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ABSTRACT

SEED BANK DYNAMICS WITHIN A METAPOPULATION FRAMEWORK: A STUDY OF
AN ANT-DISPERSED SPECIES

By

Emily E. Sprengelmeyer

Questions. How do spatial and temporal landscape dynamics, including past disturbance, affect
the distribution of the seed bank of an early-succession species? Do these factors ultimately
influence above-ground subpopulation persistence within a metapopulation framework?
Location. Granite-gneiss outcrops within mixed hardwood-conifer forest in Michigan, USA
Methods. We studied the distribution of the Capnoides sempervirens seed bank on outcrops and
within the forest matrix in relation to landscape and physiographic (n = 517). Above-ground
plant persistence (n = 144) in relation to landscape and habitat variables was also investigated.
Results. Seeds were found up to 175 m from outcrops, but seed presence generally decreased
with increased distance to outcrops. Areas of recent fire had both increased abundance and
greater frequency of occurrence of seeds. Seed presence on outcrops shared no relationship with
adult plants, but instead corresponded to increased groundcover at sampling locations.
Conclusions. Results indicated seed distribution is not random but reliant upon spatial and
temporal predictors. Increased seed presence in relation to adult-plant habitat demonstrated seed
bank distribution has some dependence on distance from source populations and primary
disperser activity, but the presence of seeds within the greater forest matrix also indicated
reliance on landscape, physiographic, or disturbance-related factors. Seed distribution has the
potential to influence subpopulation persistence.

Keywords. Seed bank; Metapopulation; Disturbance; Dispersal mechanisms; Capnoides
sempervirens
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INTRODUCTION

An examination of metapopulations dynamics includes understanding processes affecting
extinction and colonization probabilities for interacting subpopulations (Hanski & Gilpin 1991).
To better understand plant population dynamics within a metapopulation framework, it is
essential to first examine the spatial and temporal landscape processes that ultimately influence
seed distribution and longevity. The distribution of plant subpopulations depends on habitat-
specific parameters such as patch size, distance between patches and seed dispersal ability
(Jacquemyn et al. 2003). Although the presence of a viable seed bank may largely influence
colonization and extinction probabilities, examinations of plant metapopulations often fail to
consider the distribution of the dormant seed bank (Bossuyt & Honnay 2006; Husband & Barrett
1996; Plue & Hermy 2012). Suitable habitat patches in heterogeneous landscapes may be finite
and vary spatially. The amount of linked habitat may decrease or increase with time (Hanski
1999). Within a plant metapopulation framework, habitat connectivity and the ability to colonize
or recolonize suitable habitat may depend on the distribution of a persistent seed bank
(Alexander et al. 2012; Eriksson 1996, Freckleton & Watkinson 2002; Husband & Barrett 1996).
Because habitat connectivity is crucial to subpopulation persistence, a more complete
understanding of the spatial and temporal distribution of dormant seeds provides much needed
insight into the mechanisms influencing plant population dynamics in heterogeneous landscapes.

The traditional metapopulation model applied to plants assumes random dispersal of
seeds into habitats classified as suitable or unsuitable for germination (Etienne 2000; Levins
1969). Traditional models may not appropriately capture the spatial and temporal distribution of

dormant seeds, especially those seeds displaying persistent dormancy strategies. Mechanisms



leading to the formation of persistent seed banks within unsuitable habitat create remnant
populations in which systems of local populations are maintained despite a local population
growth rate <1 (Eriksson 1996). Non-random distribution of seeds as well as the presence of
remnant populations of viable seeds may inhibit the risk of extinction within a variable habitat.

Capnoides sempervirens (L.) Borkh., commonly known as rock harlequin or pale
corydalis, is a biennial forb native to mid-latitudes of North America that forms persistent
populations on rock outcrops. C. sempervirens also forms short-lived populations that emerge
from the seed bank after canopy-altering fire (Reznicek et al. 2011). Seed banks also form in
cracks and small pockets of soil on rock outcrops; thus, C. sempervirens has seed banks that are
both coupled and uncoupled to disturbance (sensu Grubb 1988).

Above-ground plants are most frequently found 1-2 years post fire, but are less common
three years after fire. Previous work indicates C. sempervirens seeds, which are primarily ant-
dispersed, remain viable within the soil seed bank up to 80 years post-fire (Fyles 1989). Seeds
have also been documented in old-growth forests some distance from potential source
populations (Leckie et al. 2000). Factors beyond seed distribution in relation to disturbance and
myrmecochory are unknown, but findings by Fyles (1989) and Leckie et al. (2000) imply C.
sempervirens maintains remnant populations of dormant seeds. Within these parameters, the
distribution of above-ground plants, combined with complexities associated with predictors of
the spatial and temporal distribution of dormant seeds, make C. sempervirens a suitable species
to examine from a metapopulation perspective.

Biotic factors related to dispersal may contribute to non-random, clumped seed bank
distribution. These clumped seed patterns are often mediated by habitat-specific animal

dispersers that direct seeds to areas where conditions are favorable for survival and/or



germination (Howe & Smallwood 1982; Husband & Barrett 1996; Purves & Dushoff 2005).
Watt (1947) identified seed dispersers’ habits as an important factor in determining seed
distribution and the ability for subsequent seedling establishment.

Ants transport seeds of myrmecochorous species to nests to feed on eliaosomes.
Eliaosomes are lipid-rich deposits found on seeds and provide a source of nutrition for adult ants,
or more often, ant larvae. In a review of myrmecochory Gémez and Espadaler (1998) reported
mean dispersal distance of myrmecochorous seeds by ants was 0.96-m, but farther distances have
been reported (Alba-Lynn & Henk 2010; Cain et al. 1998). Because ant nests are located under
rocks or within stumps and logs, seeds of myrmecochorous species often escape detection by
seed predators (Alba-Lynn & Henk 2010; Heithaus 1981). Seeds transported into nests deep
within the soil or within cracks in rocky substrate could also benefit from increased protection
from intense fire heat (Hanzawa et al. 1988).

Seed dispersal mediated by mammals and birds results in even greater dispersal distances
away from source plants (Chambers & MacMahon 1994; Rogers & Applegate 1983; Stiles
1980). Other mechanisms, including secondary dispersal by wind and water, may increase the
distance seeds are dispersed from parent plants and further complicate seed distribution patterns
(Egawa & Tsuyuzaki 2013; Shimono et al. 2006; Vander Wall et al. 2005).

The benefits of long-distance seed dispersal depend on landscape characteristics as well
as patch area and subpopulation size (Dostal & Pugnaire 2005). Although long-distance dispersal
may increase the probability of connectivity between suitable habitat patches, this advantage is
not evident in landscapes where suitable habitat has a clumped distribution. Aggregation of
suitable habitat patches increases the probability that seeds will be lost within the unsuitable

habitat matrix (Johst et al. 2002).



Gaps created by fire represent newly opened habitat suitable for germination of early-
successional species and influence seed bank formation and above-ground vegetation distribution
(Ahlgren 1960; Turner et al. 1997). Because fire occurrence is often stochastic and suitable
habitat conditions ephemeral, long-term seed dormancy strategies are advantageous for early-
successional plants (Leckie et al. 2000; Marks 1974; Olano et al. 2002; Venable & Brown 1988).
In fire-prone habitats, natural fire regimes clear understory and canopy vegetation creating
suitable light conditions for germination, or fire may induce germination of seeds requiring
intense heat to break seed coats (Ahlgren & Ahlgren 1960; Baskin & Baskin 1998). Population-
level benefits of fire in relation to the seed bank are well-described (see Ayre et al. 2006; Dolan
et al. 2008; Uchiyama et al. 2006). Factors that influence the fate of post-disturbance seed banks
are less well-understood. As successional processes change habitat conditions, remnant seed
populations may become isolated within a greater unsuitable habitat matrix, or could potentially
be connected to plant subpopulations in suitable habitat by active seed dispersal or future
disturbance.

In addition to biotic and disturbance-related factors, the distribution of seeds varies
spatially and temporally depending on habitat-specific influences (Parker et al. 1989, Pickett &
McDonnell 1989). Factors specific to landscape and persistent, plant subpopulations include
distance of seeds to source individuals, successional stage, topography, and soil characteristics
(Ashton et al. 1998; Beatty 1991; Parker et al. 1989, Pickett & McDonnell 1989; Putz 1983).
Litter accumulation as a result of successional processes has been shown to decrease seed
emigration and increase seed retention (Egawa & Tsuyuzaki 2013). Soil depth, vertical
movement, and moisture levels influence seed bank structure, dormancy time, and germination

rates (Benvenuti 2007; Benvenuti et al. 2001; Bonis & Lepart 1994).



The objectives of this study were to (1) examine how the distribution of the seed bank of

the early-succession species C. sempervirens varies spatially and temporally in relation to

landscape heterogeneity and (2) uncover how factors influencing seed distribution ultimately

influence above-ground subpopulation persistence. The question addressed in this study was:

how does primary dispersal by ants combined with landscape factors and past fire occurrence

influence the distribution of C. sempervirens seeds? | addressed this question with the following

hypotheses and predictions (Fig. 1):

Primary seed dispersal by ants should create a seed bank within suitable habitat on rock
outcrops and a restricted “shadow” in the forest immediately surrounding the rock
outcrops. If input into this shadow is relatively continuous and not dependent on fire, this
shadow should be more enriched in C. sempervirens seeds than soil in other parts of the
forest matrix.

The abundance of C. sempervirens in the seed bank on rock outcrops and in the adjacent
forest “shadow” is related to the physical size/area of the rock outcrop and/or the current
C. sempervirens plant density. If rock outcrop habitat is suitable for more above-ground
C. sempervirens plants, then the seed bank will be more enriched in the immediate
surroundings.

If past fires influence the distribution of seeds, | expected seeds to be present at greater
distances from rock outcrops into the surrounding forest matrix. Patterns would likely
reflect both spatial and temporal characteristics of the fire history and seed bank
longevity.

Landscape features (topography, soil depth, and land cover types) influence secondary

dispersal mechanisms as well as seed retention and viability. | expected seeds to be found



at greater distances into the forest matrix in relation to topography and also expected seed

presence to be greatest in areas more hospitable for seed bank persistence.



METHODS

Study area

The 4512-ha study area is located near the south shore of Lake Superior, 11-15 km
northwest of the city of Marquette in Michigan’s Upper Peninsula (Fig. 2). Physical features of
the study area include uplands with Archean granite-gneiss outcrops, wet upland depressions,
streams, and ponds. Soils in much of the study area are classified as well-drained spodosols.
Elevation ranges from 184-372 m.

In total, the area contains 338 rock outcrop areas with open canopy conditions suitable
for above-ground C. sempervirens. The rock outcrop area ranges from 30-13,461 m? with
distances between outcrops ranging 10-412 m. Outcrop seed banks and above-ground C.
sempervirens plants are commonly found in areas with shallow soil accumulation such as
crevices formed by freeze-thaw action, small depressions, or mats dominated by moss, fruticose
lichens, and xerophytic vegetation (e.g. Arctostaphylos uva-ursi, Vaccinium angustifolium,
Gaylussacia baccata, and Danthonia spicata).

Approximately 80% of the landscape surrounding outcrops is classified as northern
hardwood or hardwood-conifer forest, dominated by aspen (Populus spp.), white birch (Betula
papyrifera), sugar maple (Acer saccharum), red maple (Acer rubrum), balsam fir (Abies
balsamea), and scattered stands of mixed pine (Pinus resinosa, P. strobus, P. banksiana). Eight
post-fire stands (<10-ha) ranging in age from 3-76 years were identified within the study area
(Fig. 1). The rest of the study area was dated by examining increment cores from canopy trees
and determined to be dominated by 85- to 120- year-old second growth forest, with a mixture of

older remnant pine and hemlock (Tsuga canadensis).



The climate is highly modified by Lake Superior and characterized by cold, snowy
winters and warm summer. The mean monthly temperature range from a maximum of 24.6° C in
July to a low of -5.4° C in January. Temperature extremes range from a minimum of -35° C to a
maximum of 37° C. Mean precipitation for the area is 90.5-cm with 52% occurring April -
September. Mean snowfall for the area is 518.2-cm. The mean annual growing season is 75 days.
Site selection and sampling design

Outcrops and the approximate boundaries of the eight burn sites were digitized using
ESRI ArcMap 10.0 software. The boundaries of recent burns (< 6 years) were visually estimated
in the field. The boundaries and approximate years of fire occurrence for burn sites > 6 years
were field-checked by collecting increment cores near the base of >10 (depending on burn area)
aspen, paper birch, and/or jack pine, which were most likely to establish within a few years of
the fire. | also collected increment cores from any remnant pines found within burn areas to
examine any sudden growth “releases” following canopy-altering fire. Fire years were estimated
from the maximum ages of post-fire trees, and refined to an exact year based on release dates.

A total of 324 random seed bank sampling points were generated in upland habitat in the
closed forest matrix. Points were located 0-1269 m from rock outcrops and were located at least
10 m apart. Because the post-fire stands were fairly small and inadequately covered by the initial
sampling design, | sampled 15-30 additional random points within each of these burns for a total
of 165 seed bank sampling points. The number of points sampled within each burn depended on
the area of the fire. These samples were used to examine trends in seed bank abundance with
increasing stand age.

Rock outcrops were sampled separately from the forest matrix. | randomly sampled 144

of the 338 outcrops to estimate the abundance of flowering and rosette C. sempervirens.



Samples from the seed bank were also taken from 28 of the 144 outcrop sites. These samples
were used to see whether persistent seed banks form on rock outcrops, and, if so, what factors
influence the abundance of C. sempervirens seed.
Sampling procedures

Forest matrix seed bank

The general approach for collecting and processing seed bank samples followed
Mladenoff (1990). The soil core dimensions were 5-cm in diameter by 10-cm deep. Eight cores
were collected in each of the cardinal and sub-cardinal directions, 1-m from each sample point.
Average litter and soil depth was calculated from 8 measurements taken adjacent to core
locations. Litter was compacted by a 22-g washer and measured from top to soil surface. Soil
depth was operationally defined as the depth a 6-mm diameter steel rod could be pushed into the
soil before encountering rock.

The viable C. sempervirens seed bank was assessed by seedling emergence. The 8
samples from each random point were pooled for a total soil volume of roughly 2.75 liters. This
soil was spread into plastic trays and covered with a light layer of sphagnum moss (Mladenoff
1990). Trays were watered every 12 hours and kept in a greenhouse with a 12-hour light/12-
hour dark cycle. Approximate daytime temperature was 29°C and nighttime temperatures
ranged from 10 - 18°C. Six control trays of a sphagnum and sterilized soil mixture were also
placed in the greenhouse to detect any contamination. Initial trials indicated C. sempervirens
seeds germinated within 5-14 days after placement in the greenhouse. Based on this observation,
any un-germinated areas of the trays were stirred after 21 days. The total number of C.

sempervirens seedlings were identified and counted for each tray after 35 days.



Above-ground subpopulations and outcrop seed bank

C. sempervirens plants on outcrops were sampled from July through September, 2013.
The coordinates of each sampling point served as the center of a 10-m radius plot. Within each
plot, I counted the total number of flowering and rosette C. sempervirens plants. I also counted
the total number of seed pods for plants that had gone to seed. The percent-cover of bare rock
and groundcover (vegetative, litter, and bare soil) was visually estimated. Seed bank samples
were also taken at 28 outcrops. The coordinates of each outcrop point served as the center of a 2-
m radius sampling plot. Because soil is was limited on outcrops, soil seed bank samples were
collected by filling eight soil cores from any sources of soil in rock cracks, crevices, and shallow
depressions within 2-m of the sampling point.
Landscape and physiographic data

Values for addition variables were extracted from GIS layers for each sampling point
(Table 1). The area (ha) of each rock outcrop and the distance (m) to nearest outcrop for seed
bank sample points were determined using ESRI ArcMap 10.0 software. Land cover variables
were extracted from a 2001 Upper Peninsula Land Cover IFMAP/GAP map (30-m resolution).
The original data set containing 30 classes was reclassified to include five classes: conifer,
hardwood, hardwood/conifer, herbaceous, and non-vegetative. Soil orders and drainage classes
were imported from the Marquette County 2000 SSURGO soil maps.

Physiographic variables, including elevation, slope, and aspect, were derived from a 10-
m DEM. GIS layers for hillshade, flow accumulation, and curvature were also extracted from the
DEM and used to construct a modified version of the Iverson et al. (1997) integrated moisture
index (IMI). The IMI was used as an indicator of moisture accumulation. Moisture accumulation

is considered to be higher in areas with minimal solar accumulation (hillshade), low slopes (flow
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accumulation), or in depressions (curvature) (Iverson et al. 1997). Hillshade, flow accumulation,
and curvature accounted for 50%, 35%, and 15% of the IMI, respectively (Yost 2008).
Outcrop and land-cover layers were converted to ASCII format and imported into

FRAGSTATS (version 4.0, www.umass.edu/landeco/research/fragstats/fragstats.html) to extract

several landscape metrics. Moving window analysis was applied to the percentage of landscape
in rock outcrop at a scale of 100-m radius. In this procedure, the percentage of landscape in rock
outcrop is calculated for a 100-m radius window that moves one pixel at a time across the entire
study area, providing a continuous map of the outcrop “neighborhood.” This variable was used
to test whether the presence of more or larger outcrops in an area might be a better predictor of
seed bank abundance than simply distance to the nearest outcrop. Results from moving window
analyses and all other GIS-derived variables were tabulated for each sample point.
Data analysis

Traditional regression models assume linear or simple non-linear response, but these
models are often unrealistic for modeling response to environmental gradients. Based on these
limitations, | used nonparametric multiplicative regression (NPMR) in HyperNiche (version 2.0,
MjM Software, Gleneden Beach, OR, US) to allow for the possibility of nonlinear relationships
between response and predictor variables. NPMR uses a smoothing function with leave-one-out
cross validation to estimate response variables (Berryman & McCune 2006). Both binary and
guantitative models were constructed using a local mean estimator with Gaussian weighting of
seed and above-ground plant response in relation to predictor variables. Binary model quality
was assessed by log likelihood ratio (logB) which expresses model improvement over a naive
model. A logB > 0 indicates the fitted model is better than the naive model while a negative logB

indicates cross-validated estimates from the fitted model are worse than the naive model (Binder
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& Ellis 2008). Quantitative models were assessed by a cross-validated R? (xR?) The xR? excludes
each data point from the basis for the estimate of the response at that point, so in the event the
model is weak, the xR? is negative (Berryman & McCune 2006). NPMR does not fit coefficients
in a fixed equation. Instead NPMR fits tolerances used in the Gaussian smoothers (Berryman &
McCune 2006). A scree plot of xR? or logB versus the number of variables was used to select the
final model. Significance of models was evaluated by Monte Carlo permutation tests which
compared the estimated response variable to an average estimation calculated by 100 random
permutations among the data set.

Time since fire was only reliably determined for a few small stands. Although these
stands were targeted for additional sampling of their seed banks, I analyzed trends in seed bank
abundance in relation to fires separately using non-parametric correlation analysis. In addition to
NPMR analysis, | also further examined seed bank abundance in relation to nearest above-
ground subpopulation variables using non-parametric correlation analysis. Mean seedling
abundance from forest seed bank samples was compared to mean outcrop seedling abundance

using a Mann-Whitney U independent-samples test (IBM SPSS Statistics, version 21).
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RESULTS

C. sempervirens seeds were present in 111 of the 517 seed bank samples: 90 samples had
1-10 seedlings present, 19 contained 11-30 seedlings, and 2 samples had >30 seedlings. 14.0%
(n = 324) of forest seed bank samples contained C. sempervirens seedlings compared to 39.2%
(n = 28) of outcrop seed bank samples. The outcrop seed bank had a mean abundance of 6.2 (+
3) seedlings, which was significantly greater than the mean abundance of C. sempervirens
seedlings from forest seed bank samples (1.1 £0.3) (U =3.25; n;=324, n,=28; p= 0.001).

Of the 144 outcrops sampled, 94 contained C. sempervirens plants within sample plot
boundaries. C. sempervirens had a mean density of 0.04 (0.006) plants/m? on outcrops, with
86.6% of plants in flower and the rest in vegetative rosettes (Table 2).

Forest seed bank spatial and temporal patterns across the landscape

A nonparametric regression model based on the binary response of seed presence or
absence in relation to landscape and physiographic predictors was selected from a stepwise free
search. The model indicated distance from nearest rock outcrop and elevation best explained the
presence of C. sempervirens seeds within the forest matrix (logB = 11.9, p = 0.01) (Table 3).

The probability of finding C. sempervirens in the seed bank declined exponentially with
distance from rock outcrop (Fig. 3). Although the model predicted a slight probability of finding
C. sempervirens in the seed bank beyond 200 m, the actual maximum distance detected was 175-
m from the outcrop. No seedlings were detected at distances 176 - 1269 m from nearest outcrop.
I isolated just the first 70-m from rock outcrops in a model to improve the resolution of trends
immediately surrounding the outcrops. Highest seed abundance occurred in the 0-20 m range,

(Fig. 3 inset), while seed presence was greatest up to 40-m from outcrops. Although seeds were
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more commonly found up to 40-m, seedling abundance in the 0 to 40-m forest buffer shared only
a modest positive correlation with plant abundance on the nearest rock outcrop (r = 0.215, p =
0.016, n = 111) and nearest outcrop area (r = 0.205, p = 0.021, n = 111).

The probability of finding C. sempervirens in the seed bank also increased steeply with
elevation (Fig. 4). Areas within the forest matrix that surround expansive rock outcrop
complexes—most located at elevations > 300 m—had the highest probability of seed occurrence.

Trends in seedling abundance with time since fire were highly variable, but several of the
most recent fire sites clearly had seed banks enriched with C. sempervirens (Fig. 5). Seed
abundance in the forest seed bank shared a negative correlation with stand age (r =-0.409, p <
0.001, n = 165). Although C. sempervirens was not detected in the 76-year old burn site, C.
sempervirens was present in 20% of the plots in the older forest matrix, which was
predominantly 80 to 120-year-old hardwoods.

Outcrop plant populations and their seed banks

The presence of C. sempervirens in the seed bank within rock outcrops was also
modelled as a function of rock outcrop size, density of C. sempervirens plants, groundcover
predictors, and various landscape physiographic variables (Table 1). The only variable identified
in the outcrop seed bank model was the percentage of vegetative groundcover (logB = 1.4, p =
0.01) (Fig. 6). The likelihood of finding C. sempervirens in the seed bank increased when the
percentage of total groundcover exceeded 60% (Fig. 7). The abundance of viable seeds within
the outcrop seed bank shared no significant relationship with plant density (r =-0.149, p = 0.402,
n = 28). Indeed, seeds were present in the absence of above-ground plants, while sites with large

plant subpopulations often displayed no discernable C. sempervirens seed bank.
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Similar to the seed bank model, percentage of groundcover was the best variable that
explained plant presence-absence (logB = 5.0, p = 0.01) (Fig. 8) and plant abundance (xR? =
0.07, p = 0.02), although the association was weak in both models. Unlike the seed bank, which
had an optimum at >60% groundcover, probability of plant occurrence peaked at 10-30%
groundcover, declining thereafter. Likewise, plant abundance peaked at intermediate levels of

groundcover, with an optimum of 6-50% (Fig. 9).
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DISCUSSION

Plant and seed bank dynamics on rock outcrops

Both plant abundance and seed bank occurrence on rock outcrops were best explained by
the patchiness of the groundcover. Not surprisingly, plants were most abundant at intermediate
levels of groundcover, which describes the small islands of soil and lichen accumulation where
C. sempervirens is often found. In contrast to above-ground plants, seed banks were more
enriched in areas of higher groundcover. These areas form islands within the rock outcrop, and
the more developed ones support scrubby Pinus banksiana and dense patches of Vaccinium spp.,
Danthonia spicata, Diervilla lonicera, and Arctostaphylos uva-ursi. One explanation for the
enhanced seed bank within these islands is that vegetation traps seeds and decreases the potential
for primary or secondary dispersal events (Egawa & Tsuyuzaki 2013; Houle 1990). C.
sempervirens seeds are shade-intolerant and germination is triggered by exposure to direct sun or
soil warming. As long as patches remain open to high light intensity the trapped C. sempervirens
seeds will germinate and ultimately lead more above-ground plants at these locations. If
groundcover continues to increase, above-ground plants will be outcompeted and any remaining
seeds contribute to the formation of the persistent seed bank.

Surprisingly, the presence and abundance of seed-bearing C. sempervirens plants did not
dictate patterns in the outcrop seed bank. | assumed that there might be almost continual renewal
of new plants in outcrop edge habitats since the shallow soils and high sunlight conditions appear
ideal for immediate germination; indeed, it seems plausible that persistent seed banks might only
play a modest role in rock outcrop subpopulation dynamics. However, | found that above-

ground C. sempervirens plants were fairly uncommon on rock outcrops; some outcrops totally
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lacked plants even though a persistent seed bank was present, suggesting that opportunities for
seed germination occur sporadically. In edge habitat and smaller groundcover patches ideal for
above-ground C. sempervirens plants, seeds may also be easily lost—washed or blown away or
dispersed by ants into rock cracks and/or more densely vegetated islands. In this study, |
observed ants transporting seeds from parent plants to nearby cracks in rock. Sporadic seed
germination may follow frost heaving or erosion events that dislodge buried seeds. The
formation of persistent seed banks on rock outcrops suggests that extinction events for plants on
outcrops may be short-lived.
Forest seed bank dynamics: reconciling the roles of dispersal vectors and fire

Dispersal into the forest matrix

The C. sempervirens forest seed bank was not random or uniform; rather it was related to
time since last fire, proximity to persistent source populations on rock outcrops, and elevation.
Limited seed dispersal into the greater forest matrix and long intervals between large, stand-
altering fires hint that seed bank patterns away from rock outcrops in the greater forest matrix
may develop somewhat predictably over very long time periods.

Seeds within the forest seed bank were found in greater abundance within close
proximity to outcrops and potential parent plants. The enrichment of the seed bank in the
immediate surroundings of a rock outcrop is consistent with highly localized ant dispersal.
Studies by Andersen (1988) and others (Hughes & Westoby 1992; Willson 1993; Alba-Lynn &
Henk 2010; Gomez & Espadaler 1998) indicate most ant-dispersed seeds are found in close
proximity to source plants. Typical mean dispersal distances are 2-m or less from parent plants

(Alba-Lynn & Henk 2010; Gomez & Espadaler 1998), but observations of dispersal of seeds to
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distances greater than 10-m have been reported for other myrmecochorous species (Andersen
1988).

Seeds dispersed within close proximity to parent plants may have increased probability
for further secondary seed dispersal (Denham et al. 2009; Lamont et al. 1993). Seeds originally
landing in/transported to exposed rock areas that lack physical barriers, such as soil or litter, are
exposed to rainfall, wind, or water from snow thaw. These factors are well-known secondary
dispersal mechanisms (Egawa & Tsuyuzaki 2013). Many of the rock outcrops in the study area
have smooth, steep sides that likely facilitate secondary dispersal into the nearby forest matrix.

The distribution of seeds in relation to distance from potential parent plants partially
supports the ant dispersal hypothesis, but does not explain the presence of seeds within the
greater forest matrix. Although presence of seeds generally decreased with increased distance
from outcrops, C. sempervirens seeds were found up to 175-m from potential source populations
indicating that factors beyond myrmecochory explain seed presence.

Another potential dispersal vector of C. sempervirens is the snowshoe hare (Lepus
americanus), which has not been previously reported. | observed hare herbivory of C.
sempervirens, including tops that probably had seed pods, at many rock outcrops in the study
area. Hares are a potential endozoochorus species. Izhaki and Ne'eman (1997) found 43% of
randomly collected hare pellets contained viable Retama raetam seeds, and they proposed that
hares might be an important long-distance disperser (see also Cosyns et al. 2005). Small seeds,
similar to those of C. sempervirens, are most likely to remain viable in hare pellets (Pakeman et
al. 1999). An examination of the viability of C. sempervirens seeds after digestion by hares is
needed to understand the influence of endozoochory on the distribution of seeds across the

landscape.
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Any long-distance dispersal event would tend to blur the effects of source populations. A
good example of this is Aralia hispida, a seed bank species that also forms persistent populations
on rock outcrops but also emerges en masse after fires in forest habitat (Pratt 2003). Pratt (2003)
found that the distribution of forest seed bank was unrelated to distance from source populations
on outcrops and attributed the widespread occurrence of Aralia hispida to primary seed dispersal
by mammals, which included black bears (Ursus americanus) and foxes (Vulpes vulpes, Urocyon
cinereoargenteus).

Seed distribution in relation to landscape

Landscape features and soil characteristics are known to influence seed bank patterns.
Elevation was an important predictor of seed bank presence in my study area. One explanation
for this trend is larger source populations that thrive on granite knobs and exposed ridges. These
areas are dominated by scrubby, xerophytic vegetation and pines and probably have increased
susceptibility to lighting-induced fire (Albert 1995). Frelich and Lorimer (1991) reported 11
lighting-induced fires occurred during the extremely dry summer of 1976 in the Porcupine
Mountains region of Michigan’s Upper Peninsula. Similar to many of the burn sites within my
study area, most of these fires were small and did not reach the canopy, but instead, smoldered in
the duff layer (Frelich & Lorimer 1991). In my study area, large expanses of rock with
intermittent areas of shallow soil and litter prevent deep root penetration and could allow ground
or surface fires to affect canopy vegetation. Based on these scenarios, small, lighting-induced
fires would not only increase suitable habitat conditions for above-ground C. sempervirens but
would also lead to continual inputs into the surrounding seed bank.

In addition to increased rock habitat for above-ground plants, the shallow, dry, well-

sorted soils in these areas most likely increase the probability that seeds will remain viable over
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long time periods. Moore and Wein (1977) demonstrated that density of the viable seed bank
decreased in wet, lowland sites. Seeds dispersed to lower elevations areas may encounter deeper,
more hydric soils. These seeds may not receive appropriate germination cues or may be
susceptible to factors that increase seed mortality (Augspurger & Kelly 1984; Schafer & Kotanen
2003). The increased presence of C. sempervirens seeds at higher elevations does not necessarily
imply that seeds are not dispersed to low-lying areas. The absence of seeds in these areas may
actually represent inhospitable conditions that decrease seed viability.

Seed bank creep model

Observations of C. sempervirens seed abundance the local seed bank extends <20 m
from outcrops for this species. In the event of a stand-altering fire encompassing outcrop habitat,
the open-canopy conditions would induce germination of seedlings from this near-outcrop seed
bank. The seeds produced from these plants would allow the seed bank to expand, or creep, < 20-
m further away from the original local seed bank. In the event of successive fires, the creeping
seed bank could encompass outlying seeds dispersed a greater distances by wind, water, or
zoochory. Eventually, depending on the size and return interval of fires, the creeping seed bank
could affect outcrop subpopulation dynamics by temporarily linking patches or creating
overlapping seed shadows.

The viability of the seed bank creep model (Fig. 10) is dependent upon seed bank
longevity being greater than the fire return interval. Similar to Fyles (1989), | demonstrated that
seed banks of this species persist for >80 years, but an upper limit could not be determined in
this study. Historic intervals for stand-replacing fires in the mixed-pine/hardwood forests of the
Upper Great Lakes Region range from 250-400 years (Cleland et al. 2004; Stearns 1949).

Frelich and Lorimer (1991), however, calculated that disturbances, including surface and light to
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medium intensity canopy fire, have a return interval of 52-119 years in Michigan’s Upper
Peninsula. These more-frequent disturbances may work in connection with larger, less-frequent
fires to induce seed bank creep into the forest matrix. If disturbance induces the seed bank to
creep in 20-m increments into the forest matrix, and small, localized fires occur, on average,
every 86 years, it would take approximately 9 successive fires, or approximately 725 years for
seed to be present 175-m from the original outcrops. In this time, the creeping seed bank would
also encompass outlying seeds dispersed by wind, water, or zoochory and maintain the presence

of seeds in the forest matrix.
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SUMMARY AND CONCLUSIONS

This study provided much needed insight into the mechanisms influencing seed bank
formation and distribution and above-ground subpopulation persistence for an early-succession
species within a variable landscape. Results from NPMR models indicated both seed and above-
ground plant distribution are not random but rely upon spatial and temporal predictors. Increased
seed presence in relation to plant habitat demonstrated the forest seed bank distribution has
depends strongly on distance to source populations and primary dispersal activity, but the
presence of seeds within the greater forest matrix also indicates reliance on landscape,
physiographic, or disturbance-related factors. Dissimilar to the forest seed bank, the formation
and persistence of a C. sempervirens seed bank, along with above-ground subpopulation
persistence, on outcrops was best explained by temporal predictors associated with successional
processes. Depending on seed bank longevity and the fire return interval, primary and secondary
dispersal mechanisms influencing forest seed bank distribution may also influence subpopulation
persistence as outlined in the seed bank creep model. Results from this study could lead to better
predictions of the distribution of the dormant seed bank for other early-succession species and
also provide an understanding of how this distribution, along with other habitat-specific
parameters, have the potential to influence plant metapopulation dynamics at a landscape scale.
The approach used in this study signifies the importance of incorporating spatial and temporal

aspects of seed distribution in future population studies within a metapopulation framework.
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Fig. 1. Hypotheses and predictions for the distribution of C. sempervirens seed bank. A) Seed
distribution based solely on localized ant dispersal would create a seed bank on rock outcrops
and a restricted shadow in the forest immediately surrounding the rock outcrops. If input into this
shadow is relatively continuous, this shadow should be more enriched in C. sempervirens seeds
than soil in other parts of the forest matrix. B) If rock outcrop habitat is larger and more suitable
for more above-ground C. sempervirens plants, then I expected a more enriched seed bank would
be in the immediate surroundings of the outcrop and also farther into the forest matrix. C) If past
fires influence the distribution of seeds, we expected seeds to be present at greater distances into
the surrounding forest matrix. Patterns would reflect fire history, seed bank longevity, dispersal
after recurrent fires. We also expected secondary dispersal mechanisms to be influenced by
landscape features. The presence of seeds would also be related to suitable habitat conditions that
favor seed viability.
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Fig.2. Map of study area located approximately 15 km north of Marquette, MI. Outcrop locations
and fire sites with approximate year of fire are indicated within the figure.
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Table 1. Descriptions of predictor variables used in binary and quantitative forest seed bank
(FSB), outcrop seed bank (OSB), and above-ground plant (AGP) nonparametric multiplicative

regression models.

Pre_dlctor Classification Description Model/s
variable
. _— Measured from surface to bare soil after
Litter depth quantitative (cm) compacting litter with a 22 g washer FSB
Soil depth guantitative (m) Measured from bare soil layer to bedrock FSB
Distance guantitative (m) Distance to nearest rock outcrop FSB; OSB; AGP
Intearated Derived from hillshade, flow accumulation,
moigture index and curvature from 10 m digital elevation FSB; OSB; AGP
model (DEM) (lverson et al. 1997; Yost 2008)
Slope guantitative (°) From 10 m digital elevation model DEM FSB; OSB; AGP
From 10 m DEM, transformed to a linear
L measure of “southwestness” using a modified . .
Aspect quantitative Beers transformation (Beers et al. 1966, FSB; OSB; AGP
Hooten 2001): SWST = cos(A +135*n/180)
Elevation quantitative (m) From 10 m digital elevation model (DEM) FSB; OSB; AGP
Percentage of From moving window analysis (100 m) for
g guantitative (%) land cover classes: rock, conifer, hardwood, FSB; OSB
landscape . .
hardwood/conifer, herbaceous, no vegetation
Percent quantitative (%) ToFaI percent groundcover within plot, visually 0SB: AGP
groundcover estimated at each plot
Above-ground quantitative tha_l number of C. sempervirens present 0SB
plants within each rock outcrop plot
Seed pods quantitative Total number of C. sempervirens seed pods 0SB

present within each rock outcrop plot
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Table 2. Seed bank and outcrop descriptive statistics. Mean (std) and median area and distance to
nearest neighbor for all rock outcrops located within the study area (n = 338). Mean (std) and
median number of flowering and rosette C. sempervirens, mean (std) and median number seed
pods, and above-ground plant percentages represent rock outcrop sampling locations (n = 144).
Percentage of rock outcrops with a persistent seed bank represent outcrop seed bank sampling
locations (n = 28). Forest seed bank statistics represent sampling locations (n = 324).

n Mean (std)  Median

Forest seed bank seedling abundance 324 2.3(0.4) 0
Outcrop seed bank seedling abundance 28 6.2 (3.0) 0
Outcrop area (m?) 338 1173 (179) 428
Outcrop nearest neighbor (m) 338 64.6 (37.8) 56.6
Flowering C. sempervirens per outcrop 144 12.0 (1.6) 4
C. sempervirens rosettes per outcrop 144 1.9 (0.3) 0
Seed pods per flowering plant 144 10.5 (1.0) 8.5
% of outcrops with above-ground C. sempervirens 144 65.3

% of outcrop seed bank samples with C. sempervirens 28 39.2

% of forest seed bank samples with C. sempervirens 324 20.0
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Table 3. Nonparametric multiplicative regression models indicated distance from outcrop,

elevation, and percent groundcover predict the presence of the forest seed bank (n = 324) (logB =

11.9) and rock outcrop seed bank (n = 28) (logB = 1.4) and plant subpopulation (n = 144)

presence (logB = 5.0) and abundance (xR? = 0.07).

Model I?/Zi?;)tr)]liz € \:fiiit();lt:/g Model fit ~ Tolerance  Sensitivity p
poreet seed 55 S(%eiggggs diStoaSt((::erJFl;Oﬁl logB=11.9  67.6 1.1 0.01

elevation 13.2 0.6
Outropseed g Seedings  %ground g1y 75 20 o001
gAr%‘fj‘é%'plantS 144 (Ei'g;‘rt;) i 2(;3::‘0' logB=5.0 8.5 11 0.01
Above- 144 Plants sground- 224 07 85 13 0.02
ground plants (quantitative) cover
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Fig. 3. Probability of seed presence in the forest seed bank in relation to distance (m) from
nearest outcrop using nonparametric multiplicative regression in HyperNiche 2.0 (n = 324).
Insert depicts probability of seed presence in relation to distance up to 70-m from outcrops. The
probability and abundance curves were generated from a scatterplot using a locally weighted
mean. The abundance curve was generated after removing one outlier (63 seedlings) occurring
20-m from a rock outcrop.
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Fig. 4. Probability of seed presence in the forest seed bank in response to elevation (m) using
nonparametric multiplicative regression in HyperNiche 2.0 (n = 324). The smoothed curve was
generated from a scatterplot using a locally weighted mean. The lowest elevation sampled within
the study area was 188-m.
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Fig. 5. C. sempervirens mean seedling abundance in relation to years-before-present since past
fire within the study area (n = 165). Depending on the area of the burn, each fire site contained
15-30 sampling points located at least 10-m apart. The reference column () represents mean
seedling abundance in the surrounding greater forest matrix (n = 324). Years-before-present
since past fire in these areas range 85-125 years. Seedling abundance was determined by
seedling emergence from 2.75 liters of soil collected at each sampling location. The frequency of
seedling occurrence (proportion of samples with seedlings) ranged from 0-77% for the 3-76
year-old fire sites and 15% for samples from 85-125 year-old stands. Frequencies were
proportional to mean seedling abundance for each site.
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Fig. 6. Probability of C. sempervirens seed presence in relation to groundcover for at outcrop
sampling locations using nonparametric multiplicative regression in HyperNiche 2.0 (n = 28).
The smoothed curve was generated from scatterplots using a locally weighted mean.

37



~
o

(o2}
o

al
o

40

30

20

Mean outcrop seedling abundance (std)

10

m o om

0

[ ]
1-5

6-10 11-25 26-50 51-75 76-100
% ground cover

Fig. 7. Mean C. sempervirens (std) outcrop seedling abundance versus percent groundcover
classes at rock outcrop sampling locations (n = 28). Seedling abundance was determined by
seedling emergence from approximately 2.75 liters of soil collected at sampling locations.
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Fig. 8. Probability of the presence of above-ground C. sempervirens plants in relation to percent
groundcover using nonparametric multiplicative regression in HyperNiche 2.0 (n = 144). The
smoothed curve was generated from scatterplots using a locally weighted mean.
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Fig. 9. Mean (SE) above-ground C. sempervirens abundance in response to groundcover classes
within sample plots at rock outcrop sampling locations (n = 144).
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Fig. 10. Simplified seed bank creep model. A) Local seed rain increases seed presence < 20-m
from outcrop habitat while less-common secondary dispersal events lead to long-distance
dispersal within the greater forest matrix. B) In the event of a stand-altering fire, the seeds

produced from seedling germinated from local seed rain would allow the seed bank to creep in <

20-m increments away from the outcrop and into the greater forest matrix. C) A second fire
increases seed presence < 60-m from the outcrop. In the event of successive fires, the creeping
seed bank would link to seeds dispersed long-distance or neighboring outcrops.
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APPENDIX A

Outcrop sample locations (UTM, NAD 1983, Zone 16), area (m?), adult C. sempervirens

abundance, and seed pod abundance (per 10 m radius plot).

. . Area Adult Seed pod . . Area Adult Seed pod

ID Easting  Northing (m2) abundance abundance ID Easting  Northing (mz) abundance abundance
1 464317 5161272 781 23 102 46 463943 5162367 335 4 91
2 464414 5160961 3750 0 0 47 463871 5162386 138 5 46
3 464514 5160940 2164 54 1020 48 463625 5162360 734 0 0
4 464641 5161033 438 22 211 49 463893 5162387 128 10 686
5 464596 5160792 604 0 0 50 463793 5162465 220 52 562
6 464538 5161010 1537 23 355 51 463659 5162442 103 0 0
7 464350 5161030 341 5 67 52 463578 5162412 179 40 473
8 465536 5160957 385 3 24 53 463654 5162520 83 0 0
9 465395 5160984 484 5 112 54 462836 5161675 492 37 210
10 465347 5160988 231 34 798 55 462713 5161290 5000 0 0
11 465267 5160983 181 19 353 56 462502 5161349 5587 0 0
12 465189 5161077 393 3 21 57 462365 5161341 4175 0 0
13 464983 5161176 704 4 7 58 462423 5161258 428 0 0
14 465120 5161085 842 2 18 59 461997 5161327 807 0 0
15 464993 5161109 610 1 0 60 461953 5161460 492 0 0
16 465011 5161185 232 11 62 61 461589 5161580 5 3 8
17 465053 5161081 2212 96 76 62 462644 5161659 1069 3 11
18 465183 5161112 302 4 155 63 463526 5161688 529 34 250
19 465147 5161218 570 0 0 64 463333 5161648 127 0 0
20 464997 5161371 4446 50 818 65 463347 5161742 1636 0 0
21 464798 5161379 720 4 41 66 463409 5161833 3905 0 0
22 464876 5161405 1560 0 0 67 463457 5161839 276 32 311
23 464727 5161548 245 12 120 68 463497 5161711 172 13 91
24 464772 5161395 215 0 0 69 463442 5161616 289 9 183
25 464721 5161486 5309 0 0 70 463651 5161848 6365 0 0
26 464511 5161333 294 1 40 71 464104 5161195 220 34 505
27 464738 5161388 349 0 0 72 463958 5161227 754 10 150
28 464917 5161384 152 24 608 73 464523 5161434 13461 37 424
29 464592 5161297 917 13 220 74 464544 5161570 191 13 266
30 464926 5161185 215 0 0 75 464525 5161541 172 13 350
31 464929 5161213 60 0 0 76 464464 5161694 11432 7 103
32 464328 5161336 268 41 343 77 464100 5162126 10617 30 618
33 464396 5161395 198 98 1430 78 464210 5162097 216 0 0
34 464512 5161261 3058 1 67 79 464283 5162125 214 14 280
35 464466 5161383 43 36 481 80 464371 5162082 105 0 0
36 464263 5161234 523 23 464 81 464012 5162991 1814 0 0
37 464211 5161211 230 10 178 82 463826 5163123 251 37 311
38 464389 5161346 70 7 101 83 464072 5162928 402 0 0
39 464593 5161405 342 0 0 84 464060 5162958 695 1 25
40 463752 5162344 2136 0 0 85 464072 5162996 178 12 104
41 463726 5162309 432 0 0 86 463998 5163099 318 107 564
42 463661 5162316 1052 38 920 87 463899 5163140 136 15 158
43 463705 5162269 158 24 202 88 463960 5163011 545 0 0
44 463800 5162368 161 20 312 89 464053 5163053 253 18 77
45 463901 5162350 246 0 0 90 464012 5163029 934 116 1469
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APPENDIX A, CONTINUED

. . Area Adult Seed pod . . Area Adult Seed pod

ID Easting Northing (m?  abundance abundance ID Easting Northing (m? abundance  abundance
91 463882 5163121 143 15 190 136 461112 5163000 638 24 205
92 463446 5163793 1053 17 151 137 461111 5162873 380 10 196
93 463235 5163782 647 1 59 138 461220 5162947 4613 8 51
94 463314 5163799 904 64 929 139 461148 5163080 661 0 0
95 463599 5163686 1255 19 471 140 461001 5162756 868 0 0
96 463503 5163702 1580 8 92 141 461054 5162819 545 7 197
97 463452 5163657 696 1 44 142 460804 5162825 214 0 0
98 463401 5163719 223 0 0 143 464079 5160587 663 3 53
99 462633 5163588 473 0 0 144 461097 5162812 420 0 0
100 462570 5163530 327 19 164

101 462690 5163566 6221 1 7

102 463018 5163667 1355 0 0

103 463084 5163658 302 34 537

104 462849 5163842 472 11 273

105 462656 5163727 121 3 46

106 462721 5163882 2480 2 56

107 462651 5163806 1041 0 0

108 462634 5163845 3078 0 0

109 463765 5160809 173 9 101

110 463779 5160932 617 3 42

111 463830 5160707 374 0 0

112 463830 5160596 1235 0 0

113 463892 5160768 103 1 11

114 464573 5160699 704 0 0

115 464535 5160733 147 3 66

116 464359 5160767 438 1 10

117 464097 5160404 290 6 17

118 464108 5160261 128 0 0

119 465414 5160960 30 79 1759

120 465448 5160968 127 37 315

121 465483 5160960 49 103 1713

122 465612 5160996 494 24 535

123 465258 5161296 245 8 222

124 465106 5161349 10199 0 0

125 463673 5160986 278 0 0

126 463759 5160897 505 0 0

127 463728 5160915 356 0 0

128 463758 5160962 360 9 51

129 464423 5160712 739 0 0

130 464315 5160791 188 25 483

131 464262 5160787 493 0 0

132 464271 5160840 61 5 78

133 464227 5160987 1075 10 114

134 464207 5160894 130 13 248

135 461030 5163029 2411 0 0
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APPENDIX B

Outcrop seed bank sample locations (UTM, NAD 1983, Zone 16), C. sempervirens seed
abundance (per 0.6 liters soil), adult C. sempervirens abundance, and seed pod abundance (per
10 m radius plot).

. . Seed Adult Seed pod

D Easting  Northing abundance abundance abundgnce
1 465098 5161076 0 96 76
2 464591 5161314 0 50 818
3 464240 5161231 0 0 0
4 463896 5162352 0 24 608
5 463942 5162364 0 13 220
6 463871 5162397 2 23 464
7 463584 5162355 0 0 0

8 463899 5162385 23 4 91
9 461990 5161334 0 5 46
10 461898 5161303 3 0 0
11 461550 5161546 0 10 686
12 463372 5161840 46 0 0
13 463472 5161842 0 0 0
14 464155 5162113 6 3 8
15 464218 5162101 0 0 0
16 464270 5162126 0 32 311
17 464363 5162080 2 34 505
18 463969 5163095 0 10 150
19 463824 5160707 1 7 103
20 461200 5162928 0 30 618
21 461143 5163084 0 0 0
22 464991 5161402 0 14 280
23 464872 5161400 10 0 0
24 464923 5161392 6 116 1469
25 465114 5161326 1 0 0
26 464114 5161188 0 0 0
27 463954 5161242 4 8 51
28 464400 5161720 0 0 0
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APPENDIX C

Forest seed bank sample locations (UTM, NAD 1983, Zone 16) and seed abundance per 0.6

liters soil.
ID  Northing Easting abfne;:nce ID  Northing Easting abljsriie):nce ID Northing Easting abuSne;:nce
1 5162295 463905 0 47 5160572 463971 0 93 5163251 462611 0
2 5162293 463686 0 48 5160784 463992 0 94 5163020 462374 0
3 5162310 463853 0 49 5160619 463932 6 95 5163087 462104 0
4 5162352 463823 0 50 5160598 464061 1 96 5163263 462660 0
5 5162303 463759 0 51 5160580 463959 6 97 5163063 462705 0
6 5162326 463752 0 52 5160791 463982 0 98 5163474 463227 0
7 5162345 463834 0 53 5160648 464078 2 99 5161267 464310 0
8 5162335 463640 0 54 5160606 463985 1 100 5161257 465077 0
9 5162309 463788 0 55 5160543 463943 0 101 5161004 464481 0
10 5162283 463736 0 56 5160539 463895 0 102 5163631 462990 0
11 5161765 463669 0 57 5160761 464024 4 103 5163455 463236 0
12 5161932 463362 0 58 5160810 464479 3 104 5161283 465108 0
13 5161719 463683 0 59 5160925 464677 0 105 5163512 463256 0
14 5161756 463370 2 60 5160872 464539 0 106 5163634 462803 0
15 5161885 463929 0 61 5160838 464686 0 107 5163802 462536 0
16 5161706 463692 0 62 5160829 464462 0 108 5163869 462847 0
17 5161809 463864 0 63 5160846 464527 0 109 5161383 464372 0
18 5161840 463787 0 64 5160955 464562 0 110 5163794 462777 0
19 5161845 463826 0 65 5160912 464631 1 111 5163592 463267 1
20 5161830 463257 0 66 5160856 464544 5 112 5161345 464433 0
21 5161647 463406 0 67 5161027 464661 0 113 5163644 462890 0
22 5161682 463343 0 68 5160827 464671 0 114 5161370 464300 0
23 5161696 463395 1 69 5160797 464496 1 115 5163526 462525 0
24 5161831 463905 0 70 5160973 464686 0 116 5161255 465055 9
25 5161689 463471 0 71 5163178 462144 0 117 5161245 464427 0
26 5161887 463694 1 72 5163215 462146 0 118 5161065 464215 0
27 5161724 463775 0 73 5163159 462439 0 119 5161282 464039 0
28 5161704 463521 1 74 5162919 462391 0 120 5163925 462839 0
29 5161889 463348 0 75 5163168 462529 0 121 5161420 464342 0
30 5161779 463763 0 76 5163099 462304 0 122 5163676 462774 0
31 5161849 463766 0 77 5162841 462749 0 123 5160973 465064 0
32 5161695 463568 0 78 5163074 462532 0 124 5163475 462563 0
33 5161837 463768 0 79 5162800 461952 0 125 5163393 463030 0
34 5161817 463850 0 80 5162868 462025 0 126 5163998 462724 0
35 5160570 463928 0 81 5162945 462328 0 127 5160847 464963 0
36 5160857 464027 26 82 5162991 462231 0 128 5164296 463115 0
37 5160666 464013 1 83 5162976 462696 0 129 5163531 461636 0
38 5160444 464025 28 84 5163194 462523 0 130 5160581 464060 21
39 5160582 463862 6 85 5163064 462501 0 131 5163375 463894 0
40 5160656 464055 0 86 5163361 462469 0 132 5160932 463750 0
41 5160749 464042 3 87 5162980 462551 0 133 5161447 461970 2
42 5160498 463997 2 88 5163191 462375 0 134 5161170 464907 0
43 5160498 463960 4 89 5161960 462115 0 135 5160710 463688 16
44 5160815 464008 30 90 5163028 462116 0 136 5163100 463769 1
45 5160437 464015 0 91 5162531 461123 0 137 5161123 462077 0
46 5160713 464047 0 92 5162773 462718 0 138 5162893 464063 0
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APPENDIX C, CONTINUED

ID Northing Easting abusnec;agnce ID Northing Easting abusnedea(\jnce ID Northing Easting abusnedea(\jnce
139 5161222 464943 0 185 5163784 462773 0 231 5163887 463013 0
140 5163293 463834 2 186 5163856 462912 0 232 5163091 463669 0
141 5160939 463784 0 187 5161277 462043 0 233 5162533 463954 0
142 5161324 462000 1 188 5161230 464024 2 234 5161754 464662 0
143 5160392 464088 1 189 5160498 464090 0 235 5161956 464452 0
144 5162994 463950 0 190 5163759 462851 0 236 5162331 464176 0
145 5161195 465143 0 191 5161091 461998 0 237 5163322 462361 0
146 5163061 463794 0 192 5161554 461665 10 238 5162119 462081 0
147 5161276 464595 0 193 5163675 462751 0 239 5162830 463293 0
148 5162985 463975 0 194 5161262 464920 0 240 5161667 464877 0
149 5163302 462664 0 195 5160373 464033 0 241 5162346 464262 0
150 5160904 463706 3 196 5163220 463762 0 242 5162661 463764 0
151 5160740 463730 0 197 5163162 463738 0 243 5161028 461913 2
152 5161361 464534 2 198 5161507 461620 2 244 5162817 463726 0
153 5162331 463665 0 199 5161020 463618 12 245 5163059 462707 0
154 5162338 463930 0 200 5161122 463617 0 246 5162702 464175 0
155 5160964 463706 0 201 5161364 461890 0 247 5163010 462743 0
156 5160985 463769 0 202 5163584 463495 0 248 5163033 462689 0
157 5161268 462089 2 203 5163642 463301 0 249 5163004 461733 0
158 5161112 464975 0 204 5163819 462911 0 250 5162458 464223 0
159 5162394 463639 0 205 5163078 463693 0 251 5161582 465220 0
160 5161235 464187 0 206 5160525 464012 0 252 5161921 461564 0
161 5163370 463915 0 207 5161430 461581 0 253 5162510 464064 0
162 5161199 464327 14 208 5160579 463894 0 254 5162755 463809 0
163 5162381 463973 0 209 5162697 461351 0 255 5163242 462441 0
164 5163789 463397 0 210 5161099 463606 0 256 5163037 461583 0
165 5161415 461929 0 211 5162758 461380 0 257 5162517 464093 0
166 5160450 464100 1 212 5163842 463623 0 258 5162769 463506 0
167 5161114 463787 6 213 5162893 461488 0 259 5162786 463868 0
168 5162314 463961 0 214 5162885 463885 0 260 5161786 461328 0
169 5162402 463696 0 215 5161076 463720 3 261 5162717 461455 0
170 5161185 465140 1 216 5162771 461199 0 262 5163026 462789 0
171 5162956 461256 16 217 5162787 464104 0 263 5163389 462050 0
172 5160807 463736 0 218 5162317 464248 0 264 5163172 461759 0
173 5162906 461156 0 219 5162693 461119 0 265 5162043 461794 0
174 5163126 463722 0 220 5163215 462599 0 266 5162759 461848 0
175 5162838 461134 0 221 5162786 461398 0 267 5163408 462032 0
176 5162808 461325 0 222 5163561 463674 0 268 5162317 462628 0
177 5163622 462756 0 223 5163976 462863 0 269 5161741 465246 0
178 5163593 463140 0 224 5162756 464175 0 270 5162488 462624 0
179 5162315 463766 0 225 5161063 463743 0 271 5160806 462886 0
180 5161302 464423 6 226 5161599 461671 11 272 5162876 462618 0
181 5161357 464443 0 227 5161656 464838 0 273 5163577 460837 0
182 5161293 464404 63 228 5162923 461508 0 274 5163602 461766 0
183 5163163 463843 0 229 5161552 465016 0 275 5160748 462322 0
184 5160998 463636 9 230 5161087 461893 1 276 5162811 463465 0
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APPENDIX C, CONTINUED

ID Northing  Easting abusnec?:nce ID Northing  Easting abusnec?;nce ID Northing Easting abl;ec?:nce
277 5162149 461208 0 323 5162500 463782 4 369 5160530 463992 6
278 5162448 462202 0 324 5162445 463802 0 370 5160531 464014 0
279 5162050 461281 0 325 5162458 463833 0 371 5160537 464039 0
280 5163828 462044 0 326 5162463 463830 0 372 5160533 463987 6
281 5160801 462533 0 327 5162454 463811 0 373 5160524 464046 2
282 5161009 463090 0 328 5162449 463796 0 374 5160535 464002 4
283 5163516 461800 0 329 5162451 463806 0 375 5160949 464514 8
284 5162196 461557 0 330 5162473 463813 0 376 5160955 464439 2
285 5163632 461493 0 331 5161774 463449 0 377 5160956 464422 0
286 5162770 462940 0 332 5161800 463443 1 378 5160943 464514 28
287 5164205 462263 0 333 5161814 463412 3 379 5160964 464482 1
288 5163399 462023 0 334 5161779 463442 24 380 5160968 464466 3
289 5162411 462886 0 335 5161827 463416 1 381 5160954 464531 20
290 5162429 461670 0 336 5161820 463435 0 382 5160897 464560 16
291 5162399 462075 0 337 5161789 463402 4 383 5160915 464529 0
292 5164372 462728 0 338 5161796 463458 0 384 5160947 464524 3
293 5163662 461249 0 339 5161773 463397 0 385 5160975 464460 5
294 5161692 465274 0 340 5161793 463420 1 386 5160954 464475 0
295 5162631 461698 0 341 5161768 463403 0 387 5160956 464500 0
296 5164285 461026 0 342 5161772 463434 0 388 5160950 464432 2
297 5164154 460902 0 343 5161778 463423 0 389 5160909 464551 2
298 5162276 461625 0 344 5161775 463411 0 390 5160963 464462 1
299 5164175 461740 0 345 5161789 463433 0 391 5160926 464530 7
300 5164153 461436 0 346 5161800 463478 0 392 5161705 464261 0
301 5164161 461150 0 347 5162156 464209 2 393 5161539 463984 0
302 5164214 461413 0 348 5162208 464221 0 394 5161706 464173 0
303 5164336 460262 0 349 5162139 464238 2 395 5161617 464128 0
304 5164340 460708 0 350 5162126 464241 1 396 5161628 464121 0
305 5163758 461124 0 351 5162159 464185 11 397 5161639 464210 0
306 5164112 464160 0 352 5162181 464182 0 398 5161644 464111 0
307 5164218 460566 0 353 5162142 464229 1 399 5161569 464034 0
308 5164155 461602 0 354 5162181 464155 17 400 5161467 464032 0
309 5162610 462531 0 355 5162140 464272 0 401 5161719 464094 0
310 5164210 464186 0 356 5162199 464222 8 402 5161602 464304 0
311 5162760 462307 0 357 5160523 464057 0 403 5161448 463959 0
312 5163755 460811 0 358 5160517 464057 0 404 5161486 464043 0
313 5164266 461711 0 359 5160546 464033 2 405 5161719 464169 0
314 5163988 461182 0 360 5160524 463989 0 406 5161565 464309 0
315 5162477 463807 0 361 5160523 464005 0 407 5161594 464103 0
316 5162485 463774 0 362 5160513 464071 0 408 5161700 463983 0
317 5162465 463800 0 363 5160530 464053 0 409 5161676 464229 0
318 5162468 463784 0 364 5160535 464024 0 410 5161629 464087 0
319 5162498 463789 19 365 5160544 464009 0 411 5161544 463955 0
320 5162452 463823 4 366 5160526 464034 0 412 5161494 464055 0
321 5162467 463819 3 367 5160540 464016 0 413 5161666 464268 0
322 5162460 463826 0 368 5160518 464038 0 414 5161556 464060 0
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APPENDIX C, CONTINUED

. . Seed . . Seed
ID Northing Easting abundance ID Northing Easting abundance
415 5161667 464043 0 461 5161125 465086 0
416 5161573 463968 0 462 5161158 465131 0
417 5161654 463913 0 463 5161159 465173 0
418 5161508 463991 0 464 5161144 465093 0
419 5161731 464301 0 465 5161098 465114 18
420 5161472 464051 0 466 5161155 465102 0
421 5161751 464291 0 467 5161150 465183 0
422 5161634 463932 0 468 5161102 465160 0
423 5161656 463981 0 469 5161130 465193 0
424 5161468 464065 0 470 5161108 465150 1
425 5161556 463976 0 471 5161147 465158 0
426 5161546 464005 0 472 5161167 465180 0
427 5161698 464006 0 473 5161095 465150 0
428 5161564 464108 0 474 5161126 465161 1
429 5161760 464312 0 475 5161099 465097 5
430 5161716 464046 0 476 5162152 464194 0
431 5161675 464013 0 477 5160966 464377 3
432 5161649 464000 0 478 5160931 464457 2
433 5161653 464182 0 479 5160955 464414 7
434 5161635 463976 0 480 5162127 462557 0
435 5161775 463468 0 481 5161687 462856 9
436 5161844 463352 0 482 5161706 462821 0
437 5161774 463518 0 483 5161632 462674 0
438 5161760 463490 1 484 5161642 462679 0
439 5161754 463407 0 485 5161707 462667 0
440 5161754 463514 0 486 5161677 462883 0
441 5160964 464449 0 487 5161596 462676 0
442 5160949 464475 11 488 5161680 462926 0
443 5162205 464167 1 489 5161780 463045 0
444 5162185 464163 2
445 5162164 464181 5
446 5162184 464242 0
447 5162167 464228 7
448 5162215 464103 0
449 5161744 464289 0
450 5161633 464334 0
451 5161700 464328 0
452 5162177 464217 5
453 5162201 464146 0
454 5162180 464211 0
455 5162189 464238 0
456 5162159 464222 0
457 5161133 465132 0
458 5161164 465121 0
459 5161141 465112 0
460 5161135 465073 0
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APPENDIX D

Land cover classifications extracted from a 2001 Marquette County land cover and use data set
available from the Michigan Geographic Data Library (http://www.mcgi.state.mi.us/mgdl/). The
original data set containing 30 classes was reclassified to include five classes: conifer, hardwood,
hardwood/conifer, herbaceous, and non-vegetative.

Land Cover
Class

- Conifer
- Hardwood

- Hardwood/Conifer
- Herbaceous/Open

- Non-vegetative
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APPENDIX E

Soil order extracted from a Marquette County SSURGO soils available from the Michigan
Geographic Data Library (http://www.mcgi.state.mi.us/mgdl/).

Soil Drainage
Drainage Class

- Excessively drained
- Excessively well drained
- Moderately well drained
B pit

- Poody drained

- Somewhat excessively drained
- Somewhat poorly drained
- Very poorly drained

- Water
B well drained
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APPENDIX F

Soil drainage class extracted from a Marquette County SSURGO soils available from the
Michigan Geographic Data Library (http://www.mcgi.state.mi.us/mgdl/).

Soil Order
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