An Introduction to Drugs and the Neuroscience of Behavior

Adam J. Prus
Northern Michigan University, aprus@nmu.edu

Follow this and additional works at: http://commons.nmu.edu/facwork_book

Part of the Biological Psychology Commons, Mental Disorders Commons, Natural Products Chemistry and Pharmacognosy Commons, Other Pharmacy and Pharmaceutical Sciences Commons, Pharmaceutics and Drug Design Commons, Pharmacology Commons, Pharmacy Administration, Policy and Regulation Commons, Psychiatric and Mental Health Commons, Substance Abuse and Addiction Commons, and the Systems Neuroscience Commons

Recommended Citation
http://commons.nmu.edu/facwork_book/26

This Book is brought to you for free and open access by NMU Commons. It has been accepted for inclusion in Books by an authorized administrator of NMU Commons. For more information, please contact kmcdonou@nmu.edu,bsarjean@nmu.edu.
AN INTRODUCTION TO

Drugs and the Neuroscience of Behavior
AN INTRODUCTION TO

Drugs AND THE
Neuroscience OF
Behavior

Adam J. Prus
Northern Michigan University
To Jennifer, Kendell and Daniel
AUTHOR BIOGRAPHY

Adam Prus is an Associate Professor in the Department of Psychology at Northern Michigan University, in Marquette, Michigan. He earned his Ph.D. in psychology from Virginia Commonwealth University. While in graduate school, he also worked as a research technician at a large pharmaceutical company. After earning his degree, he served as postdoctoral fellow in the Psychopharmacology Division of the Department of Psychiatry at Vanderbilt University, working under the mentorship of Herbert Meltzer, a leader in antipsychotic drug research.

Adam has published numerous original studies on psychoactive drugs and conducts research projects funded by the National Institute of Mental Health, private foundations, and pharmaceutical companies. When he is not teaching or doing research, Adam spends time with his family, fixes up their house (which he thinks has a lot of potential), and works on his golf game (which may have less potential, but is enjoyable nonetheless).
1 Introduction to Psychopharmacology 1
2 The Nervous System 29
3 Neurotransmission 63
4 Properties of Drugs 101
5 Drugs of Abuse 129
6 Psychostimulants 159
7 Nicotine and Caffeine 191
8 Alcohol 225
9 GHB, Inhalants, and Anesthetics 255
10 Opioids 275
11 Cannabinoids 299
12 Psychedelic Drugs 319
13 Treatments for Depression and Bipolar Disorder 353
14 Treatments for Anxiety Disorders 381
15 Antipsychotic Drugs 407
1 Introduction to Psychopharmacology 1
 Psychopharmacology 2
 Why Read a Book on Psychopharmacology? 3
 Drugs: Administered Substances That Alter Physiological Functions 4
 Psychoactive Drugs: Described by Manner of Use 5
 Generic Names, Trade Names, and Street Names for Drugs 6
 Drug Effects: Determined by Dose 7
 Pharmacology: Pharmacodynamics, Pharmacokinetics, and Pharmacogenetics 10
 Psychoactive Drugs: Objective and Subjective Effects 11
 Study Designs and the Assessment of Psychoactive Drugs 12
 Experimental Validity: Addressing the Quality and Impact of an Experiment 15
 Animals and Advancing Medical Research 17
 A Lack of Feasible Alternatives 18
 High Predictive Value for Drug Effects in Humans 18
 Assessing Drugs in Carefully Controlled Laboratory Environments 18
 The Regulation of Animal Research 19
 Animal Rights Activism Seeks to Minimize or Eliminate Animal Research 21
 Researchers Consider Many Ethical Issues When Conducting Human Research 22
 FROM ACTIONS TO EFFECTS
 Therapeutic Drug Development 25
 CHAPTER SUMMARY 27
 KEY TERMS 28

2 The Nervous System 29
 Is There More to the Story of Phineas Gage? 30
 Cells in the Nervous System 31
Neuron Communication in the Nervous System 31
Glial Cells: Facilitating Nervous System Functions 33

The Nervous System: Control of Behavior and Physiological Functions 35
The Peripheral Nervous System: Controlling and Responding to Physiological Processes in the Body 36
The Central Nervous System: Controlling Behavior 39

Blood Flow in the Brain 48
Cerebrospinal Fluid 49
The Blood–Brain Barrier 51

The Nervous System: Rapid Development After Fertilization 52
Genes and the Development and Physiological Processes of Cells 55

box 2.1 Genetically Modified Organisms 56
FROM ACTIONS TO EFFECTS
Glial Scars and Recovery from Brain Injury 58

CHAPTER SUMMARY 60
KEY TERMS 60

3 Neurotransmission 63

Drugs for Alzheimer’s Disease Alter Acetylcholine Neurotransmission 64

Electrical Events Within a Neuron and the Release of Neurotransmitters 65

box 3.1 Electrophysiology and Microdialysis 66

Nerve Impulses: Electrical Potential Changes in Neurons 66
 Resting Potential 67
 Action Potential 71
 Refractory Periods 71

Propagation of Action Potentials Down Axons 72

Neurotransmitters: Signaling Molecules for Neuronal Communication 74
 Neurotransmitter Synthesis 74
 Neurotransmitter Storage 75
 Calcium Influx and Neurotransmitter Release 75
 Neurotransmitters Bind to Receptors 75
 Termination of Neurotransmission 75

Neurotransmission: Neurotransmitter Binding to Receptors 76
 Receptors: Ionotopic or Metabotropic 76

Different Types of Neurotransmitters and Communication 80
 Glutamate and GABA Are the Most Abundant Neurotransmitters 81
Monoamine Neurotransmitters: Dopamine, Norepinephrine, Epinephrine, and Serotonin 84
 Dopamine 85
 Norepinephrine and Epinephrine 87
 Serotonin 88
Acetylcholine 89
Neuropeptides: A Large Class of Neurotransmitters 92
Nitric Oxide: A Unique Neurotransmitter 92
Other Types of Chemical Transmission in the Nervous System 93
 Neurotrophins 93
 Hormones 93
FROM ACTIONS TO EFFECTS
 Treating Alzheimer's Disease 96
CHAPTER SUMMARY 99
KEY TERMS 99

4 Properties of Drugs 101
 Do Environmental Stimuli Contribute to Heroin Tolerance? 102
Pharmacokinetic Properties and Drug Passage Through the Body 103
 Absorption 103
 Distribution 106
 Metabolism 108
 Elimination 109
Pharmacodynamics: Describing the Actions of Drugs 111
 box 4.1 Radioligand Binding for Measuring Receptor Affinity 114
Psychomotor Drugs and Receptors 115
 box 4.2 The [35S]GTPγS Binding Assay Assesses G-Protein Activation 118
Neurotoxins and Damage to the Nervous System 122
Physiological Adaptations to Chronic Drug Use 123
FROM ACTIONS TO EFFECTS
 Heroin Tolerance and Environmental Factors 125
CHAPTER SUMMARY 126
KEY TERMS 127

5 Drugs of Abuse 129
 James Olds's Important Discovery 130
Regulatory Agencies and Drug Classification 131
Clinical Definitions and the Diagnosis of Drug Addiction 134
Theoretical Models and the Features of Drug Addiction 136
Disease Model of Drug Addiction 136
Associative Learning Principles Used in Addiction Models 137
Drive, Opponent-Process Theory, and Incentive-Salience Models of Drug Addiction 139

box 5.1 Self-Administration 140

Drugs of Abuse and Reward Circuitry 142
Drug Abuse and Changes to Learning and Memory Systems 147
Neurobiology and the Stages of Drug Addiction 150
Psychological and Pharmacological Therapies for Treating Drug Dependence 151

FROM ACTIONS TO EFFECTS

Food Addiction 156

CHAPTER SUMMARY 157
KEY TERMS 158

6 **Psychostimulants** 159

Fleischl and the Neurologist 160

Psychostimulants: A Large Variety of Substances 161
Psychostimulants: Herbal Remedies, Prescription Drugs, and Substances of Abuse 162
 Ephedra 162
 Amphetamines 162
 Methylphenidate 164
 Cathinones 164
 Cocaine 165

Instrumental and Recreational Purposes of Psychostimulants 166
 Amphetamines 167
 Methylphenidate 167
 Cathinones 167
 Cocaine 168

Psychostimulant Administration 170
 Routes and Forms of Psychostimulant Administration 170

Psychostimulants and Monoamine Neurotransmitters 173
 Amphetamines 173
 Methylphenidate and Cathinones 173
 Cocaine 175
 Cocaine- and Amphetamine-Regulated Transcript 175

Pharmacological Effects of Psychostimulants 177
 Physiological Effects 177
 Behavioral Effects 178
 Subjective Effects 179
box 6.1 Drug Discrimination 180
 Adverse Effects 180
 Psychostimulant Drugs Produce Sensitization and Tolerance 183

FROM ACTIONS TO EFFECTS
Psychostimulant Addiction 185
 Linking Pharmacological Actions to Reinforcing Effects 185
 Genetics Influence the Susceptibility to Psychostimulant Addiction 186
 Treatments for Psychostimulant Addiction 187

CHAPTER SUMMARY 189
KEY TERMS 190

7 Nicotine and Caffeine 191
Is Nicotine Not Addictive? 192
Nicotine: Key Psychoactive Ingredient in Tobacco 192
Discovery of Tobacco 196
Pharmacokinetic Properties and Tobacco Use 198
 Nicotine Absorption Through Lung and Oral Tissues 198
 Liver Enzyme Differences and the Metabolism of Nicotine 199
Nicotine and Nervous System Functioning 200
Nicotine's Potent Pharmacological Effects 204
 Nicotine's Effects on Cardiovascular Function and Appetite 205
 Nicotine Affects Movement and Cognitive Functioning 206
box 7.1 Conditioned Taste Aversion 208
 Nicotine's Positive and Negative Subjective Effects 209
 The Serious Adverse Effects of Tobacco Use 210
 Nicotine and Psychological Dependence 211

Environmental, Genetic, and Receptor Differences
 Between Light and Heavy Tobacco Users 212

FROM ACTIONS TO EFFECTS
Why People Smoke and How They Quit 214
Caffeine 215
 Caffeine and Related Compounds in Plants 215
 Caffeine Has an Ancient History 217
Caffeine Absorption, Duration, and Interaction
 with Other Psychoactive Drugs 218
Caffeine: Antagonist for Adenosine Receptors 219
Caffeine: Mild Psychostimulant Effects 220
Tolerance and Dependence During Sustained Caffeine Use 220

FROM ACTIONS TO EFFECTS
Why People Consume Caffeinated Products 221
CHAPTER SUMMARY 222
KEY TERMS 223

8 Alcohol 225

“Halfway to Concord” and “Taking Hippocrates’ Grand Elixir” 226
Alcohol: The Most Commonly Used Depressant Substance 226
Alcohol Production Through Fermentation and Distillation 227
The History of Alcohol Consumption 230
Pharmacokinetic Factors and Alcohol’s Effects 231
Alcohol and Central Nervous System Functioning 233
 Alcohol and GABA_A Receptors 233
 Glutamate NMDA Receptors and Alcohol’s Pharmacological Effects 235
 Alcohol: Inhibited Neurotransmission 235
 Alcohol and Serotonin Receptors 235
 Alcohol and the Endocannabinoid System 236
Pharmacological Effects of Alcohol 237
 Types of Drinking and Number of Drinks Consumed 237
 Acute Alcohol Consumption and Cardiovascular and Respiratory Functioning 238
 Alcohol’s Depressive Effects on Behavior and Cognitive Functioning 239
 Alcohol and Positive Subjective Effects 242
 Severe Adverse Effects of High BAC 243
 Chronic Heavy Alcohol Consumption and Adverse Cardiovascular and CNS Effects 244
 Alcohol: Tolerance and Sensitization 246
 Alcohol Addiction and Withdrawal 247
Psychosocial Interventions, Therapeutic Drugs, and Alcohol Use Disorders 248

FROM ACTIONS TO EFFECTS
Hangover 252

CHAPTER SUMMARY 254
KEY TERMS 254

9 GHB, Inhalants, and Anesthetics 255

Did Ancient Greek Oracles Come from Chemical Inhalants? 256
Gamma-Hydroxybutyrate 256
 Uses for GHB 257
 GHB: Natural and Synthetic 259
 GHB Pharmacological Action 260
GHB’s Depressant Pharmacological Effects 262
GHB Overdose and Risk for Addiction 263

box 9.1 Electroencephalography 264

Inhalants 266
- History of Inhalants 268
- Inhalants: Rapid Absorption and Elimination 269
- Actions of Inhalable Solvents 269
- Inhalants: Pharmacological Effects and Interference with Oxygen Intake 270

FROM ACTIONS TO EFFECTS
Stimulus Properties of GHB and Toluene 272

CHAPTER SUMMARY 273

KEY TERMS 274

10 Opioids 275

A “Treatment” for Morphine Addiction? 276

Opioids: Natural and Synthetic 277
- History of Opium Use 279
- Pharmacokinetic Properties and Opioid Abuse 280
- Opioid Drug Interactions with the Endogenous Opioid System 282
- Opioid Drugs: Classification by Receptor Action 284
- Opioid System Interactions with Reward, Pain, and Stress Systems 286
- **Opioid Reinforcing and Analgesic Effects** 289
 - Opioid Receptor Agonists and Reinforcing Effects 289

box 10.1 Conditioned Place Preference 292
- Opioid Analgesic Effects 294
- Opioid Drugs and Other Therapeutic Effects 294
- Opioid Drugs and Respiratory Function 295
- User Tolerance and Dependence with Chronic Opioid Administration 295

FROM ACTIONS TO EFFECTS
Pharmacological Approaches for Treating Opioid Addiction 296

CHAPTER SUMMARY 298

KEY TERMS 298

11 Cannabinoids 299

Should Medical Marijuana Be Legal? 300
- Historical Use of Cannabis 302
- Methods of Cannabis Preparation 304
Cannabinoid Compounds and the Endocannabinoid System 306
Cannabinoids and CB1 and CB2 Receptors 307
Physiological Effects of Cannabinoids 309
Behavioral Effects of Cannabinoids 310
Subjective Effects of Cannabinoids 311
Cannabinoid Tolerance and Dependence 313
Cannabis and Risk of Lung Disease 315
FROM ACTIONS TO EFFECTS
Medical Marijuana 316
CHAPTER SUMMARY 318
KEY TERMS 318

12 Psychedelic Drugs 319
Did Hofmann Take a “Trip”? 320
Hallucinogens 321
Origins of LSD and Other Hallucinogens 322
LSD Ingestion and Effects 324
LSD and the Serotonin Neurotransmitter System 324
LSD’s Mild Physiological Effects and Profound Hallucinogenic Effects 326
Hallucinogens and Flashbacks 328
Mixed Stimulant–Psychedelic Drugs 329
MDMA Therapeutic and Recreational Use 329
MDMA Metabolism and the Length of Psychedelic Drug Effects 330
MDMA and Serotonin and Dopamine Neurotransmission 332
MDMA’s Psychedelic and Psychostimulant Effects 334

box 12.1 Social Interaction Tests 337
MDMA’s Psychostimulant Actions 338
MDMA Use in Psychotherapy 339
Tolerance and Dependence During Chronic MDMA Use 341
Recreational Use of Dissociative Anesthetics 341
Development of Phencyclidine, Ketamine, and Dizocilpine 342
Absorption and Elimination of Phencyclidine 342
Phencyclidine’s Dopamine and Serotonin Neurotransmission 343
Dissociative Anesthetics and Glutamate Neurotransmission 344
The Anesthetic and Psychedelic Effects of Dissociative Anesthetics 346
Dissociative Anesthetics and Schizophrenia-Like Effects 347
Tolerance, Dependence, and the Use of Dissociative Anesthetics 348

Other Psychedelic Drugs 348
FROM ACTIONS TO EFFECTS
Synesthesia 350
13 Treatments for Depression and Bipolar Disorder 353
Did Reserpine Revolutionize the Study of Antidepressant Medications? 354
Mental Disorders 355
Depression 355
- The Prevalence of Clinical Depression 356
- Neuroimaging Techniques and Functioning Differences in Depression 358
- Antidepressant Drugs and Depression 359
box 13.1 Animal Behavioral Models for Identifying Antidepressant Drugs 360
- Limitations in Antidepressant Drug Effectiveness and Development 367
- Antidepressant Drugs and Monoamine Neurotransmitter Systems 368
Bipolar Disorder 371
- Neurobiology of Bipolar Disorder 372
- Bipolar Disorder, Mood Stabilizers, and Other Drugs 373
FROM ACTIONS TO EFFECTS
Pharmacogenetic Factors and Treatment Response in Depression 377
CHAPTER SUMMARY 378
KEY TERMS 379

14 Treatments for Anxiety Disorders 381
Was Miltown Too Good to Be True? 382
DSM Definitions of Anxiety Disorders 382
The Amygdala’s Role in Anxiety 385
Anxious Feelings, the Amygdala, and the Sympathetic Nervous System 387
Stress and the HPA Axis 388
Anxiolytic and Antidepressant Drugs and the Treatment of Anxiety 391
- Barbiturates 391
- Benzodiazepines 394
- Anticonvulsant Drugs for Treating Anxiety 399
- Antidepressant Drugs and the Treatment of Anxiety Disorders 400
FROM ACTIONS TO EFFECTS
How Do Antidepressant Drugs Reduce Anxiety? 401
box 14.1 Animal Models for Screening Anxiety Treatments 402
CHAPTER SUMMARY 406
KEY TERMS 406
15 Antipsychotic Drugs 407
Kraepelin’s Influence in Distinguishing Neurological from Mental Disorders 408
Schizophrenia 408
box 15.1 Prepulse Inhibition 410
Schizophrenia’s Complex Neurobiological Profile 412
A Brief History of Schizophrenia and Its Treatment 414
Antipsychotic Drugs and the Treatment of Schizophrenia 415
Typical and Atypical Antipsychotic Drugs 417
Typical Antipsychotic Drugs: The First Effective Medications for Schizophrenia 418
Atypical Antipsychotic Drugs: First-Line Treatments for Schizophrenia 420
Third-Generation Antipsychotic Drugs 423
Administration Forms for Antipsychotic Drugs 423
box 15.2 Conditioned Avoidance and Catalepsy Measures Distinguish Atypical from Typical Antipsychotic Drugs 424
FROM ACTIONS TO EFFECTS
Antipsychotic Drug Actions and Dopamine Neurotransmission in Schizophrenia 425
CHAPTER SUMMARY 428
KEY TERMS 428

REFERENCES 429
GLINDEX 461
Since my undergraduate years in psychology, I’ve been fascinated by how psychoactive substances produce behavioral effects. This interest led to a career in psychopharmacology research that included many graduate and postdoctoral years studying lab rats in Skinner boxes and mazes. Once I began teaching undergraduates at a university, I found that my students were also curious about how drugs altered behavior. Students wondered not only about the physiological impacts of college drug use but also about how medicines can treat psychological disorders such as depression and schizophrenia. But of particular interest were the effects of psychoactive drugs on the brain. This introductory textbook developed from my efforts to address these interests.

An Introduction to Drugs and the Neuroscience of Behavior offers an introduction to the field of psychopharmacology from the perspective of how drug actions in the brain affect psychological processes. The text approaches this rapidly advancing field by providing an introduction to major topics in psychopharmacology. I kept in mind that students have different backgrounds in neuroscience. Therefore, Chapter 2 provides an introductory overview of the nervous system, and Chapter 3 provides a basic coverage of neurotransmission.

Chapter 4 provides an overview of pharmacology principles, covering important drug properties that are necessary for understanding psychoactive drug actions and effects. By mastering these chapters on the nervous system and pharmacology, students will possess a sufficient background to comprehend subsequent chapters on psychoactive drugs.

In addition to the major drug classes in psychopharmacology, this book addresses newer drugs and recent trends in drug use. For example, the current edition includes information on bath salts, energy drinks, modern tobacco products such as tobacco orbs, medicinal marijuana, synthetic marijuana, and antidepressant drug use for treating anxiety.

How the Materials Are Organized

During the development of this textbook, I carefully attended to how this material is delivered to an undergraduate audience. My approach consists of a careful, step-by-step presentation of information supplemented by illustrations,
figures, boxes, and several unique pedagogical features. These features include the following.

From Actions to Effects

Each chapter ends with a section called “From Actions to Effects.” These sections cover a topic that brings together information presented in the chapter, providing a way to assemble multiple topics for addressing a single concept. In particular, these topics focus on a concept that requires understanding a drug’s actions to account for its effects. These sections aid in the conceptual understanding of chapter material.

Stop & Check

Stop & Check questions conclude each section in each chapter. These questions allow students to self-assess their understanding of main points covered in the previous section.

Review!

Chapters include important reminders of facts or concepts covered in previous chapters. This helps integrate the diverse material covered in this text.

Research Techniques and Methods

Chapters include boxes that cover a research technique or method used in psychopharmacology research. These boxes model good working science and provide an easy reference when students come across research findings derived from each technique. These studies are also important in fostering critical thinking habits in students.

Key Terms

Each chapter ends with a list of key terms from the chapter. A definition is provided for each key term in a combined glossary and index at the end of the book.

Visit www.cengagebrain.com to access the free companion Web site for this text, which includes a glossary, flash cards, quizzes, and more.

Supplementary Materials

Acknowledgements

I warmly acknowledge the many experts who worked tirelessly to transform early drafts of well-intended ideas into a coherent collection of chapters that provide an excellent introduction to this field. I learned much from their many thoughtful critiques and perspectives, which sometimes caused sleepless nights, but always led to a better manuscript. Any errors or distortions that may be found are entirely my own.

Sharon L. Jones, Palo Verde College
William J. Jenkins, Mercer University
Sherry Tiffany Donaldson, University of Massachusetts Boston
Scott I. Cohn, Western State College of Colorado
Judith E. Grisel, Furman University
John Kelsey, Bates College
Martin Acerbo, University of Iowa

Finally, I would like to thank the many students who took the time to read these chapters. Their feedback contributed greatly to keeping this text appropriate for an undergraduate audience. In particular, I would like to acknowledge Michael Berquist, Stacy Paisley, Katelin Matazel, and Ashley Schmeling.