

 

Chromosome 2; 

152513007 – 

152513552  

Mcts2-F1 GAGAAGGAAAGTGTGTCCAACTG 

Mcts2-R1 ATTAAGCCACGGCTCGATACC 

Nap1l5 

 

Chromosome 6; 

58856491 – 

58856961  

Mm.PT.58.41249674.g CTGGTGTAGTGTGATGAATGGA 

 CTGTGAGAACTGGACTTGAGAC 

Igf2r 

 

Chromosome 

17; 12876576 – 

12962399  

Igf2r-3-F AGCTAAATGGTGGCTATCTGGT 

Igf2r-3-R GGGTCGGCCAACGTCAAAT 

eEF-2 

 

Chromosome 

10; 80639472 – 

80644827  

eEF-2-PB-1-F CCGACTCCCTTGTGTGCAA 

eEF-2-PB-1-R AGTTCAGGTCGTTCTCAGAGAG 

Mest 

 

Chromosome 6; 

30688310 – 

30697169  

Mm.PT.58.29129569 GAAAGCACACCTCCGTCTT 

 GCTCACCATAAAGAGTCTCTGTC 

Table 13. Primers used in Real-Time PCR.  A description of the primers used in 

real-time PCR.  The name of the primers, the name of the gene associated with the 

primers, and the primer sequences are listed here.  The primer sequences were 

obtained and designed through PrimerBank and IDT PrimeTime® (PrimeTime® 

program, 2015; Spandidos et al., 2008, 2010; Wang and Seed, 2003).  Each of the 

primer sets were tested for efficiency, and they all had efficiencies between 89% and 

110% and R2 > 0.900.  The chromosome position and coding sequence position were 

found within the UCSC Genome Browser under Build 37 (Kent et al., 2002). 
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Table 14. Raw Real-Time PCR Data.  Raw real-time PCR data for 

each of the 7 samples (R1-R7) and the control sample (R8).  For 

every reaction, each sample was run in triplicate and the average Ct 

values are shown here.  Data for five reactions are shown and 

separate primers were used in each of these reactions to amplify a 

section of the coding regions of the H19 (A), Mcts2 (B), Igf2r (C), 

Nap1l5 (D), and Mest (E) genes. 
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Figure 1. Normalized Real-Time PCR Data for the H19 Gene.  Normalized 

real-time PCR data for each of the 7 samples (R1-R7).  The raw Ct values 

produced during qPCR were normalized through the Pfaffl method to produce the 

Pfaffl ratio, which is a fold increase or decrease in expression.  Each sample was 

run in triplicate.  Primers were used in this reaction to amplify a section of the 

coding region of the H19 gene.  Standard deviation bars are shown.  The (*) 

indicates that the Pfaffl ratios of those samples are significantly different from that 

of all the other samples (p < 0.01).  
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Figure 2. Normalized Real-Time PCR Data for the Mcts2 Gene.  Normalized 

real-time PCR data for each of the 7 samples (R1-R7).  The raw Ct values produced 

during qPCR were normalized through the Pfaffl method to produce the Pfaffl ratio, 

which is a fold increase or decrease in expression.  Each sample was run in 

triplicate.  Primers were used in this reaction to amplify a section of the coding 

region of the Mcts2 gene.  Standard deviation bars are shown.  The (*) indicates that 

the Pfaffl ratio of that sample is significantly different from that of all the other 

samples (p < 0.05), while the (**) also indicates that the ratio is significantly 

different from that of all the other samples (p < 0.01). 
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Figure 3. Normalized Real-Time PCR Data for the Igf2r Gene.  Normalized 

real-time PCR data for each of the 7 samples (R1-R7).  The raw Ct values produced 

during qPCR were normalized through the Pfaffl method to produce the Pfaffl ratio, 

which is a fold increase or decrease in expression.  Each sample was run in 

triplicate.  Primers were used in this reaction to amplify a section of the coding 

region of the Igf2r gene.  Standard deviation bars are shown.  The (*) indicates that 

the Pfaffl ratios of those samples are significantly different from that of all the other 

samples (p < 0.01). 
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Figure 4. Normalized Real-Time PCR Data for the Nap1l5 Gene.  Normalized 

real-time PCR data for each of the 7 samples (R1-R7).  The raw Ct values produced 

during qPCR were normalized through the Pfaffl method to produce the Pfaffl ratio, 

which is a fold increase or decrease in expression.  Each sample was run in 

triplicate.  Primers were used in this reaction to amplify a section of the coding 

region of the Nap1l5 gene.  Standard deviation bars are shown.  The (*) indicates 

that the Pfaffl ratios of those samples are significantly different from that of all the 

other samples (p < 0.01). 
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Figure 5. Normalized Real-Time PCR Data for the Mest Gene.  Normalized real-

time PCR data for each of the 7 samples (R1-R7).  The raw Ct values produced 

during qPCR were normalized through the Pfaffl method to produce the Pfaffl ratio, 

which is a fold increase or decrease in expression.  Each sample was run in 

triplicate.  Primers were used in this reaction to amplify a section of the coding 

region of the Mest gene.  Standard deviation bars are shown.  The (*) indicates that 

the Pfaffl ratios of those samples are significantly different from that of all the other 

samples (p < 0.01). 
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SUMMARY AND CONCLUSIONS 

 

 

 

 In the first portion of my experiment, I analyzed the methylation status of DMDs 

associated with imprinted genes within M. m. musculus, M. m. domesticus, and their 

hybrids.  I performed this analysis in order to determine if the methylation patterns within 

these regions differed within the hybrids.  I modified the DNA of the parental samples 

and their hybrids with bisulfite.  I amplified a section of the DMD of five genes.  I cloned 

these products and sequenced them.  The genes I examined were Mcts2, Nap1l5, Peg10, 

Zac1, and Zim2.  I observed that each gene showed disruption in methylation relative to 

the expectation that only one allele would be methylated.  Within each of the genes, 

except Mcts2, Peg10, and Zim2, I observed disruption in the methylation patterns of the 

hybrids.  There was also disruption in methylation within the parental samples for each 

gene except Zac1.  Both decreases and increases of methylation were observed for the 

examined genes.  Loss of methylation has been observed within the hybrids of the Mus 

genus and within patients with diabetes mellitus (Arima et al., 2006; Battulin et al., 2009; 

Brown et al., 2008, 2012).  Gain of methylation within genes, such as transcription 

factors, has also been discovered to be associated with cancers (Arima et al., 2006).  

Within this experiment, the parental subspecies yielded a total of five increases in 

methylation and three decreases.  The hybrid organisms showed a total of one increase in 

methylation and four decreases.  The Nap1l5 gene yielded the greatest number of 

disruption events.  These methylation changes may lead to altered gene expression levels 

in hybrids. 
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 In the next portion of my experiment, I measured the gene expression difference 

between M. m. musculus, M. m. domesticus, and their hybrids.  I isolated the RNA of the 

parental samples, three of their hybrids, and a control sample.  I synthesized cDNA from 

the RNA.  I performed real-time PCR using these samples with primers for five test genes 

and one control, housekeeping gene (eEF-2).  The primers amplified a portion of the 

coding region (transcript).  The genes I examined were H19, Igf2r, Mcts2, Mest, and 

Nap1l5.  I normalized the resulting Ct values using the Pfaffl method (Pfaffl, 2001).  I 

normalized the data with the control sample and relative to the housekeeping gene, eEF-

2.  I observed that each gene yielded differences in the expression levels of the parental 

and hybrid samples.  Changes in the expression of imprinted genes have been observed 

within other hybrids of the Mus genus (Shi et al., 2004, 2005).  Within the H19, Igf2r, 

and Mest genes, one parental (Mmd-♀) sample and one hybrid (Mmm x Mmd-♂) sample 

experienced the smallest expression level as compared to the other samples.  The Mmd 

parental samples as well as the Mmm x Mmd hybrid samples showed an increase in Mcts2 

expression as compared to the control.  The other samples yielded a decrease in Mcts2 

expression.  Within the Mcts2 gene, the hybrids showed parent-specific expression 

patterns.  Within the Nap1l5 gene, each of the hybrid samples had the lowest level of 

expression as compared to the other samples.  The hybrids showed species-specific 

expression patterns within the Nap1l5 gene.  These results suggest that genetic variation 

within the Mcts2 and Nap1l5 genes can contribute to hybrid inviability and thus 

reproductive isolation within the subspecies examined (Geraldes et al., 2011; Palumbi, 

1994). 
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 It is known that the accumulation of genetic differences can lead to reproductive 

isolation and thus speciation.  The linkage between genetic variation and speciation is not 

fully understood within the separate subspecies M. m. musculus and M. m. domesticus 

(Geraldes et al., 2011; Palumbi, 1994).  Genetic differences leading to reproductive 

isolation have been observed within genes associated with growth and development 

(Good et al., 2008a, 2008b; Turner et al., 2012).  Each of the eight genes examined are 

important in growth and development.  Parent-specific and species-specific expression 

differences were observed for the Mcts2 and Nap1l5 genes within the hybrids.  This data 

suggests that these two genes were potentially involved in the reproductive isolation and 

speciation of the M. m. musculus and M. m. domesticus subspecies.   

 In the future, I believe more parental and hybrid samples should be examined in 

order to determine if individual variation had been observed.  I think more maternally 

expressed genes should be examined to determine if there is a pattern observed between 

the genomic imprinting patterns and the expression or methylation patterns within 

hybrids.  By doing so, a relevant link between the genomic imprinting pattern of a gene 

and the gene’s potential involvement in the speciation of the house mouse subspecies 

could be determined.  I also believe the methylation patterns of the H19, Mest, and Igf2r 

genes should be examined to determine if the expression changes observed are associated 

with the methylation patterns.  Finally, I feel the expression patterns of the Peg10, Zac1, 

and Zim2 genes should be examined to determine if the changes in methylation observed 

are involved in the expression patterns. 
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APPENDIX A 

 

 

 

Unsuccessful Primer Sets 

 

 

 

Gene Primer Name Primer Sequence Annealing 

Temperature 

Grb10 

Grb10-Bi-1-F GAGAAGATATGTTGAAGTTAT

GGTG 
46oC 

Grb10-Bi-1-R TAAATACAATTACTACTTATTA

CATAATATC 

Grb10 

Grb10-Bi-4-F GAGTTYGTAGGAGTTGTTTATT

ATTTGGATTATTGTAG 46oC and 

51oC Grb10-Bi-4-R AATTCRAAAACTATCCACTAA

CCCC 

Gtl2-Dlk1 

Gtl2-Dlk1-Bi-1-F ATTTAYGGTATATGAGTTTTAT

TATTTTGTATGTG 46oC, 51oC, 

and 52oC Gtl2-Dlk1-Bi-1-R TAATCCATAACRAACCTTAAC

ACCAATCCATAAC 

Mcts2 

Mcts2-Bi-2-F TTTTTAAGTATTAGAATATTGG

GGGATT 
51oC 

Mcts2-Bi-2-R AACATAATCTTAATAAAAAAA

CACC 

Nap1l5 

Nap1l5-Bi-2-F TTTGGAATTTTTTGTTAAATTT

GGT 
49oC 

Nap1l5-Bi-1-R CACAACTACAAAACCTCTCTA

AACC 

Table 15. Primers used Unsuccessfully in PCR to Amplify Bisulfite-Modified 

DNA.  A description of the primers that were used unsuccessfully in PCR.  The name 

of the primers, the name of the gene associated with the primers, and the primer 

sequences are listed here.  The annealing temperatures that were attempted with each 

primer set are also listed.  The primer sequences were obtained from WAMIDEX 

(Schulz et al., 2008).  The symbol “Bi” indicates that the particular primer was 

associated with bisulfite-modified template and amplified the DMD associated with 

the gene.   
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Gene Primer Name Primer Sequence 

Gapdh 
Gapdh F1 AATGGATTTGGACGCATTGGT 

Gapdh R1 TTTGCACTGGTACGTGTTGAT 

Gapdh 
Gapdh F2 AGCTTCGGCACATATTTCATCTG 

Gapdh R2 CGTTCACTCCCATGACAAACA 

Gapdh 
Gapdh-3F TTGTCATGGGAGTGAACGAGA 

Gapdh-3R CAGGCAGTTGGTGGTACAGG 

Gpr1-Zdbf2 
Zdbf2 F1 ACTCTGATGGAACGCTTTTTGC 

Zdbf2 R1 ACCACCACCACTTCAGGTGA 

Gpr1-Zdbf2 
Zdbf2-PB-2F ACTCTGATGGAACGCTTTTTGC 

Zdbf2-PB-2R TCTGGCTCATTTGGTGCAGAT 

Grb10 
Mm.PT.58.31223576 TGCGATAGTTTTGGTACAGGAG 

  AAGCGAAGACCGAGATGAAG 

Grb10 
Grb10-PB-1F GTGGTGGAGATTCTAACCGACA 

Grb10-PB-1R ACCTCTCTAATCCCAGTTGTGG 

Grb10 
Grb10-PB-2-F CCTGCCAAGCATGATGTCAAA 

Grb10-PB-2-R CCAGGCACCTCTCTAATCCCA 

Grb10 
Grb10-PB-3-F ACCATGAGATCGTGGTCCAAG 

Grb10-PB-3-R TTGCGTCCTACCTCTTTCACC 

Igf2r 
Igf2r F1 ATTAAGCCACGGCTCGATACC 

Igf2r R1 TTCTCAAAAGTGAGTCACCCAC 

Igf2r 
Igf2r-PB-2F TGCCAGCCTTCAGATTCACAG 

Igf2r-PB-2R CAGATAGCCACCATTTAGCTTGA 

Igf2r Igf2r-4-F GGGAAGCTGTTGACTCCAAAA 

Table 16. Primers used Unsuccessfully in Real-Time PCR.  A description of 

the primers that were used unsuccessfully in real-time PCR.  The name of the 

primers, the name of the gene associated with the primers, and the primer 

sequences are listed here.  The primer sequences were obtained from 

PrimerBank and IDT PrimeTime® (PrimeTime® program, 2015; Spandidos et 

al., 2008, 2010; Wang and Seed, 2003).    
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Igf2r-4-R GCAGCCCATAGTGGTGTTGAA 

Mest 
Mest F1 AGAGTGGTGGGTCCAAGTAGG 

Mest R1 AAGCACAACTATCTCAGGGCT 

Mest 
Mest-PB-2F TGACCCTGAGGTTCCATCGAG 

Mest-PB-2R GCCGCAGAAGGGACTCTAC 

Mest 
Mest-3-F CTCCAGAACCGCAGAATCAAC 

Mest-3-R AGATACCTCCATTCGACAGACAG 

Mest 
Mest-4-F GTGGTGGGTCCAAGTAGGG 

Mest-4-R AAGCACAACTATCTCAGGGCT 

Mest 
Mm.PT.58.12987460 CCAGATCTTGTACCAGTCATAGC 

  GCCTACGCATCTTCTACCAAG 

Nap1l5 
Nap1l5 F1 GCCGAGGACGAGGTAATGG 

Nap1l5 R1 CATTTCACGGAATTGGGCAAG 

Nap1l5 
Nap1l5-IDT-F CTGGAGAAGAAGTACAACGATATCTA 

Nap1l5-IDT-R CCTCTTCCTCGTCATCTTCATC 

Nckap1 or H19 
Mm.PT.58.12289852 GTGATCTGCAAGGCTAAGTGA 

  CATGACCTCCCTAAGTGTGAAG 

Peg10 
Mm.PT.58.12887449 CTCGTGGTTGGCGTCTT 

  CTCATCCTTCGTGGCATCG 

Peg10 
Peg10-PB-1F TGCTTGCACAGAGCTACAGTC 

Peg10-PB-1R AGTTTGGGATAGGGGCTGCT 

Peg10 
Peg10-PB-2-F CCTGAGAAGTTCGATGGCAAC 

Peg10-PB-2-R CGGATGCGGTCAACTGAGAA 

Peg10 
Peg10-PB-3-F GCTACTGCCAAGCTGCAAAG 

Peg10-PB-3-R CTGGGCAATCATCTGGAATGC 

Zac1 
Zac1 F1 ATGGCTCCATTCCGCTGTC 

Zac1 R1 CTCAGCCTTCGAGCACTTGAA 

Zac1 
Zac1-PB-2F CAAAGCCTTCGTCTCCAAGTAT 

Zac1-PB-2R GTCCTTCCGGTTGAATGTCTT 

Zac1 Zac1-4-F ACCTCCAGACCCACGATCC 
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Zac1-4-R CCAGCATGGTGTGGTACTTCT 

Zim2 
Zim2 F1 CCTCTCAAGGCTGATGTTAGTG 

Zim2 R1 ATTTGCCCTCATGGAGCTATAC 

Zim2 
Zim2-2F GGATTGGAGGAGGAGGAGTTA 

Zim2-2R CCAGGAATCAGGTCACGTTTAG 
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