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ABSTRACT 

 

 

 

Identification of HCMV UL97 in GBM cell lines and a possible role for Ganciclovir 

 
By	  

 
Thomas B. McFall 

 

Glioblastoma multiforme (GBM) is the most common form of malignant glioma, 

comprising 80% of all malignant gliomas.  Recently, active Human Cytomegalovirus 

(HCMV) was identified in GBM cells, and has been a topic of debate concerning its role 

with tumor progression.  This study used three established GBM cell lines; T98, LN229, 

and U87 in order to identify and examine the presence of HCMV phosphotransferase 

protein UL97. Reverse transcriptase polymerase chain reaction identified UL97 within 

two of the three cell lines, T98 and LN229.  Western blotting confirmed that UL97 

protein was being expressed and was present in both T98, and LN229 cell lines. UL97 is 

a phosphotransferase that has the ability to phosphorylate guanosine analogues, creating a 

guanosine triphosphate that inhibits DNA elongation and replication.  Ganciclovir, a 

guanosine analogue, was used to treat GBM cell lines and our results demonstrate that it 

significantly decreases cellular proliferation in UL97 expressing cells. This project 

identifies a new role for HCMV in GBM and suggests a possible future treatment option.  
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INTRODUCTION 

 

 

 

Gliomas are primary brain tumors that are histologically characterized by their shared 

traits with glial cells.  Glioblastoma multiforme (GBM), also known as a Grade IV 

glioma, comprises 80% of malignant gliomas.  GBMs are identified by their diffuse 

projections into the brain parenchyma and thus are termed diffuse gliomas. These tumors 

typically involve the white matter of the cerebral hemispheres, but also have the ability to 

occur in gray matter, and spreading along the spinal cord1.  GBMs are considered to be of 

astrocytic origin, and have an elongated and irregular shape with hyperchromatic nuclei 

(excess chromosomes) 1. 

 One of the key characteristics of a GBM is the ability to regenerate after surgical 

resection.  Current studies have shown that malignant gliomas arise from progenitor cells, 

but at which stage differentiation and transformation occurs is not well known2.  GBMs 

contain multipotent stem cells that are responsible for their regeneration, and these tumor 

stem cells may be the point of transformation for creating a tumor cell line3.  

 Tumor stem cells may have many therapeutic implications; current therapies 

focus on removing bulk tumor contents, as opposed to the small portion of tumor 

progenitor cells.  Cell origin and malignant gliomas remains to be a controversial topic, 

and the possibility of a GBM occurring from a mature cell has not yet been refuted. The 

occurrence of cancer is associated with cell cycle dysregulation by means of oncogenes, 

loss of function of tumor suppressor genes, and DNA repair gene mutations4.   
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One of the major pathways controlling cell cycle progression involves the p16, cyclin 

dependent kinase (CDK)-4, Cyclin D, and retinoblastoma proteins (pRb).  Alterations in 

at least one component of this pathway occur in many anaplastic astrocytomas and in a 

majority of GBMs5. The protein encoded by the RB1 gene, pRB, is important in cell-

cycle arrest; the loss of pRb function in gliomas thereby removes an important brake on 

the cell cycle. 

 One upstream mediator of pRb function is the p16 product of the CDKN2A gene 

(also called p16INK4A) on chromosome 9p.16 15, a tumor suppressor inactivated in a 

number of human tumors. This inhibits the cyclin-CDK (cyclin D and CDK4/6) complex 

that regulates pRb5.  

 The majority of glioma cell lines and two-thirds of malignant gliomas possess 

homozygous deletions of chromosome 9 that include this gene. It is likely that these 

deletions result in loss of expression of the p16 and p14ARF transcripts from CDKN2A 

and the p15 transcript from the nearby CDKN2B, resulting in the loss of many 

checkpoints and greater cell proliferation6.   

 The CDK4 gene is amplified and overexpressed in 10 to 15 percent of malignant 

gliomas. CDK4 itself is regulated by p16 and inactivates pRb through phosphorylation. 

Thus, nearly all high-grade tumors have impairments of this single critical cell cycle 

control pathway6.   
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CHAPTER 1: LITERATURE REVIEW 

 

 

 

Introduction 

 
 In the early history of cancer biology, viruses were thought to be the primary 

reason for cellular transformation. Transformation is marked by loss of cell to cell contact 

inhibition, and ability to grow beyond a monolayer to create stacking of cells In vitro. 

The Rous sarcoma virus was identified, and had the ability to transform cells within avian 

species and was proved to do so by a viral gene called V-Src7.  As time passed, it was 

found that viruses could cause cellular transformation and promote the formation of 

oncogenes from proto-oncogenes. Proto-oncogenes are genes that function to increase 

growth and survival of cell and are under control by various checks and balances, which 

include tumor suppressor genes.  An oncogene is a proto-oncogene that has mutated to 

cause increased functional capacity without being down regulated resulting in 

uncontrolled growth or survival. However, the bulk of tumors rarely have constituently 

active oncogenes, but alternatively have altered tumor suppressor genes7.  The possible 

role of tumor viruses has become more prevalent in popular media with Human 

Papillomavirus and recently with the identification of Human cytomegalovirus (HCMV) 

in brain tumor cells.  Although many mutations are responsible for the cellular 

transformation that leads to what is known as a GBM, this project’s goal is to define the 

if HCMV infection may play a role in GBM development.  
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A Brief Overview of HCMV 

 Cytomegalovirus (CMV) is a viral genus within the family Herpesviridae.  The 

Herpesviridae is divided into several subfamilies based on where latency is established.  

CMV is a part of the Betaherpesvirinae subfamily, which establishes latency in 

leukocytes as opposed to neurons in the alphaherpesvirinae subfamily (i.e., herpes 

simplex), or B-cells in the Gammaherpesvirinae (i.e., Lymphocryptovirus) 8.  

 The human form is best known as human CMV (HCMV), or Human herpesvirus-

5 (HHV-5).  HCMV is very closely related to Herpes simplex-1, -2, and Varcella Zoster 

virus.  The HCMV genome is 230Kb long, and codes for 70 viral proteins. HCMV 

infections are associated with persistent viral shedding which is secreted in the mucous9.  

Disease manifestations are associated with mononucleosis, pneumonia, hepatitis, aseptic 

meningitis, and immunological abnormalities9. 

Life Cycle 

 HCMV is a double stranded DNA virus that is covered by an icosodeltahedral 

shaped protein capsid.  The capsid is surrounded by another protein coat known as the 

tegument, which is wrapped in a lipid bilayer called the envelope. Glycoprotein 

projecting from the envelope mediate interactions with the host cells.  The viral cycle 

takes approximately seventy-two hours, which is where the virus is able to replicate its 

genome and express structural proteins to form a complete clone to leave the cell.  After 

initial fusion with the host’s bilipid membrane, the encapsulated viral particle is released 

into the cytosolic space, and is transited to the nucleus.  By active transport mechanisms, 
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the virus is translocated to the nucleus through the nuclear pores, and the double-stranded 

DNA is deposited.  

 Viral gene expression occurs in three steps that are identified as immediate early 

genes, early genes, and late genes10. The immediate early genes are required for early and 

late gene synthesis.  Early genes encode proteins that are necessary for viral replication, 

and late genes encode proteins for virion structural components. Nucleocapsid particles 

are assembled within the nucleus and exit via the nuclear pore, and the tegument forms in 

the cytosolic space. The tegument is comprised of various scaffolding proteins that 

contain the ability to evade the host immune system by inhibiting interferon signaling. 

The viruses exit the cell utilizing the hosts exocytosis machinery gaining a bilipid 

envelope enabling them to infect other cells10.  

 Infection with HCMV leads to specific changes in the cell cycle progression that 

promote viral replication. HCMV optimizes it own replication by inhibiting the 

endogenous cyclins D and A, while activating cyclins E and B. The virus pushes the cell 

through G1 by activating Cyclin E, and inhibiting the E2F protein11.  This halts the cell 

cycle just before G1 transitions into the S phase.  At this stage the early genes are 

expressed, allowing for rapid viral DNA replication12 13(Figure 1).  

 

 

 

 



	  

	  
	  
	  

6	  

 
 
Figure 1. Alteration in cell cycle progression by HCMV 
Infection with HCMV leads to specific changes in the cell cycle progression that optimize viral replication. 
HCMV optimizes it own replication by inhibiting cyclins D and A, while activating cyclins E and B. The 
virus pushes the cell through G1 by activating Cyclin E, and inhibiting the pRb protein. 
 

UL-97 Protein As a Target 

 Human cytomegalovirus (HCMV) encodes a serine-threonine protein kinase 

(thymidine kinase) that shares homologues with most members of the Betaherpesvirinae, 

and alphaherpesvirinae family.  UL-97 is an early gene that is first expressed five hours 

post infection, and is present throughout infection.  Eukaryotes have two types of 

thymidine kinase, mitochondrial (TK2) and nuclear (TK1).   UL-97 has a different 

tertiary structure but carries out the same primary enzymatic process as TK1 and TK214.  
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Thymidine kinases catalyze the reaction between deoxythymidine and ATP to form 

deoxythymidine 5’-phosphate and ADP (figure2.)15.The deoxythymidine 5’-phosphate is 

then phosphorylated by thymidylate kinase to form deoxythymidine diphosphate.  The 

diphosphate is then phosphorylated by nucleoside diphosphate kinase to form 

deoxythymidine triphosphate, which is incorporated into a DNA molecule by DNA 

polymerase16.  

 The thymidine kinase enzymes are critical for DNA replication in both the 

eukaryote and the viral life cycle. UL-97 (HCMV TK) is necessary for the viral DNA 

replication, but also carries additional characteristics its homologues do not17.  UL-97 

continuously phosphorylates the pRb18.  In quiescent cells pRb is hypophosphorylated 

and sequesters the protein E2F inside of its pocket19.  When hyperphosphorylated by 

UL97, pRb makes a conformational change and releases E2F.  E2F is a transcription 

factor that acts as a driving factor for DNA replication, cell cycle progression, and 

mitosis18. The papilloma viruses uses a similar mechanism for creating cell cycle 

deregulation by targeting pRb, and is a primary point of interest in cervical cancer19.  

Link between HCMV and Malignant Gliomas 

 Malignant gliomas are the most common primary tumor in human adults, and 

have no known etiology1.  Survival after diagnosis and treatment ranges between 9- 14 

months1.  HCMV being part of the Betaherpesvirinae subfamily have the ability to infect 

supporting cells in the central nervous system, known as glial cells.  It is known that 

HCMV can cause severe encephalitis in fetuses, as well as immunocompromised adults.  

HCMV virulence is promoted in astrocytes when increased inflammatory stimuli are 
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present.  Glioblastoma multiforme is thought to be of astrocytic origin, and poses a 

possible link between tumor development and viral infection20. 

 HCMV persistently infects 50-90% of the adult human population (presumably 

leukocyte and epithelial like populations), and expression of viral genes can induce 

dysregulation of cell cycle progression, inhibit apoptosis, and promote signals for 

angiogenesis20.  In a previous study with 27 malignant gliomas, immunohistochemistry 

(IHC) was performed with monoclonal antibodies specific for HCMV IE1-72 protein. All 

27 samples were positive for IE1-72 20.  Comparisons were made between different types 

of malignant gliomas: grade III oligoastrocytomas, astrocytomas, normal brain tissue, and 

meningiomas.  Both samples of astrocytomas and glioblastomas were positive for IE1-72, 

while all other tissue samples were negative20.  These results support the role of HCMV 

infection in tumors with astrocytic origin.  With an estimated population of 90% percent 

of human adults being infected with HCMV, it has been thought that these results support 

the presence of a latent virus 21.  Recent work by Bornali et al. demonstrated that HCMV 

DNA was present in 16/17 (94%) tumor specimens, and with variable concentration of 

DNA copies.  Furthermore viral protein synthesis was identified in 94% of the tumor 

samples, suggesting an active viral infection within high-grade gliomas21.  

 HCMV contains a gene for viral thymidine kinase (UL-97), which has been well 

studied in the past several decades. The most common antiviral drug, Ganciclovir 

specifically targets UL-9722.  Ganciclovir is a synthetic analogue of 2’-deoxy-guanosine 

that is phosphorylated by UL-97 to create a guanosine triphosphate analogue (dGTP 

analogue)17.  Ganciclovir is only phosphorylated by UL-97, and does not react with 

cellular thymidine kinases TK1 or TK222. The dGTP analogue competitively inhibits the 
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incorporation dGTP by DNA polymerase, resulting in DNA elongation termination22.  

Ganciclovir is a prodrug, in that it poses no cytotoxic affect to cells unless the viral UL-

97 is present to convert it to a dGTP analogue17. With recent evidence that HCMV is 

present in malignant gliomas, Ganciclovir may pose a possible treatment option for 

glioma patients. Unlike traditional treatments (i.e., chemotherapy and radiology), 

Ganciclovir would not create any bystander effect, since it would only target and kill 

cells with active HCMV infection 23. 

 

Figure 2. Mechanism of action of Ganciclovir  
  

 A novel approach to treating cancer is to introduce non-mammalian genes 

encoding enzymes into the tumor that react with non-cytotoxic prodrugs.  For example 

Herpes simplex thymidine kinase (HSV-TK) expression in mammalian cells renders non-

toxic nucleotide analogues into a cytotoxic form after phosphorylation15.  The most 

common nucleotide analogue used is Ganciclovir. When administered after HSV-TK 

transfection, Ganciclovir acts as a chain terminator in DNA synthesis.  Tumors do not 

regularly express non-mammalian herpes genes, but when experimentally introduced 
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with anti-viral treatment they have been shown to have a dramatic effect in reducing 

tumor size15.  

 Wei et al.24 demonstrated that transfecting murine melanoma cells with Herpes 

simplex virus type-1 thymidine kinase followed by guanosine analogue treatment reduced 

tumor growth. This was demonstrated by characteristic morphological changes, In situ 

DNA end labeling, flow cytometry detection of G1 DNA content, and annexin V binding. 

Apoptosis was shown to be associated with the cell killing ability of Ganciclovir on 

HSV-tk transfected melanoma24. Kinetic analysis showed that signs of killing were not 

observed until 60 hours after Ganciclovir administration at a dose of 100 uM. Ganciclovir 

treatment was preceded first by a rise in p53 protein level at 12 h and then by S-

phase/G2-phase cell cycle arrest associated with increases in the level of cyclin B1 

protein.  There was no change in protein level of Bax or Cdc2. These results suggest that 

apoptosis occurred as a result of Ganciclovir-induced cell cycle arrest rather than direct 

chemical effect of HSV-tk-transfection24.  Negative controls included B16F10 melanoma 

cells that were only treated with Ganciclovir, and showed no inhibition of cell growth.  

 The viral enzyme HSV-TK is morphologically similar to UL-97, and capable of 

phosphorylating Ganciclovir, though Ganciclovir is 100 times more reactive and has 

higher specificity15 to UL-97.  The natural presence of UL-97 in Glioblastoma 

multiforme creates a promising approach for treatment by Ganciclovir with no need of 

non-mammalian gene transfection17. 
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CHAPTER 2: IDENTIFICATION OF HCMV IN HUMAN GBM CELL LINES 

 

 

 

Introduction 

 
 Viral detection is known to be very difficult, and is not only identified by 

polymerase chain reaction, but must be verified by employing several primer sets.  

Following PCR, western blot analysis and Ganciclovir treatment supports that UL97 is 

present within the cell lines.  

RNA Extraction 

 Human glioma cell lines were grown in Minimal Essential Media Eagle (MEME) 

and 10% fetal bovine serum.  Cell lines included T98, LN 229, and U87.   All three-cell 

lines were grown until confluent. Cells were pelleted at 300 g, and resuspended in a 1 ml 

solution of 10% FBS and MEME.  Cells were lysed with the QIA Shredder system under 

manufacturer’s protocol (Qiagen). RNA was isolated from the cell lysate with RNeasy 

Mini Kit (Qiagen) following manufacturers protocol.  Total RNA was stored at -80° C 

until further use.  

Reverse transcriptase polymerase chain reaction 

 In a 0.5 ml thin-walled reaction tube, reverse transcriptase polymerase chain 

reaction was performed by using the Access RT-PCR system (tables 1 and 2) and was 

performed under manufactures protocol (Promega). All reactions were conducted in 

triplicate, and repeated with two different primer sets per cell line. A third primer set was 
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used, and was composed of degenerate primers to control for the possibility that a 

mutation event had occurred. Primers sets 1 and 2 were designed by	  Göhring	  et	  al.	  and	  

was	   checked using nucleotide basic alignment search tool (nBLAST) and primer-

BLAST to ensure specificity to UL97 without any amplifying off-target mammalian 

homologues25.  Primer set 3 was previously designed by Donald et al., in order to detect 

the broad range of Herpesviridae family members (Table 1.)26.  

Table 1. Primer sets for UL97 
 
 
Primer Set Function Sequence (5'-3') 

1 Forward primer CTGCTGCACAACGTCAAGGT 

1 Reverse primer CCCAGCGCCGACAGCTCCGACAT 

2 Forward primer CCGCGCGTTGGAGAACGGCAAG 

2 Reverse primer CAGGCCGCGCCGGCGTGCTTAA 

3 Forward primer TCAAAGCTTGAYGGNSCNYAYGG 

3 1-Reverse primer 1/2-CTCGAATTCGSRTGNCGRTC  

3 2-Reverse primer 1/2-CTCGAATTCGSRTGNGCRTC 
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Table 2. RT-PCR Reaction Mix 
 
Reverse Transcriptase Reaction 
Components 

10 ul of AMV  

1 ul of dNTP mix 

2.5 ul of downstream primer 

2.5 ul of upstream primer 

2 ul of MgSO4 

1 ul of AMV reverse transcriptase 

1 ul of DNA polymerase 

2 ul of total RNA 

 

Table 3. RT-PCR Reaction Cycles 

PCR (40 Cycles) 
Temperature 
(C)  Time (min) 

First Strand Synthesis 45 45 

Second Strand Synthesis (1) 94 0.5 

Second Strand Synthesis (2) 60 1 

Second Strand Synthesis (3) 68 2 
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Gel Electrophoresis. 

 PCR products were separated on 1% agarose gels (0.5x TBE, 0.001 ug ethidium 

bromide).  The wells were loaded with 20 ul of PCR amplified cDNA or 15 ul of 100 bp 

DNA ladder (Sigma Aldrich). Ribosomal RNA served as an inter-experiment positive 

control. Electrophoresis was conducted for 80 minutes at 80 V, and imaged under UV 

light using gel documentation station (BioRad).  

Western Blot  

 Cell lysates were prepared from the T98 and LN229 cell lines. Cells were grown 

to a confluent state in a 175cm2 culture flask supplemented with MEME 10%FBS.  Lysis 

buffer comprised of 20mM HEPES, and 1% SDS.. Cell culture media was aspirated off 

of each flask, and the Lysis buffer was added.  Flasks were incubated for 10 minutes at 

37°C, and the cell lysate was transferred to a 50 ml centrifuge tube (Sigma Aldrich, St. 

Louis Mo).  DNA was sheared by passage through a 12-gauge needle.  

 Protein concentrations were determined by using the BCA protein assay (Thermo 

Scientific). T98 cell lysate had a concentration of 1.1 ug/ul, and LN229 had protein 

concentration of 1.5 ug/ul. Lysates were heated to 100°C for 10 minutes. Proteins were 

resolved through TGX precast gel (BioRad). Either 20 ug or 50 ug were loaded into each 

well. A volume of 5 ul of Precision Plus protein standards was used to identify protein 

size in kDa (BioRad). The gel was run at 150V for 60 minutes. Protein was transferred to 

nitrocellulose by sandwich method using a western transfer buffer. The transfer buffer 

was composed of 48 mM Tris, 39 mM glycine, and 0.04 mM SDS dissolved in 500 ml 

dH20 and 200 ml of methanol. The transfer proceeded at 0.1 A for 10 hours at room 
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temperature.  Nitrocellulose membrane was removed and washed in TBST pH 8.0 

(20mM Tris, 150mM NaCl, and 0.1% tween) and blocked with 5% dehydrated milk 

TBST solution for 30 minutes.  The membrane was soaked in 1 ml of TBST pH 8.0 with 

of anti-UL97 polyclonal rabbit antibody (Abcam: ab11394) in 5% milk((1:250 dilution). 

The procedure was repeated with polyclonal donkey anti-rabbit secondary antibody at a 

1:1000 dilution (Abcam, ab98488).  The polyclonal antibody was incubated with the 

membrane alone to show that the secondary antibody was specific to rabbit and not 

human proteins. Membranes were incubated overnight with parafilm cover.  The 

polyclonal donkey anti-rabbit secondary antibody was diluted to a 1:1000 dilution in 5% 

milk and added to the membrane containing the primary antibody.  The membrane was 

incubated at room temperature for one hour. Following this membrane was washed with 

fresh TBST (pH 8.0) for ten minutes for four consecutive washes. Protein was visualized 

by HRP substrate super signal (Millipore) and Kodak 1D IS440CF (Rochester, NY). 

MTT Assay 

 The cell lines U87, T98, and LN229 were grown in MEME 10% FBS until 

confluent, and harvested by trypsin. Cells were counted with a hemocytometer, and 

diluted to 50,000 cells per ml in complete media.  5000 cells per well for each cell line 

per treatment were seeded into 96 well plates in triplicate for each treatment. Cells were 

incubated overnight at 37°C.  The media was aspirated and replaced with 100 uL of 100 

uM Ganciclovir in 1% DMSO and MEME15.  Vehicle control contained 1% DMSO in 

complete media, and the negative control contained only complete media.  Cells were 

incubated for 30 hours. A volume of 20 ul of 5mg/ml MTT was added to all wells 
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containing cells, and a single row of empty wells as a negative control (Sigma-Aldrich).  

The cells were incubated at 37°C for 3.5 hours27. Media was aspirated from each well, 

and replaced with 150 ul of MTT solvent (Sigma-Aldrich).  The 96-well plate was 

covered in aluminum foil, and placed on a shaker for 15 minutes27.  The 96 well plate 

was read at an absorbance of 590 nm with a reference filter of 620 nm28. This was 

repeated three times.  All values were normalized to the negative control and plotted in 

percent absorbance.  Each treatment group was compared independently to Vehicle 

control (DMSO) and untreated (UT) with the students T-Test with a cut off value of 0.05 

for significance.  
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CHAPTER 3: ANALYZING UL97 EXPRESSION IN GBM CELL LINES 

 

 

 

Introduction 

 
 RT-PCR and western blotting determined the presence of UL-97 transcripts.  A 

possible role for UL-97 as a therapeutic target using guanosine analogues was 

investigated.  UL-97 was detected in both T98 and LN229 cell lines, but was absent in 

U87 cell lines.  This evidence suggests that HCMV may not be present within all GBMs, 

but may be important in screening processes for suggested treatment options, possibly 

involving guanosine analogues.  

Results 

 Using two primer sets, two different portions of the UL-97 gene were amplified 

by RT-PCR to determine the presence UL-97 in the cell lines.   Previous research has 

identified several immediate early genes, but identification of UL-97 has not been 

performed previously in these cell lines. In order to ensure that the primers used 

amplified the correct transcript, two different sets of primers were used.  Primer set 1 

showed banding at 300 bp for both T98 and LN 229, but did not show any banding for 

U87 (figure 3:A).  Banding in figure 3:A migrated beyond the smallest ladder band of 

300 bp and may have been the result of primer dimers. PCR was repeated for T98 with a 

ladder extending to 100 bp to exclude the possibility of primer-dimers (Figure 3:B).  

Banding appeared at 300 bp when using the first set of primers, excluding the possibility 

of primer dimers. Reverse transcriptase PCR was repeated with the second set of primers, 
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results supported the presence of UL-97 transcript in T98 and LN229 cells but absent in 

U87 cells. 

 
A. primer set-1 was used and predicted banding was observed at 300 bp (Lane 1: Ladder, Lane 2: T98, 
Lane 3:U87, Lane4: LN229, Lane 5: Ribosomal cDNA. B. Expression of UL97 with primer set-2 at 300 bp 
(Lane 1: 100bp ladder, Lane 2: U87, Lane 3: T98,  Lane 4: LN229). 

 

Figure 3.  Identification of UL97 gene transcription by RT-PCR in LN229 and T998 cell         
lines 

 

Western Blot Analysis 

 Western blot analysis showed that UL97 was present in both LN229 and 

T98 cell lines. In the nature state, UL97 is known to be 78 kDa, but is also a homodimer 

in its functional form. Intensity of band brightness indicates that the dimerized form was 

more prevalent in the presence of SDS.  To test non-specific binding by the secondary 

anti-rabbit donkey polyclonal antibody, a separate protein transfer was prepared and 

incubated overnight at a 1:1000 dilution.  When imaged, no signal was identified, 

indicating that no non-specific binding was present for polyclonal donkey antibody 

(figure 4: B). 
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Figure 4. UL97 Western Blot 
A. Western blotting showed UL97 at 78kDa.  Lane 1 was loaded with 20 ug of Ln229 cell lysate, lane 2 
with 50 ug of T98 cell lysate, Lane 3 with 20ul of LN229  cell lysate, and lane 4 with 50u ug of T98 cell 
Lysate.  B. Complete absence of signal indicating that no non-specific binding was made by the anti-rabbit 
polyclonal donkey antibody. 
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Ganciclovir Treatment 

 Proliferation assays were performed in order to validate that the UL97 

protein identified by rtPCR and Western blotting is functional and a valid target for 

Ganciclovir.  Cell proliferation was determined by MTT assay.  Each cell line was treated 

with 100 uM Ganciclovir in 1% DMSO, 1% DMSO, or standard media. The MTT assay 

is a colorimetric assay in which the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) is converted to its insoluble formazan producing a purple 

color.  The production of the purple formazan is determined by measuring absorbance at 

590 nm.  The first proliferation trial was conducted in a nontransparent 96 well plate, 

which required that the well contents be transferred to a transparent 96 well plate to be 

able to measure absorbance. In this first trial cell growth variation was drastic and could 

possibly be due to the transfer from one 96 well plate to another (Figure 5).  Ganciclovir 

treated T98 cells had significantly reduced absorption than either control group.  

Ganciclovir treated LN229 cells did not differ from the untreated controls. 

 The MTT proliferation assay was repeated two more times as described 

except a transparent 96 well plate was used for each assay. Ganciclovir treated cells had 

significantly less cell growth compared to the vehicle and untreated controls (Figure 6).  

The third MTT proliferation assay was similar to the second trial.  Ganciclovir treated 

cells had significantly less cell proliferation than either the DMSO vehicle controls or the 

untreated control (Figure 7). 
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Figure 5. MTT Assay for T98 and LN229 (I)	  

T98	   cells	   grown	   in	   100	   uM	   Ganciclovir	   (treated)	   had	   significantly	   reduced	   absorbance	   when	  
compared	   to	   untreated	   (UT)	   and	   Vehicle	   controls	   (DMSO).	   	   LN229	   did	   not	   have	   any	   significant	  
change	  in	  absorbance	  when	  grown	  in	  Ganciclovir	  when	  compared	  to	  controls.	  

 

 

 

 

 

 

 

 

  



	  

	  
	  
	  

22	  

 

  

Figure 6. MTT Assay for T98 and LN229 (II). 
T98	  	  and	  LN229	  cells	  grown	  in	  100	  uM	  Ganciclovir	  (treated)	  had	  significantly	  reduced	  absorbance	  
when	  compared	  to	  untreated	  (UT)	  and	  Vehicle	  controls	  (DMSO).	  	  
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Figure 7. MTT Assay for T98 and LN229 (III).	  	  
T98	  and	  LN229	  cells	  grown	  in	  100	  uM	  Ganciclovir	  (treated)	  had	  significantly	  reduced	  absorbance	  
when	  compared	  to	  untreated	  (UT)	  and	  Vehicle	  controls	  (DMSO).	  
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Figure 8. MTT Assay for T98 and LN229 (IV). 
T98	   and	  LN229	   cells	   grown	   in	   100	  uM	  Ganciclovir	   (treated)	   had	   significantly	   reduced	   absorbance	  
when	  compared	  to	  untreated	  (UT)	  and	  Vehicle	  controls	  (DMSO).	  
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 Proliferation data was averaged for all three proliferation assays and  

Ganciclovir treated cells had significantly less cell proliferation than either of the controls 

(Figure 8).  However Ganciclovir showed to have no effect on absorbance in U87 cells 

(Figure 9.). In conclusion, Ganciclovir was shown to significantly reduce MTT 

absorbance to nearly half that of the controls which contain UL-97 transcripts (T98 and 

LN229 cell lines).  

  

 Figure 9. MTT Assay for U87 cells (V). 
 U87	   cells	   grown	   in	   100	   uM	   Ganciclovir	   (treated)	   had	   no	   significant	   reduced	   absorbance	   when	  
compared	  to	  untreated	  (UT)	  and	  Vehicle	  controls	  (DMSO). 
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CHAPTER 4:DISCUSSION 

 

 

 

Glioblastoma multiforme is the most common and aggressive primary malignant brain 

tumor in adults and is derived from supporting tissue composed of glial cells1.  HCMV, a 

part of the Betaherpesvirinae subfamily primarily infects leukocytes and supporting tissue 

cells as opposed to neurons as seen in the alphaherpesvirinae subfamily. HCMV has the 

ability to remain in a dormant stage called latency. Normally, immediate early genes and 

early genes within HCMV genome are not expressed without the progression of complete 

viral infection. An active infection has no benefit to the life cycle of a cancer cell as 

HCMV causes a lytic infection that would destroy the host cell.  The fact that few genes 

are being expressed, specifically immediate early genes and early genes, without viral 

replication indicate that viral genome insertion may have been erroneous based upon our 

evidence. Viral infection is not as precise as eukaryote replication, causing increased 

mutation rates within the viral genome, and promoter fusion to proto-oncogenes 29.   

 Both early and late genes are needed to halt cell cycle progression at the early 

point in S-phase.  HCMV inhibits cyclins D and A, while activating cyclins E and B.  The 

result is a push from G0 /G1, onto the S phase.   The inhibition of cyclin A prevents the 

cell from entering G2.  If complete expression of HCMV early genes occur, the infection 

would deter cancerous growth.  Recent data has shown that only a few of the immediate 

early genes and even fewer HCMV late genes are expressed24.  This results in a partially 
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infected cell has committed to replicating, and is doing so at a faster pace, and is not 

expressing a lytic virus; thus causing cellular transformation30.  

 By using reverse transcriptase polymerase chain reaction (rt-PCR). The early gene 

UL97 was demonstrated.  Viral replication is known to be fairly unconserved, creating 

very different variants within virus families throughout history.  Two different primer 

sets were used to amplify two different portions of the UL97 gene.  The multiple primer 

set method supports the presence of UL97 transcription in T98 and LN229 cell lines 

although not in U87.  A total of eight additional rt-PCR reactions were performed on U87 

cDNA and an additional set of degenerate primers was used to identify if a mutant form 

of UL97 may be present in the U87 cell line.  All PCR reactions for U87 cells were 

negative suggesting UL-97 is not present.   

 Results from the rt-PCR reactions support the theory that transcripts of UL-97 

was present, but could not identify transcription quantity or the presence of U-L97 

protein. Western blot analysis was used to identify protein content. Both LN229 and T98 

cell lines showed the presence of UL-97 in cell extracts. Banding appeared at both 78 and 

37-kDa. The 37-kDa bands may be due to degradation of whole transcript or a 

nonspecific endogenous protein. To identify if non-specific binding was occurring with 

the secondary antibody, a separate protein transfer was prepared and was incubated with 

the anti-rabbit donkey antibody. Banding was absent, indicating that UL-97 protein was 

present in both LN229 and T98 cell lines and was not due to non-specific binding.  

 Identification of UL-97 supports the role of HCMV as a target to inhibit GBM 

proliferation.  To test if UL-97 is functioning within the GBM cell lines, three 
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proliferation assays were prepared to identify if the pro-drug Ganciclovir has the ability 

to reduce cellular proliferation.  The first proliferation data set was more variable than the 

other two and the variability may be due to the additional pipetting step required to put 

the assay in the correct 96 well plate.   However, taken as a whole both T98 and LN229 

cell lines demonstrated that Ganciclovir was effective in significantly reducing cell 

proliferation compared to either the DMSO or media control.  It is important to note U87	  

cells	  did	  not	  express	  UL-‐97	  transcripts	  by	  rt-‐PCR	  analysis;	  this	  then	  was	  confirmed	  

by	  Ganciclovir	  treatment	  having	  no	  effect	  on	  cell	  viability	  in	  the	  MTT	  assay	  with	  U87	  

cells	  (figure	  9).	  	  

 In general LN229 cells tend to proliferate more rapidly than the T98 cell line. 

Therefore it was thought that Ganciclovir might not have as great of an effect on reducing 

cell growth. However these proliferation assays demonstrated that Ganciclovir has been 

able to reduce cell proliferation in the LN229 and T98 cells.  

 This project identified UL-97 within GBM cell lines, and showed an alternate 

form of treatment. Only three cell lines were used, and of them, two were positive for 

UL-97.  Indicating that HCMV may not be a direct causal factor for cancer but may play 

a role in co-modulating cell cycle progression. This role may be due to 

hyperphosphorylation of pRb, up regulating cyclin E, and inhibiting cyclin D. The 

mechanisms by which HCMV increases cell growth needs to be explored further.  

Importantly the presence of UL-97 in the cell lines shows promise as a target for the drug 

Ganciclovir.  Ganciclovir was shown, in this study, to significantly reduce cellular 

proliferation in treated cells.  Most recently Ganciclovir is being used in a clinical trial for 
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tumors, which have been transduced with human herpes simplex thymidine kinase. This 

project supports the suggestion that HCMV may play an important role in 

oncomoduclation, and could be the target of many guanosine analogues already presently 

used for Herpes infections.  

 Further investigations will be needed to explore expression patterns in primary 

tumor samples. Tumor cells are known to show severe changes in protein expression 

patterns after three passes in culture.  The Upper Michigan Brain Tumor Center has 

several GBM tumors frozen in liquid nitrogen, and the experiments provided above 

would be suitable for identifying UL-97 in the tumor samples.  Furthermore, 

identification of Ganciclovir-triphosphate should be identified; this could be identified by 

high-pressure liquid chromatography in collaboration with Northern Michigan 

University’s chemistry department.  This project has created a new approach to 

understanding the role of HCMV in GBMs, and has created a strong basis for future 

projects.  
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