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ABSTRACT 

THE NECK AS A POTENTIAL SITE FOR VESTIBULAR TACTILE SENSORY 

SUBSTITUTION  

By 

Kelly Morrow 

To determine if the neck could be used a site for vestibular-to-tactile sensory substitution, 

two experiments were performed to take an in-depth look of the tactile sensitivity of the 

neck and how it responds to vibrotactile stimuli. Experiment 1 explored how participants 

respond to a vibrotactile neck device, the Arraysense, and how well this device conveys 

information about a single contact point on the participant’s skin. Results showed that 

determining the exact point of stimulation is difficult for participants, but they can identify 

the area of stimulation with ease. Additionally, our results showed that the front of the neck 

has pointedly lower accuracy rates than other areas, despite the duration or frequency used. 

This information led us to explore the spatial acuity of the neck in Experiment 2, where we 

used a two-point orientation discrimination task. Results showed that tactile sensitivity 

around the neck is uniformwith exception to the very front of the neck. From these two 

experiments it can be concluded that the neck can convey tactile information and additional 

studies should further explore the best tactile features for a successful vestibular-tactile 

sensory substitution.  
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INTRODUCTION 

 

The purpose of this thesis was to determine if the neck region is a viable site for 

vestibular-to-tactile sensory substitution. Sensory substitution became popular in early 

1970s when Paul Bach-y-Rita developed his visual-to-tactile sensory substitution (TVSS) 

to help blind people to perceive their environment by converting visual pattern into tactile 

pattern (Bach-y-Rita, 1967; Bach-y-Rita, 1971; discussed in Chapter 1). Our initial 

motivation was driven by the availability of a vibrotactile neck device (the Arraysense) 

that uses 14 vibrating motors to deliver tactile stimulation around the neck. Because of the 

proximity of the neck with the vestibular system (inner ear), we wondered whether the 

ArraySense could successfully deliver directional information, and in turn be used to aid 

those who suffer from vestibular system damage. Vestibular-to-tactile sensory substitution 

generally uses a vibrotactile or electrotactile device that informs the user when they have 

deviated from an upright posture, allowing them to correct their stance and keep upright. 

In order to see how well the neck conveys vibrotactile information, two studies have 

been conducted. First, we investigated how participants responded to the sensation of 

vibrotactile stimulation on the neck from the ArraySense device. The second study focused 

on the tactile acuity around the neck and how accurate participants are able to correctly 

identifying precise points of stimulation using the two-point orientation discrimination task 

(Weber, 1834; Tong, Mao, & Goldreich, 2013). 

Our initial goal was to disturb the vestibular system using either a motion platform or 

a galvanic vestibular stimulation (GVS). In either cases, we would attempt to create an 
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experimental model of vestibular dysfunction by creating disruptions in participants’ 

balance, and use the ArraySense to redress the participant’s posture by providing 

directional information around the neck. However, due to the cost and availabilities of both 

systems as well as the lack of research on the neck, we focused on psychophysical 

measurements that have been rarely investigated previously on this specific part of the 

body. Therefore, the first step before determining whether the neck conveyed directional 

information, was to assess how accurately and easily participants could detect a single point 

of vibrotactile stimulation from the Arraysense. 

In the first experiment, we used two vibration frequencies and two durations to explore 

which type of stimulation was accurately detected. More precisely, the aim was to identify 

whether some locations on the neck are better than others, as well as determine which of 

the two chosen frequencies and durations most effectively deliver vibrational cues.  

The results of Experiment 1, published in the proceedings of IEEE Haptics Symposium 

2016, showed that the neck does not convey vibrotactile information precisely enough for 

participants to be able to detect the precise contact point of stimulation, despite stimulus 

location, duration, and frequency. Instead, participants were able to detect the general area 

of stimulation with great accuracy. Given this information, it appears that all the 14 motors 

are not necessary for this body area, and the neck could potentially be used as a potential 

site for interpreting and perceiving tactile information. The most interesting result is that 

the front of the neck is the least sensitive area which suggests that the receptive field sizes 

at the front of the neck are larger than those in other areas. This led us to investigate the 

tactile acuity of the neck using a modified version, suggested by Tong and colleagues, of 

the two-point threshold to validate or invalidate the results of the first experiment (2013). 
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In the second study, we used a modified drafting compass to determine thresholds of 

different locations of the neck, specifically the locations that were considered the best sites 

for vibrotactile stimulation based on the results of the first study. Using two-point 

orientation discrimination, we were able to draw a sensitivity map of the neck (Tong, Mao, 

and Goldreich, 2013).  

Before presenting these two studies, the first chapter gives an overview of sensory 

substitution in general, vestibular sensory substitution in particular, as well as a brief 

explanation of the vestibular system that is presented along with devices and studies that 

have previously used the neck as a site of stimulation for clinical applications.  

Ultimately, with these two studies in mind, we would like to improve the design of the 

Arraysense to assist those who suffer from vestibular loss or damage, but also provide 

readers and future researchers with information about the neck for potential clinical 

application. Our results should be of value to future investigations already planned in Dr. 

Ziat’s lab and open up a wide range of experimental questions for upcoming students. Our 

work already triggered a new design of the ArraySense since the number of motors have 

been reduced from 14 to 10 motors. Finally, we hope to test the efficiency of this device 

with people suffering from vestibular loss and provide them with a less invasive device 

than ones in existence on the market.  
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CHAPTER ONE: SENSORY SUSBTITUTION FOR 
VESTIBULAR LOSS 

INTRODUCTION 

The neck is an important part of the human body that connects the head, and therefore 

the brain to the rest of the body. Comprised of muscles and bones, the neck supports the 

head and is the highway of communication between the brain and the body. Socially, the 

neck considered a private area: when touched, it is often considered an invasion of space. 

Despite the privacy of the neck, its location is ideal for a range of clinical applications, 

from a collar to prevent supine sleep in sleep apnea patients to treating spatial neglect in 

stroke patients. One clinical application of the neck not yet been explored is the use of the 

neck as a potential site for sensory substitution, more specifically, vestibular-to-tactile 

sensory substitution. Considering the neck’s proximity to the vestibular system, stimulation 

from a sensory substitution device could be integrated fast and efficiently, based on the 

spatial rule of multisensory integration. This rule states that stimuli close spatial proximity 

are more likely to be integrated and perceived as stronger (King & Palmer, 1985; Meredith 

& Stein, 1983; 1986; Holmes & Spence, 2005).   

1. WHAT IS SENSORY SUBSTITUTION? 

When one of the sensory systems is partially or completely lost, it is possible to use a 

different modality (for instance touch) to convey information that is no longer available 

through the missing sense (Ziat et al., 2007; Ziat et al., 2014). This concept, known as 

sensory substitution, uses available sensorial modalities to substitute the missing modality 

using artificial sensory information and routing it through an intact sense. Because of 

lifelong perceptual learning and brain plasticity, it is possible for the brain to adapt 
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neurochemically and or structurally when using these adaptive tools and strategies (Gilbert, 

Sigman, and Crist, 2001). With training and time, the brain reinterprets the artificial 

information and uses it to compensate for the missing sense, allowing individuals with 

sensory loss to make sense of their environment (Bach-y-Rita & Kercel, 2003).  

1.1 THE TVSS 

The most well-known sensory substitution device is the tactile visual substitution 

system (TVSS) designed by Paul Bach-y-Rita and colleagues in the seventies (See Figure 

1). Using a video camera that acts as an “eye”, this system aids the blind to “see” using the 

skin. Visual information from the camera is processed through a computer and after being 

simplified to black and white pixels, is converted into vibrotactile information displayed 

on the participant’s back using a 20 x 20 matrix of tactors (Bach-y-Rita et al., 1967; Bach-

y-Rita, 1971). Using the TVSS, blind individuals were able to actively perceive objects 

and navigate their environment, especially when they were controlling the camera 

themselves.1 Visually impaired participants were able to perceive their surroundings, and 

bypass the non-functioning sensory organ, the same way sighted persons use their eyes to 

see the world. Bach-y-Rita’s research was not only helpful for the blind community, but 

also open new directions of perceptual research and brain plasticity. Not only did TVSS 

users developed a new way of perceiving their world, but their visual cortex (V1) was 

                                                 

1 When the camera was manipulated by the experimenter and was static, TVSS users’ perception was 

limited to simple geometrical shapes and tickling sensations on the skin. When the users moved the camera 

themselves, the perception of objects increased and were not felt anymore on the skin but in the 3D space 

surrounding them (known as Object’s exteriorization). This supports the idea that action is a key component 

to perception and perceptual experience using the TVSS is similar to a visual experience. 
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activated when using the TVSS, conveying the idea the device created new pathways to 

allow V1 to receive visual information (Bach-y-Rita, 1972; 1990) 

.  

FIGURE 1: A BLIND PARTICIPANT USING THE TVSS (FROM BACH-Y-RITA, 1971). 

1.2 THE VOICE 

In addition to visual-to-tactile sensory substitution, visual-to-auditory is another 

common type of sensory substitution. The hallmark device for this type of substitution is 

the vOICe, one of the first affordable substitution devices created by Peter Meijer in 1992. 

Using a small camera, mounted on a pair of glasses and connected to a computer, the vOICe 

converts gray scale images from the camera into corresponding sounds. The image is 

converted into sounds by scanning from left to right at a rate of one frame by second (See 

Figure 2). The higher the pitch, the higher the elevation on the visual pattern on the screen. 

For instance, if the pitch is rising, the visual pattern is rising from left to right such a 
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diagonal line with 45 degrees. Additionally, sound intensity corresponds to brightness: A 

louder sounds indicates a bright visual pattern and a quieter sound indicates a darker visual 

pattern.  

 
 

FIGURE 2: A.) THE VOICE (IEEE SPECTRUM, 2004). B.) SCHEMATIC LAYOUT OF THE 

VOICE (ADAPTED FROM STILES & SHIMOJO, 2014) 

For the scope of this thesis, we were interested in sensory substitution devices that 

could compensate a deficient sense of balance, due to loss or damage to the vestibular 

system, using touch specifically on the neck. Using the same concept described earlier, 

these devices often use the tactile modality to inform patients about their body posture, and 

when it becomes unstable. Both electro-tactile and vibrotactile feedback have been used to 

stimulate multiple areas including head, trunk, and tongue. While the neck has been used 

a site for other clinical applications, to our knowledge it has not been considered as a 

potential site for a vestibular sensory substitution. First, we will give a brief overview of 
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the vestibular system in the next section followed by the devices used to help with 

vestibular loss.   

2.  THE VESTIBULAR SYSTEM 

The vestibular system is one of the three systems that contribute to balance in humans. 

Our posture and balance in the environment is achieved by integrating different sensory 

cues from visual, proprioceptive, and vestibular inputs (Watson & Black, 2008). By 

integrating the information from all three sensory systems, the cerebral cortex and 

cerebellum control automatic movements and use contextual information to successfully 

navigate through the environment using vestibule-ocular reflex2 and motor impulses to 

control eye movements and make postural adjustments (Watson & Black, 2008). When 

these systems detect deviation of bodily orientation, the brain interprets the information and 

a corrective torque to the posture is generated to prevent further deviation (Peterka, 2002).  

When one of the three systems is compromised, the sense of balance and human posture 

are affected. Specifically, the vestibular system is crucial for navigating the environment. 

Comprised of the otolith organs and semicircular canals of the inner ear, this system senses 

body acceleration, head rotation, and orientation in space (Figure 3; Day & Fitzpatrick, 

2005).  

                                                 

2 The vestibulo-ocular reflex, or VOR, are eye movements that keep vision stable while the head moves. 

The semicircular canals measure rotation of the head, and transmit this information to the oculomotor nuclei 

of the brainstem, which innervate the eye muscles (“Vestibulo-Ocular Reflex (VOR),” n.d.).  
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FIGURE 3: ILLUSTRATION OF THE INNER EAR. NASA, PUBLIC DOMAIN. 

The otolith organs, the utricle and saccule, are responsible for sensing linear 

acceleration, including the force of gravity, and the three semicircular canals sense rotation. 

This system is in constant communication with the muscles, joints, skin, and eyes for 

continuous information about the body’s orientation and acceleration (Angelaki & Cullen, 

2008). Additionally, the vestibular system is often able to mediate sensory conflicts that 

may arise between the proprioceptive and visual system including visual illusions (Watson 

& Black, 2008). For instance, imagine a person standing on a boat in mostly calm water 

holding a rail for balance. Their vestibular and proprioceptive feedback at this time tell 

them they are standing still and upright. Another boat speeds past the person, leaving 

behind a wake making the boat unsteady and rocking in the waves. The visual input informs 

them they are no longer completely upright and simultaneously, the vestibular system 

(specifically the otolith organs) senses bodily tilt with each wave. Along with this 

information, the brain receives proprioceptive feedback, allowing them to make 

unconscious corrections in posture using muscles and joints. In this way, they are able to 

maintain an upright, steady posture even as the boat rocks from the wake. You can also 

trick your balance sense by looking straight ahead at the horizon (no motion). Even though 
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they vestibular and proprioceptive systems are informing you otherwise (i.e., the boat is 

pitching), stabilizing the visual sense would create an illusion of stillness and reduce 

motion sickness.  

 Although the functions of the vestibular system are mostly subconscious, it is 

constantly in action by sending messages to the brain, even when the body is completely 

still (Angelaki & Cullen 2008). This system is susceptible to damage from a variety of 

factors including aging, injury, and uni- or bilateral disease3. When this system is destroyed 

or severely damaged, the individual no longer has the ability to correct their posture when 

deviating from an upright position and may suffer from symptoms including dizziness, 

vertigo, fatigue, and nausea (Watson & Black, 2008). Therefore, individuals have difficulty 

correcting body posture to prevent falling, and have performing daily life activities such as 

simply bending over or walking in the dark (Tyler, Danilov, & Bach-y-Rita, 2003; Danilov 

et al., 2007). 

3.  SENSORY SUSBTITUTION DEVICES FOR THE VESTIBULAR 
SYSTEM 

There are several techniques that can help an individual compensate for vestibular loss 

including adaptation and habituation exercises (Deveze et al, 2013), aquatic physiotherapy, 

auditory feedback (Dozza, Horak, and Chiari, 2005), galvanic vestibular stimulation 

(Orlov, Stolbkov, and Shuplyakov, 2008), virtual reality programs (Georgescu, 2015; 

Rizzo-Sierra, Gonzalez-Castaño, & Leon-Sarmiento, 2013), and inner-ear prosthesis 

(Lewis et al., 2003; Chiang et al, 2011). Sensory substitution is an alternative solution that 

                                                 

3 Affecting one (left/right) or both inner ears. 
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is less intensive and invasive than both galvanic vestibular stimulation (GVS) and inner-

ear prosthesis. Treatment involving GVS requires sending electrical signal to the labyrinth 

of the inner ear; while inner-ear prosthesis consists of the installation of a device in the 

semi-circular canal or in the labyrinth of the inner ear.  For vestibular substitution, head-

body coordination is generally indicated using an artificial receptor stimulating the visual 

or tactile sense. These senses are the ones used for navigation and direction during 

vestibular loss (Bach-y-Rita, 2004; Horak, 2010). The newly received information gives 

the individual cues to maintain an upright posture and correct posture when needed.  

One of the most well-known sensory substitution devices for vestibular loss is the 

Brainport Tongue Display Unit (TDU) which delivers electrotactile stimulation to the 

tongue (Bach-y-Rita et al., 1998; Tyler, Danilov, & Bach-y-Rita, 2003; Bach-y-Rita, 

Danilov, & Grimm, 2005; Bach-y-Rita, 2007; Uneri & Polat, 2009). The TDU (shown in 

Fig. 4) uses a 49-point (7x7) electrotactile array to convey sensory information to the user. 

Originally, the TDU was used for visual-to-tactile substitution (Bach-y-Rita et al, 1998) 

and its usage was later extended to vestibular-to-tactile substitution (Bach-y-Rita et al, 

2005; Danilov et al, 2007).  Using a 2-axis accelerometer mounted in a hard hat that is 

connected to the TDU, the electro-tactile vestibular substitution system (ETVSS, also 

called the BrainPort balance device) stimulates the tongue of participants when a postural 

adjustment is needed to keep upright posture (Bach-y-Rita, 2005). After a brief training 

period of 15 to 40 minutes, patients showed immediate increased stability and balance. 

After five training sessions, these post-training effects lasted anywhere from 4 to 12 hours 

(long-term residual effects), and after 40 sessions over 8 weeks, a single participant had 

residual effects over the following 8 weeks (Bach-y-Rita, 2004).  
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FIGURE 4: A.) SIMPLIFIED BRAINPORT BALANCE DEVICE (RETRIEVED FROM: 

HTTP://SCIENCE.HOWSTUFFWORKS.COM/BRAINPORT2.HTM) B.) PATIENT 

USING BRAINPORT BALANCE DEVICE (POLAT & UNERI, 2010) 

Other devices tested areas such as the trunk (Dozza et al, 2008; Janssen et al, 2010; 

Seinko et al., 2008) and head (Goebal et al, 2009), shown in Fig. 5. Most of these 

investigators showed the use of vibrotactile biofeedback significantly increases stability 

and improves balance and posture. Additionally, studies acknowledged that self-

confidence, training, and alertness significantly impacted how much these devices helped 

(Janssen et al, 2010). 
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FIGURE 5: A.) 3X16 TACTOR ARRAY (SEINKO ET AL, 2008). B.) HEAD-MOUNTED 

VIBROTACTILE ARRAY (GOEBAL ET AL, 2009).  

4. WHY THE NECK? 

Although researchers have used many areas on the body for receiving artificial sensory 

information, the neck is one area that has not been closely studied. Because of the proximity 

of the neck to the inner ear and its ability to tilt in all cardinal directions, sensory 

information could be integrated fast and effectively (Meredith & Stein, 1983; King & 

Palmer, 1985; Meredith & Stein, 1986).  

The neck has been used for a multitude of clinical applications, including treatment of 

spatial neglect in stroke patients and in the disruption of supine sleep of sleep apnea 
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patients. The success of these applications demonstrated that the neck conveyed 

vibrotactile information easily, and was a viable body region for comfortably wearing a 

vibrotactile collar, even while sleeping. 

The first researchers to investigate the effects of vibrating neck muscles were Lackner 

and Levine in 1979. The researchers stimulated the sternocleidomastoid muscle 

unilaterally and bilaterally and found that in a dark room, the vibrations caused illusory 

body movements. Bilateral vibrations caused participants to feel the illusion of their head 

extending, and unilateral stimulation created a sensation of rotating the head to the opposite 

side of the vibration (Lackner & Levine, 1979). Biguer et al. discovered tactilely 

stimulating a muscle creates a muscle lengthening illusion, producing a sense of apparent 

motion of the body. Additionally, vibration of the neck modifies visual representation of 

directions (Biguer et al., 1988).   

Later, Karnath et al. studied vibrational stimuli applied to the neck as a potential 

treatment of spatial neglect patients who could not orient or react to features in their 

environment on the contralateral side of the brain hemisphere damaged by stroke. They 

found that by applying vibrations to the neck muscles, contralesional neglect of visual 

stimuli was reduced (Karnath, Christ, & Hartje, 1993). Furthermore, Schindler and 

colleagues found contralesional vibrotactile neck stimulation improves standardized visual 

exploration training in patients suffering from spatial neglect (Schnidler et al, 2002). 

Additionally, another group of researchers observed neck vibration therapy significantly 

increases the effects of prism adaptation, a popular treatment option for spatial neglect 

(Sarevarsson, Kristjánsson, & Halsband, 2010). 
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Recently, researchers used a vibrating neck collar to treat sleep apnea. Using 

vibrotactile stimulation on the neck, they found neck vibrations could adequately disrupt 

supine sleep, where the patient was in most danger of breathing obstruction. Notably, this 

was accomplished without habituation to the sensation of vibration, making the collar a 

reliable method of interrupting supine sleep (Levendowski et al, 2014).  

Other investigators also looked at the effects of vibration on neck muscles in healthy 

subjects while walking. In one study, researchers utilized continuous vibration applied to 

the dorsal neck to elicite forward body sway and an increase in speed while walking in the 

direction the participant was heading (Ivaneko, Grasso, & Lacquaniti, 2000). In another 

study, vibrations applied to one side of the neck on the sternomastoid muscle caused a 

whole body rotation towards the opposite side of the vibration (Bove, Courtine, & 

Shieppati, 2002).  

The above mentioned researchers showed the neck not only conveyed tactile 

information about direction, but also transmitted illusory motion and speed. Keeping this 

in mind, it appears as though vibrotactile neck stimulation can be used to change body 

direction and posture, making it a potential candidate for counteracting incorrect posture 

from vestibular dysfunction. Before testing whether the device is able to provide directional 

information, it is important to understand how well the device can convey information to 

the user about contact point and what factors could affect the transmission of the 

information. The next chapter details the first study to investigate human perceptual 

thresholds of vibrotactile stimuli around the neck at two different frequencies and stimulus 

durations.  
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CHAPTER TWO: THE EFFECTS OF DURATION AND 
FREQUENCY ON THE PERCEPTION OF VIBROTACTILE 

STIMULATION ON THE NECK 

1. INTRODUCTION 

This first study was conducted to assess participants’ response to vibrotactile 

stimulation delivered on the neck by the Arraysense and determine how well participants 

could distinguish between points of stimulation on the neck. Keep in mind this was the first 

experimental study conducted using this device. Therefore, all 14 motors of the ArraySense 

were randomly activated with a frequency and duration pairing. To investigate what 

stimulus frequency and duration best conveyed the contact point of stimulation, we 

assessed two frequencies (75Hz and 150Hz) and two durations (250ms and 500ms) using 

the experimental design described below. From this study we were able to better 

understand how well the neck conveyed vibrotactile information, and how the device might 

be improved for a better sensing.    

2. MATERIALS AND METHODS 

2.1 PARTICIPANTS 

20 students (11 female; Mean age: 20.58, SD = 3.40) of Northern Michigan University 

participated in this study. The study was approved by the Northern Michigan University 

institutional review board and the students were offered course extra credit for 

participation.  

2.2 APPARATUS AND STIMULI 

The ArraySense (Taghavi, 2011) is a vibrotactile neck device that is comprised of 14 

small, shaftless, vibrating motors (0.39” x 0.13”) manufactured by Jameco Reliapro 
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(Belmont, CA). All motors are controlled by a custom designed circuit board powered by 

an Antel AT32UC3B microprocessor and are housed in a collar worn around the neck 

(Figure 6a). A representative image that showed motor location on the neck was used as a 

reference by participants for responses (Figure 6b). 

  

FIGURE 6: A. ) THE ARRAYSENSE DEVICE, B.) REPRESENTATIVE CHART USED AS A  

REFERENCE FOR PARTICIPANTS’ RESPONSES. 

2.3 PROCEDURE 

After signing the consent form, participants sat comfortably on a chair in front of a 

table where the representation chart (Figure 6b) was displayed. Before starting the 

experiment, the researcher placed the Arraysense on the participants’ neck and presented a 

brief habituation trial4. During the experiment, two frequencies of 150 Hz and 75 Hz (i.e., 

150 Hz was perceived as the higher magnitude, 75Hz perceived as a lower magnitude) 

were tested for two stimulus durations (250 ms and 500 ms). These intensities were chosen 

                                                 

4 In this trial, each motor vibrated once in numerical order at the higher frequency (150Hz) to avoid any 

startle responses in the recorded trials. 
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prior to the study because they were considered to be distinguishable, comfortable, and did 

not cause too much distortion with the 3D printed collar. The experiment consisted of 224 

randomized trials (i.e.,14 motors x 2 frequencies x 2 duration x 4 repetitions), divided into 

two consecutive sessions of 6.26 minutes, that were completely randomized, and each trial 

was followed by a 3 second pause to prevent adaptation or after effects for a total of 

approximately 20 minutes. Participants reported their answer verbally, indicating the 

number on the chart that best matched the perceived stimulation point on the neck. 

Participants’ performance was solely defined as their ability to correctly indicate the motor 

number of the stimulation.  

3. RESULTS 

A three-way, repeated measures ANOVA with the factors motor, intensity, and 

duration was performed on participants’ responses using SPSS. The dependent variable for 

the analysis was the correct number of identifications. Only significant results are reported. 

The main effect for the factor motor was significant [F(13, 143) = 8.29, p < 0.0001, 

η2= 0.046], meaning that the location of the motor had an impact on the number of correct 

identifications. A significant interaction effect was also found between duration and motor 

[F(13, 143)= 3.681, p < 0.0001, η2= 0.162], frequency and motor, [F(13, 143)= 2.258, p < 

0.05, η2= 0.106], and between motor, frequency, and duration [F(13, 143) = 3.035, p < 

0.0001, η2= 0.138]. To break down these interactions, simple pairwise comparisons were 

performed. The significant interactions are shown in representative charts (Figures 7 and 

8). Using unique character identifiers for each motor (e.g. motor 0 is represented by a filled, 

blue circle, motor 8 is represented by an unfilled green square). When a motor’s unique 

identifier is on the line of another motor, it represents a significant difference in accuracy. 



19 

 

For instance, in Figure 7A (which represents T1F1 250ms, 75Hz trials), motor 0 had 

significantly different accuracy rates from all other motors besides motor 13. 

  

  

FIGURE 7: WITHIN-CONDITIONS COMPARISONS: SPATIAL LAYOUT OF THE MOTORS 

AROUND THE NECK. EACH MOTOR IS REPRESENTED BY A UNIQUE SHAPE AND COLOR 

COMBINATION. SIGNIFICANT DIFFERENCES BETWEEN MOTORS ARE REPRESENTED ON 

EACH LINE BY THEIR UNIQUE IDENTIFIER.  
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FIGURE 8: BETWEEN-CONDITIONS COMPARISONS: SPATIAL LAYOUT OF THE MOTORS. 

EACH MOTOR IS REPRESENTED BY A UNIQUE COLOR AND SHAPE COMBINATION. 

SIGNIFICANT DIFFERENCES ARE SHOWN AS THE UNIQUE IDENTIFIER OF THE MOTOR ON 

THE ARRAY OF ANOTHER MOTOR. 
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3.1 WITHIN-CONDITIONS COMPARISON 

Figure 9 shows a polar plot of the motors compared to one another within the same trial 

type. In all four condition types, performances for motors 0 and 13 are significantly lower 

than motors 1 through 12. This suggested low vibrotactile sensitivity at the front of the 

neck region, regardless of duration or frequency. The results also illustrated highly 

significant performances for motor 5 related to T2 duration and frequency F1. Furthermore, 

the same trend was observed for motor 12 for T1F2 and motor 3 for T2F2 trials. 

 

FIGURE 9: POLAR PLOT OF PERCENTAGE CORRECT FOR EACH MOTOR AT DURATION 

(T1, 250MS AND T2, 500MS) AND BOTH FREQUENCIES (F1, 75HZ, F2, 150 HZ). 

3.2 BETWEEN-CONDITIONS COMPARISON 

Figure 8 displays between-conditions simple effects across both frequencies (F1 and F2) 

and durations (T1 and T2). Again, motors 0 and 13 performance levels were significantly 

lower for all condition types. Comparatively, both frequencies for duration T1 (Figure 8a) 
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show significant improvement in performance for motor 12 and a decreased performance 

for motor 9, as depicted in Figure 4. Difference of performances between frequencies for 

duration T2 were less obvious. As a whole, this duration created perceptual noise which 

made it more difficult for participants to determine which motor was vibrating (Figure 8b). 

When comparing durations to each other for frequency F1 (Figure 8c), motor 5 still had 

one with the best performances (Figure 10). Finally, when comparing T1 to T2 for 

frequency F2 (Figure 8d), we observed increased performances in motors 5 and 12 that 

represent contralateral points on the neck. 

3.3 PERFORMANCES WITH ERROR RATE  1 

  It is obvious from the results that detecting the correct location of the motor was a 

tedious task for participants. However, when including the adjacent motor, either on the 

left or the right of the stimulus location, their performances greatly improved. Figure 10 

displays the percentage correct with an error rate by  1 (left or right adjacent motor), for 

all motors, showing performance rates clearly above chance (defined as 1/14 = 0.07) as 

opposed to Figure 9. Performances for motor 0 and 13 were still lower than motors 1 

through 12, which corroborated the idea that the front of the neck was not a valid site for 

precise vibrotactile location with the chosen durations and frequencies. 
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FIGURE 10: POLAR PLOT OF PRECENTAGE CORRECT FOR EACH MOTOR AT EACH 

DURATION (T1, 250MS, T2, 500MS) AND EACH FREQUENCY (F1, 75HZ, F2, 150HZ) 

WHERE PERFORMANCE IS DEFINED AS THE ABILITY OF PARTICIPANTS TO INDICATE THE 

AREA OF STIMULATION WITHIN A THREE MOTOR RANGE ( 1 OF THE ACTUAL MOTOR). 

 

4. DISCUSSION 

We demonstrated significantly lower performance rates for motors 0 and 13. 

Conversely, motors 1 through 12 have performed at rates fairly consistent within each 

condition. These results suggested lower sensitivity to vibrotactile stimulation at the front 

of the neck with the current configuration. It is possible that vibrational cues need to be of 

a higher frequency and/or longer duration to be correctly perceived. Additionally, the very 

front of the neck, where motors 0 and 13 are positioned, may have lessened tactile 
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sensitivity, caused by their proximity to the laryngeal prominence (Adam’s apple). Overall, 

the difference in frequencies and durations did not significantly impact the rate of accuracy, 

although we see the higher frequency used, F2, generated noise between motor accuracies, 

which led to lower performance rates of some motors, while others were improved (motors 

5, 3 and 12). 

Participants also had difficulty determining the exact location of the stimulation point, 

but were able to identify without major effort the approximate location of the vibrations, 

as shown by performances with an error rate of one. This indicated that the neck may not 

be sensitive enough to pinpoint exact stimulation points, but was able to perceive general 

areas of stimulation with great accuracy. This needs to be confirmed by future studies 

investigating spatial acuity and the distribution of receptive fields. 

 In future studies, we plan to activate two or three motors at the same time to assess 

participants’ perception of directional information. For instance, stimulating three adjacent 

motors simultaneously would create only four or five points of stimulation, rather than 14. 

This would be consistent with previous literature that found accuracy rates increased from 

74% with 12 tactors to 97% with 6 tactors when vibrotactilly stimulating the abdomen 

(Cholewiak, Brill, and Schwab, 2004). The same research group also found participants to 

perform better when there was a reference point (e.g., referencing the naval as 12 o’clock, 

spine as 6 o’clock). It may be beneficial to use this type of referencing to change the 

position of the current motors (see Figure 11).  
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FIGURE 11: PROPOSED REFERENCE CHART VERSUS CURRENT REFERENCE CHART.  

Finally, several authors (Cholewiak & Collins, 2003; Hamburger, 1980; Vierordt, 

1870) suggested using an anatomical landmark to improve the accuracy of perceived 

vibrations. This fact was inconsistent with our results, whereby the laryngeal prominence 

seemed to distort vibrational cues. As a result, we suggested modifications of the 

ArraySense design by reducing the number of motors and changing their spacing around 

the neck. 

Past investigators, when utilizing increased space between vibrotactile stimulation 

sites, observed enhanced ability to distinguish the point stimulation (Cholewiak & Collins, 

2003). Due to the closeness of the motors of the Arraysense, we believe that decreasing the 

amount of motors used, or increasing the number of motors activated in a trial would 

increase the accuracy rates of participants. However, before therapeutic applications are 

considered more studies must be done to fine-tune stimulus duration, intensity, and spacing 

to ensure the most efficient vibrotactile stimulation for the neck is used.  
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5. CONCLUSION 

.   The results of Experiment 1 showed that the neck is not sensitive enough to vibrotactile 

stimulation to perceive fine touch (exact contact point), but can convey crude (rough area 

of stimulation) touch with great accuracy. We also showed that the front of the neck seems 

less sensitive versus other neck regions. This result, in itself, led us to investigate the tactile 

sensitivity of the neck by performing an acuity test in Experiment 2 and is presented in the 

next chapter. 
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CHAPTER 3: TWO-POINT ORIENTATION 
DISCRIMINATION OF THE NECK 

INTRODUCTION 

Based on the results obtained in Experiment 1, we were interested in the tactile 

sensitivity of the neck that could be measured using spatial acuity techniques that are 

described below. Most acuity studies focused on other body areas and to our knowledge 

this is the first study that tested neck sensitivity. 

1. SPATIAL ACUITY 

1.1 TWO-POINT THRESHOLD 

Ernst Heinrich Weber (1795-1878) is often reputed as the first physiologist to look at 

touch purely experimentally (Jütte, 2008). Known mostly for his careful experimentation 

and documentation of the two-point threshold, Weber contributed a wealth of literature to 

the study of touch and inspired other physiologists to pursue the study of touch. A large 

part of Weber’s physiological career was spent studying the peripheral nervous system, 

which led him to develop experiments about the human sense of touch.  

One of Weber’s most renowned findings was differentiation of human skin related 

to sensitivity and discrimination of stimulation depending on the location, which he 

documented in the text De Subtilitate Tactus (Weber, 1834), commonly shortened to De 

Tactu. Weber tested the sensitivity using a protractor-like device that the observer placed 

simultaneously on the skin with the patient’s eyes shut.  Much of Weber’s research was 

carried out on his own body which he carefully documented in seven detailed charts 

describing the sensitivity of various parts of his body. Weber came to find that as the two 
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points of the compass came closer together, there was a certain point where the two points 

of pressure could no longer be experienced as separate stimuli (Figure 12). This 

phenomenon became known as the just-noticeable difference, or Weber’s law. Weber’s 

explanation for the just-noticeable difference was that the skin was organized in small 

“feeling circles,” and when two sensations are located in different feeling circles they can 

be differentiated and when they fall into the same circle, they can no longer be 

distinguished (Grunwald & John, 2008). The discovery of the skin’s fluctuating two-point 

threshold maintains relevance in modern physiology and is still used to map stimulation 

sites used effectively for tactile applications and clinical assessment.  

 

  
FIGURE 12: ILLUSTRATIVE EXAMPLE OF TWO-POINT DISCRIMINATION (NOT TO SCALE). 

LEFT) PERCEIVED AS ONE POINT, RIGHT) PERCEIVED AS TWO POINTS 

Although two-point threshold is still widely used among clinicians, this classical 

method of measuring tactile sensitivity has been criticized for not measuring the true tactile 

acuity of the skin. Previously, researchers who used two-point threshold designs found 

participants claimed to be able to distinguish two points of stimulation on the finger pad, 

even when there was no separation between the two points (Johnson & Phillips, 1981; 
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Tong, Mao, and Goldreich, 2013). Therefore, many experimenters question the validity of 

two-point discrimination and have moved to other methods of measuring tactile acuity. 

While both of these measures have their own issues, they provide researchers and clinicians 

with a truer measurement of tactile acuity.   

1.2 GRATING THRESHOLD 

The grating threshold task was developed to approach the problem of the difficulty to 

quantify textures to be analyzed. Using different sizes of grooves and ridges, researchers 

have a precise measurement of the stimulus- the width of the grooves and ridges. Easily 

manipulated, grating threshold has allowed researchers to investigate tactile acuity of 

different parts of the body using a vertical/horizontal test. In this type of study, grooved 

stimuli are presented with ridges oriented either horizontally or vertically, and the 

participant indicates which orientation they believe the stimulus is. In the past sixty years, 

these studies have been conducted to measure tactile acuity of various body parts (mainly 

the hands and arms) in both typical and atypical patients (Lederman and Taylor, 1972; 

Lederman, 1978; Johnson & Philips, 1981; Morley, Goodwin, and Darian-Smith, 1983; 

Van Boven & Johnson, 1994; Essock, Krebs, and Prather, 1997; Craig, 1999; Grant, 

Thiagarajah, and Sathian, 2000; Craigh & Lyle, 2001; Goldreich & Kanics, 2003). 

After many attempts to make 3D grating stimulus that would work to measure neck 

spatial acuity, we concluded that this type of design was not suitable: We used grating 

stimuli that varied from 6mm to 35mm in diameter and observed that control participants 

were not able to determine the orientation of grating despite trying them on various 

locations of the neck (see Fig. 13). Given these observations, we explored an alternative 

method suggested by Tong, Mao, and Goldreich. described below.  
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FIGURE 13: 3D-PRINTED GRATING STIMULI MADE IN LAB. SIZES FROM LEFT TO RIGHT: 

6MM, 3MM, AND 1.5MM. 

1.3 TWO-POINT ORIENTATION DISCRIMINATION  

Two-point orientation, the method used in Experiment 2, is a relatively novel measure 

of spatial acuity that combines orientation discrimination of grating stimuli tasks with the 

use of two-point threshold technique (Tong, Mao, and Goldreich, 2013). When comparing 

the results of a two-point discrimination (2PD) task and two-point orientation 

discrimination task (2POD), the authors argued that a 2PD task presented non-spatial cues 

that allowed participants to discriminate small compass tip separations, even when set at 

zero. Craig and Johnson (2001) favored a response magnitude cue due to the nature of 

receptive fields or the neural activation of several afferent fibers. In other words, it is 

possible the brain detects the presence of two point and one point based on the number of 

afferent fibers activated, even if participants do not perceive the two points as such. In 

order to avoid an unattended non-spatial cue, Tong and colleagues suggested the 2POD 

task relied on perception rather a response magnitude cue by stimulating participants with 

two contact points rather than one versus two contact points design used in 2PD tasks 

(Tong, Mao, and Goldreich, 2013). 
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This second experiment was performed to determine the spatial acuity of the neck. 

From Experiment 1, we learned that the neck does not have very fine discrimination of 

vibrotactile stimuli, but is sensitive enough to convey an area of stimulation. Using a 2POD 

method, we performed this study to further explore the discriminative abilities of the neck 

in different locations.  

2. MATERIALS AND METHODS 

2.1 PARTICIPANTS 

Sixteen students of Northern Michigan University between the ages of 18 and 22 (11 

female, M=19.44, SD=1.16) with an average neck circumference of 36.02cm (range= 33-

43.6 cm) participated in this experiment. Participants were screened for any learning 

disorders or sensitivity issues that may impact their ability to complete this study with a 

short pre-study questionnaire (See Appendix A). The study was approved by the Northern 

Michigan University IRB and participants were offered extra credit for various psychology 

courses. Additionally, five other participants (three females) between the ages of 19 and 

23 (M= 20.2, SD= 1.79) with an average neck circumference of 36.3cm (range= 29.5- 

46cm) served as a control.  

2.2 APPARATUS AND STIMULI 

An iGaging Digicompass and Divider was used to deliver the two-point stimulation on 

the participant’s neck. The compass was modified by supergluing two 2mm sterling silver 

to the sharp tips to ensure participants’ comfort and safety (Figure 14). The compass’s zero 

point was calibrated where the two ends touched.  
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FIGURE 14: IGAGING DIGICOMPASS AND WITH MODIFIED TIPS. TIPS ARE 2MM 

STERLING SILVER BALLS. 

2.3 PROCEDURE 

Prior to the study, participant neck circumferences were measured with a soft tailor’s 

measuring tape. The total length was then divided into eight equally spaced stimulus 

locations then marked on the participant’s neck using an eyeliner crayon that could be 

easily removed after the study. Participants were shown and held the modified compass to 

assure they felt comfortable having their necks touched with the ends and were told to 

inform the experimenter at any time if they felt uncomfortable during the study.  
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FIGURE 15: EXPERIMENTAL DESIGN LAYOUT FOR EXPERIMENT 2. EACH TRIAL 

CONSISTED OF TWO CONTACT POINTS (ONE VERTICALLY ALIGNED, THE OTHER 

HORIZONTALLY ALIGNED). EACH BLOCK CONSISTED OF 50 TRIALS AT A DIFFERENT 

LOCATION AROUND THE NECK FOR A TOTAL OF 400 TRIALS. FOR EACH 50 TRIALS, 

THERE WAS AN AVERAGE OF 14 RUNS OR REVERSAL POINTS. 

Block order was pre-determined using an AB-BA scheme (i.e.,ABCDEFGH would be 

the first participant’s order of sites, BCDEFGHA would be the second). Each trial consisted 

of two contacts with the compass: one with compass tips aligned vertically, the other with 

tips aligned horizontally; their order was randomized. Participants were asked to verbally 

indicate whether the vertically orientated stimulation came before or after horizontal 

stimulation by responding ‘one’ for before and ‘two’ for after while wearing blacked-out 

safety glasses. Responses were recorded by a second experimenter in the room. Using the 

2-up-1-down staircase method, the width between the two compass points was incremented 

after two consecutive correct responses and decremented after each incorrect response by 
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0.5mm. The distance between the compass tips ranged from 10 to 20mm, with 19 different 

distances equally spaced between 10 and 20mm (10mm, 10.5mm, 11mm, …, 19.5mm, 

20mm) with each block starting at the mid-point of the range, 15mm5. Each site stimulation 

site received 50 trials (one block) for a total of 400 trials, and ~14 runs, where a run is 

defined as the trials between reversal points, i.e. when the change of direction occurs 

(Figure 15). The study took approximately 1.5 to 1.75 hours to complete. 

3.  DATA ANALYSIS 

The threshold for each site was determined by taking the average of the reversal points 

of each participants’ blocks of trials, disregarding the first reversal point (Kühner, Boubb, 

Bengler, and Wild, 2012; Levitt, 1970). To determine whether different location sites 

present difference in sensitivity, thresholds were analyzed using a one-way repeated 

measured ANOVA with site as a factor.  

Correlations between sex and threshold, and neck circumference and threshold were 

also computed.  

4. RESULTS 

The one-way repeated measures ANOVA performed on SPSS revealed that only 

stimulation sites 1 and 7 were significantly different from one another [F(7, 70) = 4, p= 

0.01, η^2=0.222]. Figure 16 shows the average threshold (in millimeters) for each 

stimulation site. Additionally, Table 1 shows a summary of participant data and individual 

                                                 

5 Control participants were tested with a range of 10-30 mm with trials starting at 20mm (mid-point). 

Because the range was set too high, these participants did not have ~14 runs for each block, instead they only 

had ~5. Therefore, the range was shifted from 10-20mm with a starting point of 15mm. 
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thresholds for each stimulation site, and Table 2 displays the actual data from a 

representative participant.  

 

 

 

 

 

 

 

 

FIGURE 16: SHOWS THE AVERAGE THRESHOLD (IN MILLIMETERS) FOR EACH 

STIMULATION SITE ASTERISKS REFER TO SIGNIFICANT DIFFERENCES BETWEEN SITE 

THRESHOLDS. 
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Table 1: Individual thresholds for each stimulation site, with neck circumference (in 

Centimeters), handedness, age, and sex of each participant.  

 

 

Table 2: Trial blocks of Participant 18 with reversal points shown in red. The 

first reversal point, R0, is not included in threshold calculations. 

  

R0 

R0 
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5. DISCUSSION 

The results showed that neck sensitivity is relatively uniform across all the tested 

location when using 2POD task. While sites 1 and 7 had significantly different 

thresholds, it is apparent the significance is due to the slightly higher threshold of site 

7 and slightly lower threshold of site 1 (Figure 16). Even the front of the neck, which 

R0 

R0 

R0 

R0 
R0 

R0 
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seems to be less sensitive to vibrations in Experiment 1, has similar acuity that other 

sites of stimulation. Moreover, the front of the neck seemed to have slightly better 

spatial resolution than other sites, although it was only statistically different from site 

7, which had the highest threshold. It is important to note that the locations tested were 

changed as participant performances seemly improved with the existence of a reference 

point (Cholewiak & Collins, 2003; Hamburger, 1980; Vierordt, 1870). 
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CONCLUSION 

Our results showed that the neck is a viable location for tactile stimulation. Although 

we did not directly test vestibular-tactile substitution on the neck, the two studies serve as 

the first steps in determining the best parameters for developing a device that will deliver 

vibrotactile feedback with great accuracy and precision by providing guidelines for future 

studies. 

 From Experiment 1, we showed that the ArraySense can potentially and roughly 

convey tactile information in a specific neck region. However, certain changes should be 

made in the design by reducing the number of motors on the collar or firing the motors in 

rapid sequences to convey direction. Once the Arraysense’s ability to convey directional 

information is established with the rapid sequencing of motors, this set-up can be used in 

future studies that disturb the vestibular system using a motion platform. Finally, when 

cconsidering the tested frequencies and durations, the motors positioned on the front of the 

neck did not convey the location of vibrotactile information even when a ±1 error rate was 

included. The front of the neck’s poor accuracy in Experiment 1 can be attributed to a 

phenomena called bone conduction. We believe the cartilage at the front of the neck leads 

to propagation of vibration, making it difficult to distinguish. With this in mind, it is 

important to pay special attention to calibrating the direction and frequency of the vibration 

at the front of the neck to convey vibrotactile information to this area efficiently and 

effectively.  

 The results of Experiment 2 showed mostly uniform tactile acuity around the neck. 

While factors like age, sex, neck circumference and handedness could potentially effect 
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thresholds, there were not enough participants to draw conclusions on correlations between 

sex, neck circumference and threshold levels. Additionally, participants in this study were 

all of the same age range (18-22), and only one participant was left-handed. Therefore, it 

may be beneficial to replicate this study using more participants of different age ranges, 

especially of older populations, to get a more representative sample of those who suffer 

from vestibular loss.  

  The conflicting results of Experiments 1 and 2 suggest the nature of the stimulus and 

design of the ArraySense are responsible for the poor performance of the ventral midline 

neck area, not the sensitivity of the neck. Important factors, like the presence of cartilage 

at the ventral midline, must be taken into account to avoid or counteract bone conduction 

when using the ArraySense. Higher frequencies should be tested and currently, we are 

working on changing the design of the ArraySense to improve its efficiency. 

The uniformity of the neck’s spatial acuity make the neck is a suitable candidate for 

directional information and therefore for tactile sensory substitution research and more 

particularly vestibular-tactile sensory substitution.   
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APPENDIX A 

Two-Point Orientation Discrimination (2POD) Task Pre-Study Questionnaire 

 
Sex:  Male ____   Female ____ 

Age:       _______ 

Handedness:  Right _____    Left _____  

 

 

Question: Yes No Details: 
Do you have any 

neurological disorders that 

may impact your ability to 

complete this task? If so, 

please describe. 

   

Do you have any learning 

disabilities that may impact 

your ability to complete this 

task (i.e., ADD, ADHD, 

dyslexia)? If so, please 

describe. 

   

Have you ever had a 

surgical operation anywhere 

on your neck? If so, please 

the location and give the 

approximate date of surgery. 

   

Have you ever had 

received an injury to your 

neck? If so, please describe 

what type of injury and 

include an approximate date. 

   

Have you been diagnosed 

with touch defensiveness, or a 

hypersensitiveness to being 

touched? 

   

Have you been diagnosed 

with diminished sense of 

touch? 

   

Have you been diagnosed 

with diabetic neuropathy, or 

nerve damage caused by 

uncontrolled blood sugar 

levels? 
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