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TABLE 14. KMO VALUES FOR ALL PARTICIPANTS FOR THE Z-AXIS (NFWH 

CONDITION). VALUES FOR INDIVIDUAL PARTICIPANTS ARE HIGHLIGHTED IN GREY 

(SIGNIFICANT > 0.5).  

Anti-image Matrices 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 

Anti-image Correlation 

P1 .920a .426 -.060 .094 .059 .019 -.136 -.416 -.108 .254 -.185 -.400 -.328 .320 .537 -.196 

P2 .426 .614a .530 -.236 .047 .137 -.274 -.542 .450 -.305 .010 -.107 -.337 .304 .541 -.247 

P3 -.060 .530 .849a -.670 -.082 .041 .223 .215 .921 -.213 .280 .427 .500 -.318 -.188 -.001 

P4 .094 -.236 -.670 .808a .545 -.526 -.074 -.358 -.712 -.200 -.257 -.475 -.651 .593 .164 -.644 

P5 .059 .047 -.082 .545 .890a -.927 -.045 -.108 -.094 -.041 -.099 -.102 -.145 .133 .076 -.676 

P6 .019 .137 .041 -.526 -.927 .899a -.202 -.121 .084 .021 .042 .023 -.031 .011 .087 .571 

P7 -.136 -.274 .223 -.074 -.045 -.202 .933a .551 .048 -.187 -.081 .286 .403 -.398 -.175 .038 

P8 -.416 -.542 .215 -.358 -.108 -.121 .551 .820a .152 .243 .048 .246 .779 -.727 -.735 .442 

P9 -.108 .450 .921 -.712 -.094 .084 .048 .152 .852a -.087 .381 .422 .534 -.355 -.194 .039 

P10 .254 -.305 -.213 -.200 -.041 .021 -.187 .243 -.087 .957a -.079 -.057 .382 -.180 -.163 .235 

P11 -.185 .010 .280 -.257 -.099 .042 -.081 .048 .381 -.079 .941a .396 .266 -.487 .107 .059 

P12 -.400 -.107 .427 -.475 -.102 .023 .286 .246 .422 -.057 .396 .882a .640 -.574 -.108 .143 

P13 -.328 -.337 .500 -.651 -.145 -.031 .403 .779 .534 .382 .266 .640 .764a -.816 -.559 .372 

P14 .320 .304 -.318 .593 .133 .011 -.398 -.727 -.355 -.180 -.487 -.574 -.816 .818a .246 -.518 

P15 .537 .541 -.188 .164 .076 .087 -.175 -.735 -.194 -.163 .107 -.108 -.559 .246 .886a -.203 

P16 -.196 -.247 -.001 -.644 -.676 .571 .038 .442 .039 .235 .059 .143 .372 -.518 -.203 .873a 

a. Measures of Sampling Adequacy(MSA) 

 

e. Between condition analysis 

The PCA analysis for each condition and each direction showed that there were 

not significant differences between the participants’ trajectory for each single direction as 

depicted by the highly correlated values. We were therefore able to perform an analysis 

on the mean trajectory for each coordinate by averaging the results of all participants, as 

shown by Figure 26 for x-axis, Figure 27 for y-axis, and Figure 28 for z-axis. 

Correlations factors (Pearson-r
2
) and their significant levels (0.4 according to Stevens, 

2002 for these type of data) are shown in Table 15 and Table 18. 
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FIGURE 26. MEAN TRAJECTORY FOR EACH CONDITION (FH, FWH, NFH, AND 

NFWH) FOR X-AXIS. 

 

For the mediolateral direction, as indicated by Table 15 and Figure 26, the results 

clearly indicate that the haptic feedback was helpful in left and right movements. The 

haptic feedback helped to keep the trajectory close to the center (0 line on the figures). 

However, the haptic feedback was less helpful in the featured night condition (FH), 

where the horizon was always indicated, as depicted by a significant low R-squared value 

(0.052) comparing to the featureless night condition (NFH). It is possible that the 

participants relied more on the visual feedback and adjust the haptic feedback 

accordingly based on the visual input; while in the featureless environment the visual 

feedback was clueless, which forced the participants to rely on the haptic feedback. The 

trajectory shift was more evident for the non-haptic condition (for both FWH and 

NFWH). 
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FIGURE 27. MEAN TRAJECTORY FOR EACH CONDITION (FH, FWH, NFH, AND 

NFWH) FOR Y-AXIS. 

 

TABLE 16. PEARSON-R
2 

VALUES FOR Y-AXIS BEGINNING OF TRAJECTORY 

(SIGNIFICANT =.4). 

Correlation Matrix
a
 

  FH FWH NFH 

  

FWH 0.99     

NFH 1 0.99   

NFWH 0.992 1 0.992 

a. Significant = .4 

 

TABLE 17. PEARSON-R
2 

VALUES FOR Y-AXIS END OF TRAJECTORY (SIGNIFICANT 

=.4). 

Correlation Matrix
a
 

  FH FWH NFH 

  

FWH 0.083a     

NFH 0.142a 0.978   

NFWH 0.046a 0.992 0.958 

a. Significant = .4 

Finally, as expected the haptic feedback did not affect performances for the z 

direction, as the speed on this direction was predetermined. Figure 28 clearly shows that 
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the trajectories for all conditions were similar. Pearson-r
2
 values show strong correlations 

between the four conditions (Table 18). 

 

FIGURE 28. MEAN TRAJECTORY FOR EACH CONDITION (FH, FWH, NFH, 

NFWH) FOR Z-AXIS. 

 

TABLE 18. PEARSON-R
2 

VALUES FOR Z-AXIS (SIGNIFICANT =.4). 

Correlation Matrix
a
 

  FH FWH NFH 

  FWH .996     

NFH .998 .998   

NFWH .998 .998 1.000 

a. Significant = .4 

 

Repeated measures ANOVA for completion time were not significant. Table 19 

shows the mean values for the each condition for all the participants. 
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TABLE 19. MEAN TIME VALUES FOR EACH CONDITION (FH, FWH, NFH, AND 

NFWH). 

Descriptive Statistics 

 Mean Std. Deviation N 

FH 47.11 10.01 16 

FWH 50.28 10.79 16 

NFH 49.00 12.02 16 

NFWH 47.97 10.03 16 

 

4. DISCUSSION 

The present study showed that force feedback was efficient for landing 

trajectories in a featureless environment. Indeed, it helped participants to deviate less 

from the center of the runway when trying to land an object. 

On one hand, these results confirm previous findings of Trlep et al. (2011) that 

had stroke patients complete a bimanual flying task with the HapticMaster. It was found 

that the motor deficient arm improved on the x-axis trajectory. Since few studies explored 

flying and landing as potential tasks for neurorehabilitation, further investigation are 

required to explore their efficiency in upper limb paralysis. Ideally, the same experiment 

should be replicated with people that have difficulty with their upper limb movements.  

On the other hand and to our knowledge, this is the first investigation of the black 

hole illusion in the haptic modality. Since haptic feedback tends to improved landing 

trajectories in featureless environment, our findings could benefit flying and landing 

studies and further investigation is required. For instance, the VE should be improved to 

resemble airplane displays. The runway lights should be also incorporated. Finally, the z-

trajectory should be dependent on the users’ movements and not predetermined by the 

software. For instance, the night landing conditions presented in this thesis could be 

modified by incorporating conditions with different speeds or asking the participants to 
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perform the task in a specific timeframe. Modifying the speed and the time could offer 

insight on landing task and therefore suggest alternative solution to reduce BHI.  

In the future and if deemed feasible, recruiting patients with upper limb paralysis 

could be beneficial. One possibility is to compare their brain activity before and after the 

training sessions using functional near-infrared spectroscopy (fNIRS) multimodal 

technique, as research showed that haptic devices along with VR could increase neuronal 

plasticity in patients (Takahashi et al., 2008; & Carpi, Mannini,& De Rossi, 2009). 

We were not able to incorporate a tactile feedback for the scope of this thesis. 

However, incorporating tactile feedback along with kinesthetic feedback can provide a 

more effective way for treating individuals with upper limb paralysis when exploring 

movement trajectory for reaching tasks (Cameriao et al., 2012). In the future the same 

task could be extended by using braille cells (Metec AG, 2013) or ArraySense, a neck 

stimulation device (Tactile Image Inc., 2013). 

In summary, by estimating movement trajectory, comparing pre and post motor 

assessments, comparing brain imagery before and after training along with OT 

rehabilitation training programs, it could be possible to suggest a more efficient trainings 

or tasks that could help patients’ recovery.  

5. CONCLUSION 

The present thesis presented different types of haptic devices and their importance 

in the neurorehabilitation of upper limb paralysis patients. We explored the possibility of 

adding tactile feedback such as vibrations on the skin or temperature feedback to possibly 

stimulate the mechanoreceptors of the affected limb. The experiment suggested night 

landing an object on a runway could be added to the existing tasks not only for 
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rehabilitation purposes, by also to decrease the effect of the black hole illusion in pilots. 

Our study clearly showed that haptic feedback is useful in a featureless environment. 

However, when visual cues were present, efficiency was minimized for parts of the 

trajectories. That said, our major limitation was related to technical issue that did not 

fully allow us of the BHI. If deemed feasible, runway lights should be added in the virtual 

environment and the yellow target removed, as it may give indication on the horizon; 

although this effect could be minimal. Most importantly, haptic feedback, when an object 

is in contact with the ground, may be necessary to complete immersion. Finally, one of 

our regret is the impossibility to evaluate the effectiveness of tactile directional cues in 

the designed study for technical issues that prevent us to incorporate braille cells into our 

original design; a direction that we hoped could be explored in the future.  
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APPENDIX A: PYTHON SCRIPTS FOR 

FEATURED HAPTICS 
 

 

 

 
X3D profile='Immersive' version='3.0'> 

<IMPORT inlineDEF="H3D_EXPORTS" exportedDEF="HDEV" AS="HDEV" />  

  <Scene> 

    <Group> 

      <Viewpoint position="0 .4 1"/> 

      <DynamicTransform DEF="G" position="0 0 -6" momentum="0 0 0"> 

    <Shape> 

   <Appearance> 

     <Material DEF="MyMaterial" diffuseColor="0 250 0" transparency="0.5" /> 

     <SmoothSurface stiffness="0"/> 

   </Appearance> 

   <Box DEF="landing" size="100 0.002 300"/> 

    </Shape> 

    <Shape> 

   <Appearance> 

     <Material DEF="MyMaterial" diffuseColor="1 1 1"/> 

     <SmoothSurface stiffness="0"/> 

   </Appearance> 

   <Box size=".3 .005 3"/> 

    </Shape> 

    <Shape> 

   <Appearance> 

     <Material DEF="MyMaterial" diffuseColor="1 1 1"/> 

     <SmoothSurface stiffness="0"/> 

   </Appearance> 

   <Box size=".3 .005 3"/> 

    </Shape> 

    <Shape> 

   <Appearance> 

     <Material DEF="MyMaterial" diffuseColor="1 1 0"/> 

     <SmoothSurface stiffness="0"/> 

   </Appearance> 
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   <Box size=".1 .05 .1"/> 

    </Shape> 

  </DynamicTransform> 

  <DynamicTransform DEF="B1" position = "0.7 0.0 0.0" momentum="0 0 0"> 

   <Shape> 

        <Appearance> 

          <Material DEF="MyMaterial" diffuseColor="1 1 1" transparency="1.0"/> 

          <SmoothSurface stiffness="20"/> 

        </Appearance> 

  <Box size="1 10 19"/> 

      </Shape> 

  </DynamicTransform> 

 <DynamicTransform DEF="B2" position="-0.7 0 0" momentum="0 0 0"> 

   <Shape DEF="S"> 

        <Appearance> 

          <Material DEF="M" diffuseColor="1 1 1" transparency="1.0"/> 

          <SmoothSurface stiffness="20"/> 

        </Appearance> 

  <Box size="1 10 19"/> 

      </Shape> 

  </DynamicTransform> 

 </Group> 

 <MouseSensor DEF="mouse"/> 

 <KeySensor DEF="keyboard"/> 

  <PythonScript DEF="PS" url="script.py"> 

    <Shape USE="S" containerField="references" /> 

    <Material USE="M" containerField="references" /> 

 </PythonScript> 

 <ROUTE fromNode="keyboard" fromField="actionKeyPress" toNode="PS" toField="direction"/> 

 <ROUTE fromNode= "HDEV" fromField="trackerPosition" toNode="PS" toField="position"/> 

 <ROUTE fromNode="PS" fromField="position" toNode="B1" toField="momentum"/>  

 <ROUTE fromNode="PS" fromField="position" toNode="B2" toField="momentum"/>  

 <ROUTE fromNode="PS" fromField="position" toNode="G" toField="momentum"/>  

  <ROUTE fromNode="PS" fromField="direction" toNode="B1" toField="momentum"/>  

 <ROUTE fromNode="PS" fromField="direction" toNode="B2" toField="momentum"/>  

 <ROUTE fromNode="PS" fromField="direction" toNode="G" toField="momentum"/>  

 <ROUTE fromNode= "landing" fromField="isTouched" toNode="PS" toField="block_touch"/>  

  <ROUTE fromNode="M" fromField="diffuseColor" toNode="MyMaterial" toField="diffuseColor"/> 
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  </Scene> 

</X3D> 
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APPENDIX B: PYTHON SCRIPTS FOR 

FEATURELESS WITH HAPTICS 
 

 

 

 
<X3D profile='Immersive' version='3.0'> 

<IMPORT inlineDEF="H3D_EXPORTS" exportedDEF="HDEV" AS="HDEV" />  

  <Scene> 

    <Group> 

      <Viewpoint position="0 .4 1"/> 

      <DynamicTransform DEF="G" position="0 0 -6" momentum="0 0 0"> 

    <Shape> 

   <Appearance> 

     <Material DEF="MyMaterial" diffuseColor="0 250 0" transparency="0.95" /> 

     <SmoothSurface stiffness="0"/> 

   </Appearance> 

   <Box DEF="landing_strip" size="100 0.002 300"/> 

    </Shape> 

    <Shape> 

   <Appearance> 

     <Material DEF="MyMaterial" diffuseColor="1 1 1"/> 

     <SmoothSurface stiffness="0"/> 

   </Appearance> 

   <Box size=".3 .005 3"/> 

    </Shape> 

    <Shape> 

   <Appearance> 

     <Material DEF="MyMaterial" diffuseColor="1 1 0"/> 

     <SmoothSurface stiffness="0"/> 

   </Appearance> 

   <Box size=".1 .05 .1"/> 

    </Shape> 

  </DynamicTransform> 

     

  <DynamicTransform DEF="B1" position = "0.7 0.0 0.0" momentum="0 0 0"> 

   <Shape> 

        <Appearance> 
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          <Material DEF="MyMaterial" diffuseColor="1 1 1" transparency="1.0"/> 

          <SmoothSurface stiffness="20"/> 

        </Appearance> 

  <Box size="1 10 19"/> 

      </Shape> 

  </DynamicTransform> 

 <DynamicTransform DEF="B2" position="-0.7 0 0" momentum="0 0 0"> 

   <Shape DEF="S"> 

        <Appearance> 

          <Material DEF="M" diffuseColor="1 1 1" transparency="1.0"/> 

          <SmoothSurface stiffness="20"/> 

        </Appearance> 

  <Box DEF="wall1" size="1 10 19"/> 

      </Shape> 

  </DynamicTransform> 

 </Group> 

 <MouseSensor DEF="mouse"/> 

 <KeySensor DEF="keyboard"/> 

  <PythonScript DEF="PS" url="python.py"> 

    <Shape USE="S" containerField="references" /> 

    <Material USE="M" containerField="references" /> 

 </PythonScript> 

 <ROUTE fromNode="keyboard" fromField="actionKeyPress" toNode="PS" toField="direction"/> 

 <ROUTE fromNode= "HDEV" fromField="trackerPosition" toNode="PS" toField="position"/> 

 <ROUTE fromNode="PS" fromField="position" toNode="B1" toField="momentum"/>  

 <ROUTE fromNode="PS" fromField="position" toNode="B2" toField="momentum"/>  

 <ROUTE fromNode="PS" fromField="position" toNode="G" toField="momentum"/>  

  <ROUTE fromNode="PS" fromField="direction" toNode="B1" toField="momentum"/>  

 <ROUTE fromNode="PS" fromField="direction" toNode="B2" toField="momentum"/>  

 <ROUTE fromNode="PS" fromField="direction" toNode="G" toField="momentum"/>  

 <ROUTE fromNode="wall1" fromField="isTouched" toNode="PS" toField="touch"/> 

  <ROUTE fromNode="M" fromField="diffuseColor" toNode="MyMaterial" toField="diffuseColor"/> 

  </Scene> 

</X3D> 
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APPENDIX C: INSTRUCTIONS TO 

PARTICIPANTS 
 

 

 

 

After reading the consent form and being exposed to a force-feedback device, you will be 

asked to start an experiment. 

1. The device in front of you is called the PHANToM OMNI: it provides force-

feedback while you are interacting with a virtual environment by moving this 

stylus in the three dimensional space. 

2. You will start first with a practice session. This allows you to familiarize with 

the device by moving objects around while you feel the force feedback. As 

you can see on the screen, this is a tower of blocks that you can interact with.  

a. To interact with the blocks you can use the buttons on the stylus to 

pick up blocks and move them throughout the environment 

b. You can also knock the blocks over.  

3. Practice Trials: Once you feel comfortable with the device, you will complete 

two practice trials of the actual experiment.  

a. Your goal is to land the virtual stylus on the yellow pad in the middle 

of the runway. You feel the force feedback in one trial, while it will be 

remove in the other trial, so you will feel the difference between the 

two. 

4. The experiment itself consists of 16 trials where your task is to land the object 

on the runway. The trial ends once you touch the yellow landing pad. 

5. The whole experiment will take between 30 to 45 minutes to be completed.  
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APPENDIX D: INFORMED CONSENT FORM 
 

 

 

 

NORTHERN MICHIGAN UNIVERSITY 

INFORMED CONSENT STATEMENT 

Title of Project: A Study Comparing Healthy and Brain Damaged Individuals in a 

Virtual Environment with a Haptic Device. 

Investigators: Samantha R. Wagner (Master Candidate) and Dr. Mounia Ziat (Assistant 

Professor, Department of Psychology, NMU) 

You are invited to participate in a research study.  The purpose of this experiment 

is to study upper limb motor function in healthy and brain injured individuals. An 

undergraduate research assistant at Northern Michigan University will be conducting the 

study under the advisory of Dr. Mounia Ziat. 

 

INFORMATION 
Twenty people will be asked to participate in this experiment, which will consist of one 

session that is about 40 minutes. Participants may be of either gender and between the ages of 18 

and 80.  

 

 You will be seated at a computer and given the opportunity to practice with the haptic 

device for 1-3 minutes. You will use a haptic device that will give you information about 

the virtual environment you are in. The virtual real-life task will be performed using a 

program that allows you to interact with the environment presented to you by moving the 
stylus. Tasks include basic daily life activities and navigation. 

 

RISKS 

There are no known risks associated with participation in this study. If you experience 

any discomfort with your seating or the position relative to the controls, please notify the 

experimenter so that adjustments can be made to improve your comfort. 

  

BENEFITS 

There are no direct benefits to the participants other than research experience and 

the satisfaction of contributing to scientific knowledge.  We anticipate that the scientific 

community will benefit from a better understanding of sensation and perception as well 

as a better understanding of virtual reality and haptic technologies in neurorehabilitation. 

Society at large also stands to benefit from the results of this study, as it will advance 

future haptic technologies and individuals who suffer from upper limb deficiencies 

caused by damage to the brain and spinal cord. 
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CONFIDENTIALITY  

The data collected from participants will be stored on a computer in a secure lab 

using their initials only.  The consent forms and participants’ names will be stored in a 

locked filing cabinet in Dr. Ziat’s lab separate from the coded data.  Arbitrary code 

numbers will be used to differentiate between participants (if necessary) in any resultant 

publications or presentations. Only Dr. Ziat and the experimenter will have direct access 

to the data, consent forms, or participant lists.  Material will be kept until full analysis of 

the data has been completed and the research has been published.  All electronic files will 

be erased and hardcopies shredded 7 years after the completion of the study (by May 

2020). 

 

COMPENSATION  

 

If you choose not to participate in this study, you may earn extra credit in your course in 

alternate ways. Please consult your instructor.  

 

If you are a member of the Marquette community (non-student) you will receive 

compensation for your participation in this research. 

 

CONTACT  

If you have questions at any time about the study or the procedures, or you 

experience adverse effects as a result of participating in this study, you may contact the 

principal investigator, Mounia Ziat (mziat@nmu.edu and 227-2948) in the Department of 

Psychology, Northern Michigan University.  This project has been reviewed and 

approved by the University Research Ethics Board at Northern Michigan University.  If 

you feel you have not been treated according to the descriptions in this form, or your 

rights as a participant in research have been violated during the course of this project, you 

may contact the IRB chair (dereande@nmu.edu) and NMU’s IRB administrator 

(tseethof@nmu.edu). 

 

PARTICIPATION 

 Your participation in this study is voluntary; you may decline to participate 

without penalty.  If you decide to participate, you may withdraw from the study at any 

time without penalty and without loss of benefits to which you are otherwise entitled.  If 

you withdraw from the study before data collection is completed your data (if part of data 

is collected) will be returned to you or destroyed by either Dr. Mounia Ziat or the 

experimenter.  You have the right to omit any question(s)/procedure(s) you choose. 

 

 

FEEDBACK AND PUBLICATION  

The results of the research may be published in journal articles, and other 

mailto:mziat@nmu.edu
mailto:dereande@nmu.edu
mailto:tseethof@nmu.edu
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scientific conferences and university colloquia. If you wish, the results of this study will 

be e-mailed to you no later than April 1
st
, 2014.   

 

CONSENT  

I have read and understand the above information.  I have received a copy of this 

form.  I agree to participate in this study. 

 

Participant's signature_______________ email _______________ Date ______________ 

   Age_________________ Gender_____________________ 

Investigator's signature____________________________________ Date ____________ 
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APPENDIX E: EXCEL FILE OF DATA APPLIED 

TO EACH CONDITION 
 

 

 

 

Beginning of the file 

 

. 

. 

. 

. 

. 

End of File 
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APPENDIX F: INSTITUTIONAL REVIEW BOARD 

APPROVAL FORM 
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APPENDIX G: CITI MODULE FOR HUMAN 

RESEARCH SUBJECTS 

 


