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Abstract

In the field of theoretical ecology the term "richness"

refers to the number of species present in an ecosystem.

By reducing the game of Sudoku to the problem of exact

four cover (X4C), then reducing X4C to minimum

richness equilibrium (MRE), we show that MRE is in

NP-complete. We further reduce MRE to minimum

weight linear programming (MWLP) to arrive at a

simple, polynomial-time decision process that we

demonstrate to be a pretty darn good Sudoku solver!



3

G
E

C
C

O
  

J
u

n
e
 2

8
, 
2

0
0

5

3

IE
E

E
 S

S
C

I 
F

O
C

I 
2

0
0

7

3

M
A

A
 U

P
 R

e
g

io
n

a
l 

M
e

e
ti

n
g

 2
0

1
5

 L
S

S
U

Background:  Genetic Algorithms

The simple GA:

px (t+1)   =    px (t)   

Proportionate selection:

px is the proportion of individual/species x in the population.

fx is the fitness of x.

fx

f   

pA (t+1)   =    pA (t)   

Example:  fA

pA (t) fA + pB (t) fB
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Background:  The RFS Approach

where py is the proportion of species y in the current population.

The SHARED FITNESS fsh,x of a species x depends, 

in a simple way, on competition from overlapping 

species:

fsh,x = 

1

niche_count(x)
=  

1

Σ py fxy

all species y

Finally, a selection operator, such as proportionate selection, uses the RFS 

Shared Fitnesses each generation. 

AB A 

A

fnfn

f
f

BA

Sh,A

 
 A B

Example for two

overlapping niches

A B

CACAB A 

A

fnfnfn

f
f

CBA

Sh,A

  


Example for three

overlapping niches
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• Shared Fitness:
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Background:  The RFS Approach

a

b

c
Substrate (stock material) 

is a finite RESOURCE to be COVERED

by niches (defined by the species).

Each SPECIES covers a unique subset of the resources.

Resource-defined Fitness Sharing (RFS) 

introduced by Horn (2002) as a synthesis

of Fitness Sharing and Resource Sharing.

Overlapping species compete for the shared amount of resource.

E.g., Species a and b overlap 

in coverage by amount  fab :

fab  

a

b
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RFS for Shape Nesting
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species_count ≥ 4

generation 1

(one generation beyond the initial population )

species_count ≥ 1

(shows all species)

Experiment 1

generation 209 

(8 cooperative species)

species_count ≥ 36

species_count ≥ 2
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Experiment 1

generation 709

(9 cooperative species)
generation 609 

(almost 9 cooperative species)

species_count ≥ 22species_count ≥ 20
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Experiment 2

species_count ≥ 19
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Co-evolutionary Shape Nesting can 

Outperform Commercial Software
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Goal:  Evolve an Exact Cover of 

Substrate by K Species

Here K = 16.
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9x9 Sudoku

Insert the numerals 1-9 in each cell subject to FOUR 

constraints:

1. Only one numeral per cell

2. Exactly one of each numeral per row

3. Exactly one of each numeral per column

4. Exactly one of each numeral per region
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Garey and Johnson (1979):  X3C
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9x9 Sudoku

Insert the numerals 1-9 in each cell subject to FOUR 

constraints:

1. Only one numeral per cell

2. Exactly one of each numeral per row

3. Exactly one of each numeral per column

4. Exactly one of each numeral per region



17

G
E

C
C

O
  

J
u

n
e
 2

8
, 
2

0
0

5

17

IE
E

E
 S

S
C

I 
F

O
C

I 
2

0
0

7

17

M
A

A
 U

P
 R

e
g

io
n

a
l 

M
e

e
ti

n
g

 2
0

1
5

 L
S

S
U

Sudoku as X4C



18

G
E

C
C

O
  

J
u

n
e
 2

8
, 
2

0
0

5

18

IE
E

E
 S

S
C

I 
F

O
C

I 
2

0
0

7

18

M
A

A
 U

P
 R

e
g

io
n

a
l 

M
e

e
ti

n
g

 2
0

1
5

 L
S

S
U

The RFSS-Evolve Algorithm
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Species Interaction Matrix

Matrix of pairwise

overlaps between species

Under RFS:     MRFS * p =  niche_count

=

vector of species niche countsvector of species proportions

niche_count(E1 )

niche_count(E1 )

niche_count(EK )

niche_count(C1 )

niche_count(C2 )

niche_count(CH )
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Notation

Property II

≡ overlap between species Ei and species Ej

≡ proportion of population occupied by species E2

Modified

Notation: 

Property I Exact Cover

species do not 

compete! 

(no overlaps)

Exact Cover

species completely

cover all other species
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Species Interaction Matrix

=

niche_count(E1 )

niche_count(E1 )

niche_count(EK )

niche_count(C1 )

niche_count(C2 )

niche_count(CH )

Note that on main 

diagonal of MRFS:

By Property I:
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Species Interaction Matrix
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Species Interaction Matrix
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Species Interaction Matrix
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XCSSS solution → MWPSLE solution

• Assume exact cover solution of K subsets.

• The vector y below solves the MWPSLE.
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XCSSS solution ← MWPSLE solution

• Assume a non-negative vector y such that                        

.

• Also assume that y has exactly K positive components.

• First we show all positive components of yi must be 1:

– Since all matrix coefficients aii = 1, and since all yi and aij are 

non-negative, it follows that no yi can exceed 1:

– Now since                      then                               with exactly K

components equal to one, and all others equal to zero.
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XCSSS solution ← MWPSLE solution 

(continued)

• Next we show for any two distinct positive solution 

components yi and yj ( i ≠ j), the corresponding aij must 

be zero:

– Proof by contradiction:  If aij were not zero, then it would be 

positive and would add to the left hand side of both equations 

i and j .   But since both yi and yj equal one, the left hand 

sides of equations i and j will then exceed one.   Thus 

equations i and j will not be satisfied.  
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MENDEL 2014 results
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Decision Process
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RFSS-LP  (Linear Programming)
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RFSS-LP  (INTEGER Programming)
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Supersudoku
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RFSS Solution
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Hypersudoku

1. Only one numeral per cell

2. Exactly one of each numeral per row

3. Exactly one of each numeral per column

4. Exactly one of each numeral per region

5. Exactly one of each numeral per shaded region
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Implications

• MRFS is |C|by |C|in size , while MSM is 

|C| by |X|   ( and |X| can grow much 

exponentially in |C|, and vice versa )

• Are the linear approaches practical?

• Note that these NP-complete problems (e.g., X3C, 

MWPSLE, 0-1 Integer Programming) are solvable in 

polynomial time if the matrix (MRFS or MSM ) is 

non-singular.   (Can solve some singular matrices.)

• Perhaps MRFS is non-singular when MSM is, and vice 

versa.

• MRFS works with arbitrary|X| (XrC), even with 

continuous sets.  Only requires set intersections.
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