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ABSTRACT 

ANTIDEPRESSANT EFFECTS OF THE NTS1 AGONIST PD149163 IN THE 

FORCED SWIM TEST 

By 

Lawrence Michael Carey IV 

 Neurotensin is a neuropeptide that influences monoaminergic neurotransmission 

in areas of the brain involved in the pathophysiology of depression.  The forced swim test 

is a commonly used screening model for putative antidepressant medications.  Drugs that 

have antidepressant effects in humans reliably decrease the time animals spend in an 

immobile posture in the forced swim test without increasing general locomotor activity as 

measured in an open field test. The present study sought to examine the effects of the 

neurotensin NTS1 receptor agonist PD149163 and the tricyclic antidepressant drug 

imipramine on immobility in the forced swim test and on locomotor activity in an open 

field in mice.  PD149163 decreased the total time spent immobile at doses of 0.1 mg/kg 

and 1.0 mg/kg, without increasing overall locomotor behavior in the open field test.  

Imipramine produced a reduction in immobility at a dose of 10.0 mg/kg, but not at 1.0 

mg/kg, without increasing locomotor activity. These results indicate that since drugs that 

target the neurotensin system display antidepressant properties in rodent models of 

depression they may represent a novel mechanism for treatment of depressive symptoms 

in humans.   
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1 

INTRODUCTION  

 
 

Depression is a serious medical condition that is estimated to affect roughly 10-

25% of women, and 5-12% of men (American Psychiatric Association, 2013).  

Depression may occur at any age, but the average age of onset occurs during the mid 

twenties (American Psychiatric Association, 2013). The time-course and duration of 

symptoms is variable as some people will only experience isolated episodes of 

depression, while others will have recurring episodes throughout their lives. Those who 

develop more than one episode of depression are at a higher risk of developing 

subsequent episodes later in life.  Approximately 60% of individuals who experience one 

major depressive episode will experience a second episode later in life. Approximately 

70% of people who do develop a second episode will experience a third depressive 

episode, and among those who experience a third episode, 90% will experience further 

problems with depression (American Psychiatric Association, 2013).  Several factors may 

influence the development of depression, including alterations in several of the brain’s 

monoaminergic neurotransmitter systems, genetics, substance abuse, and a variety of 

other psychiatric conditions.  The World Health Organization has estimated that 

depression will constitute the second leading cause of illness-related disability by 2020 

(Murray & Lopez, 1997). On a global scale, medications to treat depression are the third 

highest selling class of drug (Celada et al., 2004), most of which target one or more of the 

brain’s monoaminergic neurotransmitter systems. However, currently available 

antidepressant medications do not adequately treat the disorder, and patient 
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responsiveness to treatment is poor. Various studies have reported values ranging from 

fewer than 50% to less than 28% of patients being effectively treated with one medication 

alone (Kocsis, 2000, Trivedi, 2006, Fava, 2000). Subsequently, physicians are required to 

prescribe a cocktail of medications. Furthermore, in the patients who did respond to 

antidepressant treatment in these studies, symptom improvement was observable only 

after 10-14 weeks. The protracted latency to the onset of therapeutic effects, as well as 

the staggeringly low response rates, indicates the need for novel pharmacotherapies for 

the treatment of depression.  

 

The Monoamine hypothesis of depression 

 Much of what we know about the biological basis of depression has been inferred 

from studying the effects that antidepressant drugs exert in the brain. Beacuse most drugs 

that are effective at combating the symptoms of depression in humans alter 

neurotransmission of one or more of the monoamine neurotransmitter systems, to date, 

much of the research into the etiology of the disorder has focused on a monoamine-based 

hypothesis of dysfunction. In the mid-1960’s depression began to gain recognition as a 

medical disorder with organic causes. The monoamine hypothesis of depression states 

that the symptoms of depression are caused by deficiencies in monoamine 

neurotransmission, and by correcting these imbalances, the symptoms may be 

ameliorated (Schildkraut, 1965).   

 The monoamines are a family of structurally related neurotransmitters that include 

the catecholamines dopamine, norepinephrine, and epinephrine, and the indolamine 
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serotonin. Although these neurotransmitters differ widely in their distribution and types 

of receptors they act upon, they share several characteristics that are of interest to the 

etiology and treatment of depression. The monoamines are packaged into vesicles by the 

vesicular monoamine transporter, of which two distinct subtypes exist. Vesicular 

monoamine transporter type 1 (VMAT1) is primarily located in the periphery, while 

vesicular monoamine transporter type 2 (VMAT2) is located in the central nervous 

system (Masson et al., 1999).  The packaging into vesicles is a crucial step in monoamine 

neurotransmission, as it maintains the concentration gradient of monoamines by aiding in 

their uptake from the extracellular space. This process also serves to protect them from 

leakage and premature metabolism in the presynaptic terminal (Masson et al., 1999).  

Alterations in VMAT2 may play a role in the genesis of depressive symptoms, as well as 

an individual’s responsiveness to treatment (Valevski, 2010).  

The monoamines also share similar mechanisms of degradation.  Two different 

enzymes are involved in the metabolism of monoamines: monoamine oxidase (MAO), 

and catechol O-methyltransferase (COMT). MAO metabolizes dopamine, serotonin, and 

norepinephrine, while COMT primarily metabolizes dopamine and norepinephrine. MAO 

regulates monoamine neurotransmission by degrading monoamines, and in normally 

functioning individuals MAO acts to preserve homeostasis of neurotransmitter levels in 

the brain. When levels of monoamines increase, increases in MAO are also observed. 

Likewise, when brain levels of monoamines decrease, MAO levels also decrease 

(Schwartz, 2013). Therefore, dysfunctions in MAO levels indicate one possible avenue to 

explain monoaminergic deficiencies observed in depression (Schwartz, 2013).  COMT-

mediated degradation of dopamine may also play an important role in the genesis of 
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depressive symptoms, as individuals with altered levels of COMT activity have been 

found to be at an increased risk for development of depression (Anytpa et al., 2013). 

While the monoamines share several regulatory mechanisms regulating their release and 

degradation, their specific receptor signal transduction mechanisms and neural regions 

innervated by the individual neurotransmitters differ greatly. For these reasons, I will 

consider each of the monoamine’s specific contributions to the generation of depressive 

symptoms separately.  

 

The role of dopamine in depression 

 Dopamine belongs to the catecholamine family of the monoamine 

neurotransmitters and acts on five different subtypes of metabotropic receptors.  These 

five subtypes of receptors are designated the D1, D2, D3, D4, and D5 receptors. Two 

separate families of dopamine receptors can be drawn from these five subtypes of 

receptors, the D1-like family, which includes the D1 and D5 receptors, and the D2-like 

family, which includes the D2, D3 and D4 receptors (Vallone et al., 2000).   

 The two dopamine receptor families differ in the downstream effects they exert 

intracellularly upon activation. The D1-like family is generally considered to have 

stimulatory effects on the cells that express them, while the D2-like family is generally 

considered to have inhibitory effects (Vallone et al., 2000).  All dopamine receptors exert 

their effects on cellular functioning through activation of G proteins coupled to the 

receptors. The D1-like family act as positive regulators of cyclic AMP by directly 

activating adenylyl cyclase, which in turn activates protein kinase A (PKA) (Jackson & 
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Westlind-Danielsson, 1994). PKA phosphorylates different cytoplasmic and nuclear 

proteins, leading to alterations in gene expression, cellular metabolism, and various other 

modulatory effects on ion channel functioning (Choi et al., 1993). The D2-like family 

exerts their inhibitory effects by inhibiting adenylyl cyclase activity (Vallone et al., 

2000).    

 Dopamine is synthesized by neurons in three discrete brain regions, which project 

to four major targets. Dopamine neurons in the ventral tegmental area project to cortical 

areas via the mesocortical pathway, and the limbic system via the mesolimbic pathway.  

Dopamine neurons in the substantia nigra pars compacta project to the striatum via the 

nigrostriatal pathway. Small populations of dopamine neurons in the hypothalamus 

project to the pituitary gland via the tuberoinfundibular pathway.   

Some of the functions that are interrupted in depression- such as motivation, 

psychomotor behavior and feelings of pleasure- are all processes regulated, in part, by 

dopamine neurotransmission. Furthermore, not all individuals are responsive to 

medications that modulate serotonin and/or norepinephrine neurotransmission. Therefore, 

deficits in these dopamine projection streams may play a role in the genesis of depressive 

symptoms. The psychomotor symptoms observed in depression may in fact be due to 

alterations in dopaminergic neurotransmission to brain regions associated with motor 

behavior, as upregulation of D2 receptors have been observed in the basal ganglia and 

cerebellum in depressed individuals (D’haenen et al., 1994). Upregulation of the 

dopamine reuptake transporter in the striatum have also been observed in depressed 
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individuals, which may contribute to low synaptic levels of dopamine (Laasonen-Balk et 

al., 1999).   

The symptom of anhedonia experienced by people with depression may also be 

linked to dopaminergic neurotransmission.  In rodent models of depression, such as the 

effort expenditure behavioral model, which tests an animal’s willingness to work for a 

reward, reductions in dopaminergic neurotransmission to the nucleus accumbens 

correlate with reductions in efforts to obtain rewards (Salamone et al., 1999 & Neil et al., 

2002).  In this task, reductions in the effort an animal is willing to expend to obtain a 

reward is used as an index of anhedonia, or a decrease in the hedonic value of a reward, 

which is used as a correlate to the human symptoms of anhedonia. Administration of 

tricyclic antidepressants, or the selective serotonin reuptake inhibitor fluoxetine have 

been shown to increase dopaminergic neurotransmission to the nucleus accumbens 

(Ichikawa & Meltzer 1995).  In the chronic mild stress model of depression- where 

animals are exposed to mild stressors such as periods of food and water deprivation, 

changes in the lighting or temperature conditions in their home cages- decreases in D2 

and D3 receptor binding have been observed in the nucleus accumbens, an effect which is 

reversed by chronic administration of antidepressant medication (Papp et al., 1994).  

Rodents exposed to chronic mild stress conditions also display reductions in the 

locomotor and reinforcing effects of the D2 & D3 receptor agonist quinpirole (Wilner et 

al., 1992).  

In the forced swim test, which is a rodent screening model for novel 

antidepressants, animals forced to swim in an inescapable environment rapidly develop 
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an immobile posture. The time an animal spends immobile in used as an indicator of 

distress in this task, which can be reduced by administration of D2 & D3 receptor agonists, 

dopamine/norepinephrine reuptake inhibitors, and tricyclic antidepressants. These effects 

can be blocked by D2 & D3 receptor antagonists (Basso et al., 2005 & Borsini et al., 

1990).  Studies designed to test for alterations in dopamine levels in human subjects have 

revealed lower cerebrospinal fluid concentrations of homovanillic acid, a dopamine 

metabolite, in depressed patients compared to controls. Once dopamine is released it is 

metabolized into homovanillic acid via MAO and/or COMT. Lower levels of metabolites 

circulating in cerebral spinal fluid are thought to correlate to decreases in 

neurotransmitter release. These findings indicate since these depressed individuals have 

lower levels of dopamine metabolism occurring as evidenced by their decreased levels of 

homovanillic acid, they may also have deficiencies in dopaminergic neurotransmission. 

Lower levels of circulating dopamine may therefore be correlated with depression 

(Mendels et al., 1972).  

The ability of an antidepressant drug to increase dopaminergic neurotransmission 

has been shown to correlate with therapeutic efficacy (Rampello et al., 1991).  Further 

involvement of the dopamine reward system in the genesis of anhedonic symptoms of 

depression have been drawn from studies designed to measure the reward responsiveness 

of non-medicated depressed patients in response to administration of amphetamine 

(Dunlop & Nemeroff, 2007). Non-medicated, severely depressed patients had a 

heightened sensitivity to the rewarding effects of amphetamine administration versus 

controls. These findings caused investigators to believe that to compensate for a possible 

decrease in dopaminergic neurotransmission, up-regulation of dopamine receptors 
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coupled with a down-regulation of dopamine transporters may have occurred, resulting in 

the elevated sensitivity of depressed subjects to amphetamine (Dunlop & Nemeroff, 

2007).   

This hypothesis has been supported through the use of functional magnetic 

resonance imaging. Following amphetamine administration, non-medicated depressed 

individuals displayed greater levels of behavioral responsiveness, and differences in 

activity in the ventrolateral prefrontal cortex, orbitofrontal cortex, caudate nucleus and 

putamen when compared to healthy controls (Tremblay et al., 2005). Postmortem 

findings in depressed individuals who had committed suicide found reductions in 

dopamine transporter expression, and increases in D2 & D3 receptors in the central and 

basal amygdalar nuclei when compared to controls, while D1 receptor expression did not 

differ between depressed individuals and controls (Klimek et al., 2002).  The exact role 

of the dopaminergic system in the genesis of depressive symptoms remains under 

investigation. However, the dopamine plays a pivotal role in non-pathological behaviors 

such as attention, reward, pleasure, motivation, and movement. Since the core symptoms 

of depression involve dysfunctions in many of these processes, it is likely that the 

dopamine system contributes in some way to the pathophysiology of depression.  

 

The role of serotonin in depression 

 The synapses that serotonin- (5-HT) producing neurons of the raphe system make 

with other brain regions may play a role in the genesis of depressive symptoms. For 

example, serotonergic neurons originating in the median raphe project to areas of the 
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limbic system, making them likely to modulate anxiety, stress, motivational, and reward 

based behaviors. Serotonergic neurons originating in the dorsal raphe nuclei project to 

areas of the basal ganglia and the substantia nigra, which provides modulatory input to 

the basal ganglia, indicating a potential for modulatory effects on psychomotor behavior 

(Frazer & Hensler, 1994).  The diversity of serotonergic signaling is immense, as at least 

15 serotonin receptor subtypes have been identified (Nichols & Nichols, 2008).  The 

serotonin receptors can be classified into several families including the 5-HT1 and 5-HT2 

receptor families. The other serotonin receptors are designated 5-HT3, 5-HT4 5-HT5, 5-

HT6 and 5-HT7. All of the serotonin receptors, with the exception of the 5-HT3 receptor, 

are metabotropic receptors (Nichols & Nichols, 2008).  

 The 5-HT1 family are located both pre- and post-synaptically and mediate their 

inhibitory effects via coupling of the receptor to a Gi/o protein, which leads to an 

inhibition of adenylyl cyclase, preventing the accumulation of cyclic AMP, and thus 

reducing activation of the PKA and its intracellular targets (Nichols & Nichols, 2008).  

Of the 5-HT1 receptor family, the 5-HT1A and 5-HT1B receptors seem to play the 

largest role in the onset of depression. The 5-HT1A receptor is present on serotonergic cell 

bodies in the dorsal and median raphe where it mainly functions as a somatodendritic 

autoreceptor, decreasing the firing rate of serotonin releasing neurons by activation of 

inward rectifying potassium channels and creating sustained levels of hyperpolarization 

(Aghajanian et al., 1995). As for the neural targets serotonin neurons project to, including 

the frontal cortex, amygdala, hippocampus, septum and entorhinal cortex, 5-HT1A 

receptors exist mainly postsynaptically, although this difference in receptor expression 



 
 

10 

may still have a modulatory effect on serotonin release via feedback loops to the raphe 

system (Hensler, 2003).  

The 5-HT1A receptor seems to play a role in the response to antidepressant drug 

administration. Initially, administration of a selective serotonin reuptake inhibitor 

increases serotonin concentrations in the raphe nuclei, but due to the inhibitory nature of 

the 5-HT1A autoreceptor, the drug initially causes decreases in the firing rate of midbrain 

raphe nuclei. After some time however, these receptors are thought to undergo functional 

desensitization allowing for a disinhibition of raphe serotonergic neurons (Nichols & 

Nichols, 2008).  

By administering a 5-HT1A antagonist, it is theorized that the relatively long 

latency period for the onset of therapeutic efficacy in response to antidepressant drug 

administration can be shortened, a hypothesis which has been supported in animal models 

of depression (Artigas, 1993). Mice with a genetic deletion of the serotonin 5-HT1A 

receptor also display depressive- and anxiety-like behaviors in a variety of behavioral 

assesments including the forced swim test, elevated plus maze, and open field tests 

(Ramboz et al., 1998).  

The 5-HT1B receptor mimics some of the effects of the 5-HT1A receptor in 

response to selective serotonin reuptake inhibitors. The 5-HT1B receptor is selectively 

down-regulated in the raphe nuclei following treatment with the selective serotonin 

reuptake inhibitor fluoxetine, while expression in areas in the terminal field of serotonin 

releasing neurons remains unchanged (Neumaier et al., 1996). Similar to the 5-HT1A 

receptor, the 5-HT1B receptor may also undergo functional desensitization in response to 
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chronic antidepressant administration, suggesting the possibility that antagonizing the 5-

HT1B receptor may also be a potential target to decrease the latency to the onset of 

therapeutic effects of antidepressant medications.  

The 5-HT2 receptor family also has a few receptor subtypes that are pertinent to 

the pathophysiology of depression. The 5-HT2 receptor family are metabotropic receptors 

coupled to several different members of the Gq family of G proteins (Nichols & Nichols, 

2008). Activation of Gq proteins achieves general stimulatory effects via activation of the 

PKC signaling pathway, which gives rise to increased intracellular calcium levels via 

modulation of ion channels or release from the endoplasmic reticulum. These effects can 

ultimately result in a diverse array of intracellular changes to cells.  

Many antidepressant medications target 5-HT2A receptors, particulary in the 

prefrontal cortex (Celada et al., 2004).  5-HT2A receptors are highly expressed in the 

neocortex, and their actions there are thought to mediate aspects of executive functioning 

that are often impaired in people with depression. Many clinically effective 

antidepressant medications block the actions mediated by 5-HT2A receptors, and with 

chronic treatment, downregulation of 5-HT2A receptors has been observed (Marek et al., 

2003). In the differential reinforcement of low rate responding at 72 second schedules 

behavioral model, in which animals must learn to wait a period of 72 seconds between 

responses in order to receive rewards, blockade of 5-HT2A receptors in the prefrontal 

cortex augments the antidepressant effects of selective serotonin reuptake inhibitors. 

These effects are thought to be mediated by postsynaptic 5-HT2A receptors, as the 

observed effects did not involve a presynaptic increase in the release of serotonin (Marek 
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et al., 2001). The medial prefrontal cortex sends projections to many areas associated 

with the different symptoms of depression, such as the nucleus accumbens, the amygdala, 

limbic structures, the hypothalamus, and other prefrontal regions. Changes in prefrontal 

functioning may, therefore, influence the development of anhedonic symptoms: anxiety 

and altered stress responses, mood disturbances and motivational problems, alterations in 

endocrine function and changes in hunger, appetite, and sleep behavior. Additionally, 

serotonergic modulation of the connections to these brain regions may lead to 

impairments in memory and other cognitive functions (Groenewegen & Uylings, 2000).   

The 5-HT2C receptor is also of interest in determining the underlying 

pathophysiology of depression.  5-HT2C receptors are highly expressed in the amygdala, 

and the application of 5-HT2C agonists produces patterns of neuronal activation in the 

amygdala, hippocampus and hypothalamus indicative of anxiety behavioral states 

(Hackler et al., 2007). Via action at the amygdala and hypothalamus, the 5-HT2C receptor 

may be involved in modulation of the hypothalamic-pituitary-adrenal axis, and may play 

a role in the elevations in cortisol observed in depressed individuals (Heisler et al., 2007).  

Two more noteworthy serotonin receptors may also play a role in the genesis of 

depressive symptoms. Both are coupled to the Gs family of G proteins, which have an 

overall stimulatory effects on expressing cells by driving cAMP production via 

stimulation of adenylyl cyclase, which, in turn, activates the PKA signaling pathway 

(Nichols & Nichols, 2008).  The 5-HT6 receptor is expressed throughout the striatum, 

nucleus accumbens, cortex, olfactory tubercle, hippocampus, thalamus, amygdala, 

hypothalamus, and cerebellum (Nichols & Nichols, 2008). The 5-HT6 receptor alters 
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dopaminergic and acetylcholine levels, an effect that has the potential to enhance the 

anhedonic and cognitive symptoms seen in depression (Nichols & Nichols, 2008). The 5-

HT6 receptor may also play a role in the effects of antidepressant medications. While 

antagonism of the 5HT6 receptor blocks the antidepressant effects of selective serotonin 

reuptake inhibitors, agonists at the 5HT6 receptor have shown promise as antidepressant 

agents in animal models (Svenningsson et al., 2007, & Wesolowska et al., 2007).   

There is interest in the potential role the serotonin 5-HT7 receptor may play in the 

pathophysiology of depression. Although a lack of specific agonists for the receptor have 

limited efforts in determining the exact function of this receptor, knockout studies in 5-

HT7 deficient mice have demonstrated a decrease in immobility in the forced swim test, a 

behavioral index which is intended to measure antidepressant activity in humans (Guscott 

et al., 2005). Administration of 5-HT7 antagonists also promotes the effects of 

antidepressant medications in the forced swim test in wild type mice (Wesolowska et al., 

2007). 

 

The role of norepinephrine in depression 

There are three general types of noradrenergic adrenoceptors. β adrenoceptors are 

generally stimulatory in nature via coupling to Gs-type G proteins; α1 adrenoceptors are 

also stimulatory in nature via coupling to Gq-type G proteins, while α2  adrenoceptors 

exert inhibitory effects through their coupling to Gi-type G proteins.  α1 adrenoceptors 

may play a facilitatory role in serotonergic neurotransmission, as application of α1 
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antagonists cause a decrease in serotoninergic neuronal firing in the raphe nuclei 

(Barabaran & Aghajanian, 1980). Presynaptically, α2 receptors serve mainly to modulate 

the release of both serotonin and norepinephrine. As either autoreceptors, when acting on 

adrenergic neurons, or heteroreceptors- receptors that modulate the function of a cell via 

neurotransmitter released from adjacent neurons- when acting on serotonergic neurons.  

Consistent with the adaptations observed in receptor sensitivity and distribution 

studies for the other monoamine neurotransmitters in response to chronic antidepressant 

administration, and in animal models of sustained depressive symptoms, adaptations also 

occur in the noradrenergic system. Desensitization and downregulation of expression of β 

adrenoceptors has been observed following chronic administration of the tricyclic 

antidepressant desipramine, and also following electroconvulsive therapy (Heal et al., 

1989). Upregulation of β adrenoceptors has also been observed in depressed individuals, 

and a decrease in β adrenoceptor expression is considered a clinical marker for 

antidepressant drug efficacy (Leonard, 1997). Changes in α1 adrenoceptor expression 

have also been reported, but in contrast to β adrenoceptors, α1 adrenoceptors seem to be 

up-regulated in response to antidepressant drug administration. Results of radioligand 

binding assays have demonstrated an increase in α1 binding following repeated 

administration of the tetracyclic antidepressant mirtazapine, leading investigators to 

believe that increases in the responsiveness and number of α1 adrenoceptors may have 

taken place (Rogoz, et al., 2002). These results have been duplicated using the 

norepinephrine reuptake inhibitor reboxetine (Rogoz & Kolasiewicz,, 2001).   
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α2 adrenoceptors are thought to undergo a functional desensitization in response 

to chronic antidepressant administration, a process that may account for the latency in the 

onset of therapeutic efficacy in antidepressant drugs. As heteroreceptors on serotonergic 

neurons, α2 adrenoceptors are thought to decrease the release of serotonin. As 

autoreceptors, α2 adrenoceptors decrease the release of norepinephrine. Thus, by 

modifying the receptors expression or efficacy, increases in adrenergic and serotonergic 

neurotransmission may be achieved (Dennis et al., 1987).  

Evidence for this desensitization hypothesis is drawn from studies using a 

combination of chronic antidepressant treatment combined with α2 agonists to measure 

decreases in the behavioral effects of α2 agonism. Following 3-4 weeks of treatment with 

the tricyclic antidepressant desipramine, decreases in the behavioral responses to α2 

agonism, including antinociceptive effects, and durations in the loss of righting reflexes 

were observed. These results were reversible by administration of α1 antagonists (Guo et 

al., 1998), and indicate that α1 receptors may play a modulatory role in antidepressant 

induced hyporesponsiveness to α2 agonists.  

Further evidence for the desensitization hypothesis has come from findings that 

norepinephrine concentrations are significantly elevated following chronic treatment with 

desipramine, an effect which lasts following cessation of drug treatment. This stimulatory 

effect on norepinephrine release was further potentiated following a challenge 

administration of desipramine 48 hours after drug treatment had ceased (Sachetti et al., 

2001). To test whether these effects were specific to the α2 receptor, the α2 agonist 

clonidine was administered and resulted in decreases in noradrenergic neurotransmission 



 
 

16 

in control animals with no change observed in desipramine-treated animals (Sachetti et 

al., 2001). These findings indicate that the facilitatory effects desipramine exerts on 

noradrenergic neurotransmission may be due to a lasting desensitization specifically at α2 

adrenergic receptors.  

Changes in the expression of α2 receptors have been demonstrated in humans as 

well. Treatment with tricyclic antidepressant drugs attenuates the hypotension, sedation, 

and reduction in norepinephrine turnover in response to clonidine administration in 

humans as well as animals (Charney 1981 & 1983), an effect that did not occur following 

treatment with the tetracyclic antidepressant mianserin (Charney et al., 1984).  

Furthermore, a review of postmortem studies of suicide victims not receiving 

antidepressant medication found increases in α2 expression in the prefrontal cortex of 31-

40% of individuals observed (Garcia-Sevilla et al., 1999). These findings, taken together, 

may indicate that while in some instances α2 desensitization may play a role in the 

efficacy of antidepressant medications such as the tricyclics, in other antidepressant 

medications like the tetracyclics, it may not be necessary to achieve therapeutic efficacy.  

These results may be further interpreted as an indication of the diversity in the 

pathophysiology of depression, which is exemplified by the fact that not everyone reacts 

the same way to certain classes of antidepressant medication. Medications with one 

mechanism of action (inhibition of serotonin reuptake) may produce great improvements 

in symptoms in one patient, while providing no relief whatsoever in another.  
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Pharmacotherapies for depression 

Most of the currently available medications used in the treatment of depression in 

humans target one or more of the brain’s monoaminergic neurotransmitter systems. 

Typically, these medications aim to increase levels of monoamines in the brain. A variety 

of medications with varying mechanisms of action are currently available to physicians to 

assist patients in the management of depressive symptoms. These include: (1) the 

selective serotonin reuptake inhibitors, which increase the availability of serotonin 

synaptically via blockade of serotonin reuptake transporters, (2) mixed 

serotonin/norepinephrine reuptake inhibitors, which increase the availability of serotonin 

and norepinephrine via blockade of their reuptake, (3) monoamine oxidase inhibitors, 

which prevent the degradation of monoamines by monoamine oxidase, (4) 

dopamine/norepinephrine reuptake inhibitors, which increase synaptic concentrations of 

dopamine and norepinephrine via blockade of dopamine and norepinephrine reuptake, (5) 

and the tricyclic antidepressants, which act as serotonin/norepinephrine reuptake 

inhibitors and antagonists at a range of receptors.   

The tricyclics were among the first available treatment strategies for depression, 

with imipramine being the first clinically available tricyclic antidepressant in the early 

1950’s (Lopez-Munoz et al., 2009). There is some variation among the specific affinities 

between tricyclic antidepressants, but they were originally developed as anti-

histaminergic compounds and most commonly act as antagonists at the histamine H1 

receptor (Lopez-Munoz, 2004). The tricyclic imipramine acts as a potent inhibitor of 

serotonin reuptake, an inhibitor of norepinephrine reuptake, and as an antagonist at H1 
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receptors, α1 adrenoceptors, cholinergic muscarinic receptors, and 5-HT2A receptors 

(Gillman, 2007).  This binding profile may account for both the therapeutic efficacy of 

imipramine and some of the unpleasant side effects associated with the use of tricyclic 

antidepressants. For instance, although H1 antagonism may play a role in the therapeutic 

efficacy of imipramine, it may also contribute to the sedation and weight gain observed 

following treatment (Kroeze et al., 2003). Antagonism at the 5-HT2A receptor has been 

hypothesized to play a role in improving the observed dysfunctions in sleep observed in 

depressed individuals (Thase, 2006).  Antagonism at the α1 receptor is presumed to play 

a role in the development of postural hypotension developed following administration of 

tricyclics like imipramine (Smith, 2001).  The development of anti-muscarinic side 

effects like dry mouth, blurred vision, urinary retention, tachycardia, constipation and 

impairments in memory arise from antagonism of muscarinic receptors (Gillman, 2007). 

These anti-muscarinic properties are especially worrisome for the elderly, where 

therapeutic doses have been noted to produce delirium (Gillman, 2007).   

In addition to these adverse effects, responsiveness to antidepressant therapy 

varies on an individual basis. These variations depend largely on the severity of 

symptoms. Patients with mild to moderate depression seem to respond less favorably to 

antidepressant treatment (Zimmerman et al., 2002). Patient compliance may also play a 

role in the ineffectiveness of antidepressant medications. Due to the long onset of action 

of these medications and the presence of adverse side effects at therapeutic dosages, it 

has been estimated that as few as 30% of patients take their medications as prescribed 

(Weich et al., 2007 & Bockting et al., 2008). The combination of adverse effects and the 

long latency (10-14 weeks) to the onset of therapeutic actions seen in antidepressant 
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medications highlight the need for alternative mechanisms of action for the treatment of 

depression.  

 

The neurotensin system 

Neurotensin is a neuropeptide signaling molecule first isolated in the bovine 

hypothalamus in 1973 by Robert Carraway and Susan E. Leeman. The full peptide 

molecule consists of 13 amino acid residues, of which segments 8-13 are linked to the 

biological effects of neurotensin (Lambert et al., 1995). There are currently three 

identified neurotensin NTS receptors within the central nervous system, designated the 

NTS1, NTS2 and NTS3 receptors.  

The three receptors differ significantly in their affinities for the neurotensin 

peptide. The NTS1 receptor binds neurotensin with high affinity and is insensitive to the 

H1 receptor antagonist levocabastine (Tanaka, et al., 1990), while the NTS2 receptor has 

low affinity for neurotensin itself, but binds levocabastine with high affinity (Vincent et 

al., 1999).  Neurotensin acts as an agonist at the NTS1 receptor, and upon binding to the 

NTS1 receptor, neurotensin causes a coupling of the agonist bound receptor to a Gq-type 

G-protein, and subsequent activation of an associated signal cascade. It is unclear 

precisely what action neurotensin binding to the NTS2 receptor produces, as species-

specific differences exist in the post-binding events associated with the NTS2 receptor 

(Vincent et al., 1999). Clones of human NTS2 receptors transfected into Chinese hamster 

ovaries or Xenopus oocytes are antagonized by application of neurotensin or 
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levocabastine, while both of these compounds act as agonists at the NTS2 receptor in 

mouse or rat tissue preparations (Vincent et al., 1999).  

The NTS1 & NTS2 receptors are both G-protein coupled receptors, while the NTS3 

receptor is unique, as it is not coupled to a G-protein. The neurotensin 3 receptor has a 

low affinity for neurotensin and shares a 100% amino acid homology with the 

gp95/sortilin complex previously isolated from human tissue (Mazella et al., 1998). The 

physiological relevance of this receptor is unclear, as no signaling mechanisms have been 

linked to this binding site (Tyler-McMahon, 2000).  

The neurotensin peptide plays a role in a diverse set of functions in both the 

central and peripheral nervous system. In the periphery, neurotensin acts as a paracrine 

and endocrine peptide with notable effects in the gastrointestinal tract, cardiovascular 

system, and in the proliferation of normal and cancerous cell growth (Tyler-McMahon et 

al., 2000).  In the central nervous system, administration of neurotensin produces 

hypothermia, reduces nociception, and has modulatory effects on monoaminergic 

neurotransmission and effects on endocrine transmission, stimulating the release of 

corticotrophin releasing factor, galanin, enkephalin, cholecystokinin and growth 

hormone–releasing hormone (Tyler-McMahon, 2000). However, due to the large size of 

the full peptide, and the fact that it is degraded rapidly via protease metabolism following 

systemic administration, the full peptide form of neurotensin is does not cross the blood 

brain barrier. However, only the final 6 amino acids (8-13) of the neurotensin peptide are 

needed for the full physiological effects of the neurotensin peptide, a finding which has 

allowed for the development of brain penetrant analogs of the 8-13 segment of the 
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neurotensin peptide (Tyler-McMahon, 2000). NTS1 agonists produce all the 

physiological and behavioral responses associated with neurotensinergic 

neurotransmission. Therefore, until further knowledge can be gained regarding the 

biological relevance of the NTS2 receptor within and across species, the effects of 

manipulating the neurotensin system are assumed to be mediated by the NTS1 receptor. 

 

The NTS1 receptor 

As the NTS1 receptor is the only neurotensin receptor that binds neurotensin with 

high affinity, it is assumed to play the most important role in the physiological actions of 

the neurotensin peptide.  NTS1 activation mediates its excitatory effects following agonist 

binding through a preferential coupling to Gq/11 G-proteins, leading to activation of the 

protein kinase C pathway through activation of phospholipase C and phosphatidylinositol 

4,5-biphosphate with inositol triphosphate and Ca+2 acting as second messengers 

(Richard et al., 2001). The agonist bound NTS1 receptor may also bind to Gs G-proteins 

in certain circumstances, as increases in cAMP production have been found following 

agonist application in Chinese hamster ovary tissue preparations (Yamada et al., 1994). 

Activation of the NTS1 receptors in these tissue preparations also results in a prolonged 

activation of mitogen-activated protein kinases and the growth associated gene krox-24. 

These effects were eliminated following application of the NTS1 antagonist SR 48692 

(Poinot-Chazel, et al., 1996).  

Once an agonist binds to the NTS1 receptor several proposed mechanisms mediate 

the physiological effects of the agonist-bound receptor. First, upon binding internalization 
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of the agonist/receptor complex may function as a transcriptional regulator. Second, 

allosteric interactions between the NTS1 receptor and the D2 receptor may occur, and 

binding of an agonist to the NTS1 receptor may lower the affinity of the D2 receptor to 

bind ligands. Third, NTS1 receptor activation may alter neuronal excitability, and 

following agonist binding may alter second messenger signal cascades and ion channel 

functioning through it’s coupling to G-Proteins (Binder et al., 2001, St-Gelais et al., 

2006).  

 

Distribution of the NTS1 receptor 

The NTS1 receptor is widely distributed throughout many areas of the brain. A 

comprehensive mapping of the location of NTS1 receptors in the rat brain using 

immunohistochemical labeling comparatively verified with application of 125-Iodine 

labeled neurotensin was performed by Boudin et al. (1996). In the telencephalon, NTS1 

receptor immunoreactivity was discovered on pyramidal cell bodies within layers II-III & 

V, and on dendrites in layer IV in the frontal and parietal cortices. In the anterior 

cingulate, endopiriform and insular cortices, NTS1 receptors were detected mainly on 

axon terminals within layer IV. In the perirhinal cortex, labeling was present on axon 

terminals in layers I-III & VI, with punctate labeling present on cell bodies in layers IV 

&V. Entorhinal cortical labeling displayed a weak and scattered immunoreactive signal 

across cell bodies. In the retrosplenial cortex labeling occurred primarily in terminal 

regions in layer I, while layers II & III displayed labeling on both cell bodies and axon 

terminals.  Within the caudate-putamen, NTS1 receptors were identified on axon 
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terminals and cell bodies, and on cell bodies and axons within the nucleus accumbens. 

Within the olfactory tubercle, labeling was concentrated on dendrites and cell bodies 

within the granule cells of the islands of Calleja. In the basal forebrain NTS1 receptors 

were located on cell bodies within the medial septum, diagonal band of Broca, and were 

densely labeled on dendrites and cell bodies within the magnocellular preoptic nucleus, 

substantia innominate, and globus pallidus. Axonal labeling with sparse labeling of cell 

bodies was present within the lateral septum and the bed nucleus of the stria terminalis.  

Labeling within the amygdala differed between the substructures therein, with cell 

bodies, dendrites and axon terminals present on the posterior cortical nucleus, neuropil 

labeling within the basomedial and lateral amygdalar nuclei, and axonal labeling within 

the central nucleus. In the hippocampus, NTS1 receptors were found in the presubiculum, 

parasubiculum, and subiculum on cell bodies, dendrites, and axon terminals. In the CA1, 

CA2, and CA3 regions, as well as the pyramidal and granule cell layers labeling was 

detected on cell bodies. Within the diencephalon, several thalamic nuclei also displayed 

an immunoreactive signal. Labeling was strongest on cell bodies within the anterior 

dorsal thalamic nucleus, though labeling was also present on beaded fibers within the 

paraventricular thalamic nucleus, cell bodies and neuropil in the reticular nucleus, and 

cell bodies and dendrites within the nucleus of the optic tract. In the hypothalamus, 

densely labeled axon terminals were identified within the medial and lateral nuclei, and 

densely labeled cell bodies and processes were identified in the suprachiasmatic nucleus. 

In the periventricular nucleus, the parvocellular part of the anterior paraventricular 

nucleus, as well as the lateral mammillary nucleus, NTS1 receptors were identified on 

axons. In the zona incerta, NTS1 receptors were located on cell bodies in the ventral 
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portion, while dorsally they were present mainly on dendrites. Scattered labeling was also 

observed across the medial and lateral habenula.  In the mesencephalon, densely labeled 

cell bodies and dendrites were identified in the substantia nigra pars compacta, ventral 

tegmental area and other associated midline structures including the interfascicular 

nucleus and the nucleus of the raphe linearis caudalis.  Immunoreactivity was also 

detected on cell bodies within the substantia nigra pars reticulata and pars lateralis. NTS1 

receptors were also detected on cell bodies and dendrites within the periaqueductal grey, 

dorsal raphe, median raphe, and laterodorsal tegmental nuclei. Axonal labeling was also 

identified in the laterodorsal tegmentum and locus coeruleus. Within the brainstem, 

immunoreactivity was observed on cell bodies and neuropil throughout the pontine 

nuclei, with heavily labeled cell bodies identified within the reticulotegmental nucleus, 

and densely labeled processes around the medial lemniscus and medical longitudinal 

fasciculus. In the medulla, NTS1 receptors were detected on cell bodies in the medial 

vestibular, dorsal cochlear nuclei, and the parvocellular reticular formation. Intense 

signals were detected on cell bodies and dendrites within the nucleus raphe pallidus, the 

inferior olivary nucleus, and the paragigantocellular nucleus. Caudally, NTS1 receptors 

were detected on cell bodies and dendrites within the dorsal motor nucleus of the vagus, 

and on axon terminals within the nucleus of the solitary tract. Cell bodies and dendrites 

within the external cuneate and lateral reticular nucleus, as well as motor neurons in the 

hypoglossal nerve nucleus also displayed immunoreactivity (Boudin et al., 1996).  
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Effects of neurotensin on dopaminergic neurotransmission 

Many studies have been performed to examine the influence application of 

agonists at the NTS1 receptor have on dopaminergic neurotransmission. These have 

included application of agonists into the ventral tegmental area, the origin of the 

mesocortical and mesolimbic dopamine streams, the substantia nigra pars compacta, the 

origin of the nigrostriatal dopamine tract, as well as the terminal fields of these dopamine 

projection pathways.  

Application of either the full peptide form of neurotensin or two analogs, the 8-13 

fragment of the neurotensin peptide, or [D-Tyr-11]neurotensin directly into the ventral 

tegmental area produces differential effects on dopamine efflux in the terminal regions of 

the mesocortical/mesolimbic dopamine streams (Sotty et al., 2000).  Injection of all three 

compounds at concentrations of 10−3 M produced elevations in extracellular dopamine 

levels in the prefrontal cortex as measured by differential normal pulse voltammetry or 

differential pulse amperometry, though the elevations in dopamine produced by [D-Tyr-

11]neurotensin lasted longer (Sotty et al., 2000).  Injections of 10−5 M concentrations of 

neurotensin and (8-13) neurotensin produced results similar to those produced by 10−3 M 

concentrations of these two compounds, while 10−5 M concentrations of [D-Tyr-

11]neurotensin did not significantly alter dopamine efflux into the prefrontal cortex. 

Similar patterns of activity were found in the nucleus accumbens, where all three 

compounds produced elevations in extracellular dopamine levels at concentrations of 10−
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3 M and 10−5 M, with [D-Tyr-11]neurotensin producing more prolonged increases in 

dopamine levels (Sotty at al., 2000).  

Systemic administration of NT69L, an analog of the 8-13 amino acid sequence of 

the neurotensin peptide also influences dopaminergic neurotransmission in the prefrontal 

cortex and nucleus accumbens as measured by microdialysis (Prus et al., 2007). At doses 

of 1.0 and 3.0 mg/kg, NT69L produced significant increases in dopamine levels in the 

prefrontal cortex, while only the 1.0 mg/kg dose of NT69L produced significant increases 

in dopamine levels within the nucleus accumbens (Prus et al., 2007).   

Stimulation of NTS1 receptors in the prefrontal cortex may have modulatory 

effects on feedback pathways transmitting from the prefrontal cortex back to midbrain 

dopamine producing nuclei. Microinjection of the full peptide form of neurotensin or the 

8-13 fragment of the neurotensin peptide into the rat prefrontal cortex produces increased 

firing rates in ventral tegmental dopamine-producing neurons, while microinjection of the 

1-8 fragment of the neurotensin peptide does not (Fatigati et al., 2000). Injection of 

neurotensin into the rat prefrontal cortex also facilitates dopaminergic release in the 

prefrontal cortex, an effect that can be antagonized by application of the NTS1 receptor 

antagonist SR 48692 (Petkova-Kirova et al., 2008).  

Neurotensin also plays a modulatory role on dopaminergic functioning in the 

substantia nigra pars compacta. Microinjections of neurotensin into the substantia nigra 

pars compacta produces elevated levels of dopamine efflux into the rodent basal ganglia, 

an effect which has been demonstrated to last for as long as 20 hours (Napier et al., 

1985).  
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Beaucse injection of neurotensin into the origins and terminal fields of the 

midbrain dopamine streams can produce elevated dopamine levels, the facilitatory effects 

of neurotensin on dopamine release may be due to mixed presynaptic/somatodendritic 

stimulatory effects depending on the locus of action. These effects also seem to be 

dependent on NTS1 receptor activation, as application of selective NTS1 receptor 

antagonists prevents these effects. However, the full neurotensin peptide is a large, 

rapidly degraded, brain impenetrable peptide, which makes it unsuitable for central 

nervous system activity when administered systemically. Fortunately, analogs of the 

biologically active 8-13 fragment of the neurotensin peptide are systemically 

administrable, and have demonstrated efficacy in the facilitation of dopamine release.  

 

Effects of neurotensin on serotonergic neurotransmission 

Although it has not received quite as much attention as the dopaminergic system, 

the literature suggests that neurotensin also plays a facilitatory role in serotoninergic 

neurotransmission. In vitro, application of the full neurotensin peptide, and the 8-13 

fragment of the neurotensin peptide increases the firing rate of dorsal raphe serotonergic 

neurons in a concentration dependent manner, while application of the selective NTS1 

receptor antagonist SR 48692 blocks these effects (Jolas & Aghajanian, 1996). 

Application of the 1-8 fragment of the neurotensin in the same set of experiments did not 

induce increases in firing rates; more evidence supporting the efficacy of analogs of the 

neurotensin peptide.  
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In the raphe magnus, application of neurotensin to in vitro tissue preparations also 

induced depolarization of serotonergic neurons and increased the generation of action 

potentials (Li et al., 2001). Further experiments were carried out to determine the 

mechanisms by which neurotensin exerted these effects. Application of anti-Gq/11 

antiserum prevented the excitatory effects neurotensin had on raphe magnus serotonin 

neurons. Application of the IP3 inhibitor heparin, and BAPTA, a Ca+2 chelator also 

impaired the excitatory effects exhibited by neurotensin (Li et al., 2001). These 

experiments provide further support for the Gq/11, IP3, Ca+2 signal cascade in mediating 

the excitatory effects of neurotensin.  

Application of both the full neurotensin peptide and the 8-13 fragment induce 

increases in prefrontal cortical serotonin release in vitro (Heaulme, M., 1998), effects that 

are antagonized by application of the NTS1 receptor antagonist SR 48692.  In vivo, 

microinjection of neurotensin into the prefrontal cortex of rats also induces sustained 

elevations in serotonin release, an effect that is also inhibited by application of SR 46892 

(Petkova-Kirova et al., 2008).  

Though much of the research on the neurochemical modulations induced by 

neurotensin has focused on dopamine, the serotonergic system is also affected. Further 

study into the modulatory role the neurotensin system plays on serotonergic 

neurotransmission could further validate the use of neurotensin analogs in the treatment 

of disorders involving imbalances in serotonergic neurotransmission, including 

depression.  

 



 
 

29 

Effects of neurotensin on noradrenergic neurotransmission 

If research into the role neurotensin plays in serotonergic neurotransmission is 

lacking, the role neurotensin plays in noradrenergic neurotransmission is even scarcer. 

However, the minimal evidence gathered into the modulatory role neurotensin plays on 

noradrenaline in the central nervous system indicates there may be interactions at play 

worth further study. In one such study, rats trained to self-administer nicotine were forced 

to undergo a withdrawal period. During this withdrawal period, animals that previously 

had received saline/nicotine treatment displayed significantly higher concentrations of 

noradrenaline within the striatum than animals that received neurotensin/nicotine 

treatment (Boules et al., 2011). These results may indicate that neurotensin administration 

could provide protective benefits against increased noradrenergic neurotransmission in 

response to the stress induced by nicotine withdrawal.  

 

Evidence from animal models of depression 

Neurotensin analog drugs have been most thoroughly researched as therapeutic 

agents to treat schizophrenia. The NTS1 receptor agonist PD149163 has displayed 

antipsychotic effects in variety of animal models of schizophrenia such prepulse 

inhibition (Feifel et al., 2011), and conditioned avoidance tasks (Holly et al., 2011), 

where it displays antipsychotic-like effects without producing catalepsy.  

In addition to its role in the treatment of schizophrenia, the neurotensin system 

may also represent a novel target for the treatment of depression. Animals with a genetic 



 
 

30 

deletion of the NTS1 receptor display several anxiety- and depression-like behaviors. 

Deletion of the NTS1 receptor results in alterations in sleep architecture and abnormal 

recovery from periods of sleep deprivation (Fitzpatrick et al., 2012), which may correlate 

with sleep disturbances seen in human patients with depression. In the tail suspension 

test, an animal behavioral model of depression, NTS1 receptor knockout mice display 

greater levels of immobility than their wild type counter parts. In another experiment 

using the same animals, NTS1 receptor knockout mice displayed greater levels of anxiety-

like behavior in an open field test, spending more time in the corners of the apparatus and 

less time in the center, indicative of an enhancement of thigmotaxia. The NTS1 agonist 

PD149163 may also possess anxiolytic effects, as acute administration of PD149163 

reduces conditioned foot shock-induced ultrasonic vocalizations (Prus et al., 2014). 

 

Neurotensin in the forced swim test 

 The measurement of depression-related behaviors in animals is a difficult task, as 

animals are unable to directly report feelings of sadness or despair. However, several 

screening models do exist in which drugs that produce antidepressant effects in human 

beings exert a consistent effect on animal behavior. One such test is the forced swim test.  

The forced swim test is a commonly used screening model for novel 

antidepressant medications in which animals are placed in a cylinder partially filled with 

water from which there is no escape. After some time, the animals cease swimming and 

instead adopt a passive, immobile posture characterized by the animal only emitting 
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movements necessary to stay afloat. Drugs that have antidepressant efficacy in humans 

reliably decrease the amount of time that animals spend in this immobile posture, while 

increasing escape, exploratory, or general swimming behaviors. However, drugs that 

produce stimulant like effects such as caffeine, nicotine, or amphetamine produce a false 

positive in the forced swim test as they decrease immobility behaviors while not 

possessing antidepressant efficacy (Castagne et al., 2009). For this reason, a locomotor 

assessment is generally performed in conjunction with the forced swim test to ensure that 

any reductions in immobility observed are not due to a general stimulatory effect on 

locomotor behavior. If a drug produces a reduction in immobility in the forced swim test 

without increasing locomotor behavior in the locomotor assessment, then the test 

substance may produce antidepressant effects in humans.   

Very few studies to date have explored the role of the neurotensin system on 

animal behavior in the forced swim test. One study reported an increase in immobility 

behavior in mice with a genetic deletion of the NTS1 receptor (Li et al., 2010), while 

another did not find significant differences between wild type mice and NTS1 receptor 

knockout mice (Fitzpatrick et al., 2012). Although the levels of immobility between the 

two groups in the second study did not reach statistical significance, the authors did 

report a trend in their data toward greater levels of immobility in NTS1 receptor deficient 

mice. Microinjection of the full peptide form of neurotensin directly into the ventral 

tegmental area resulted in antidepressant-like effects in rats during the forced swim test 

(Cervo et al., 1992), indicating that in normal animals, exogenous stimulation of NTS1 

receptors may exert antidepressant effects. What is unknown is whether systemically 
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administrable neurotensin analog drugs like PD149163 will also produce antidepressant 

effects in the forced swim test. 
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RATIONALE 

 

Due to the large number of patients that do not respond to antidepressant 

treatment and the long latency to the onset of therapeutic effects in existing options, 

novel mechanisms for the treatment of depression are needed. According to the 

monoaminergic theory of depression, imbalances in one or more of the brains 

monoamine neurotransmitter systems may lead to the genesis of depressive symptoms. 

Most of the currently available antidepressant medications aim to increase the synaptic 

availability of monoamines by a variety of mechanisms such as preventing their reuptake 

or metabolism.  Neurotensin is an endogenous neuropeptide that has modulatory 

influences on monoaminergic neurotransmission in areas of the brain involved in 

depression. The neurotensin system has been implicated in a wide variety of psychiatric 

disorders including schizophrenia, anxiety, and depression. Agonists for the NTS1 

receptor have displayed therapeutic potential in a variety of animal models of psychiatric 

disorders but what is unclear is whether NTS1 agonists exhibit antidepressant properties 

in animal models of depression.  

 The current study aimed to evaluate the effects of the NTS1 agonist PD149163 in 

the forced swim test, a rodent screening model for putative antidepressant medications. 

The effects of PD149163 and the tricyclic antidepressant imipramine were compared to 

saline control animals to determine if these compounds may possess antidepressant 

properties in human patients. To ensure that any alterations in swimming behavior 
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observed in the forced swim test were not due to alterations in motor behavior alone a 

locomotor assessment was also performed.  
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METHODS 

 

Experiment 1 

Subjects 

Forty-eight male C57/Bl6 mice (Charles River Laboratories, Portage, MI) were 

used in this study. All animals were approximately 2 months of age and weighed between 

23-28 grams at the beginning of these procedures. Mice were group housed in a 

temperature-controlled room (22±3°C) with a 12-hour light/dark cycle and were 

provided free access to food and water in their home cages. The housing and 

experimental procedures were approved by the Northern Michigan University 

Institutional Animal Care and Use Committee (#227). 

 

Apparatus 

The forced swim test apparatus was a 2L glass beaker (19 cm height, 14 cm 

diameter) filled with 12 cm of water warmed to a temperature of 23 °C. Twelve cm 

of water was of sufficient height so that at no point during testing could any part of 

the animals body touch the bottom of the beaker. Three animals were run 

simultaneously each in their own individual beaker with cardboard dividers 

positioned on the left and right sides of each beaker so the animal could not see the 

adjacent testing apparatus, or the surrounding experimental room. 8x11” sheets of 
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white computer paper were taped to the cardboard dividers and the background wall 

to provide contrast to the animals black color. 

 

Drugs 

Imipramine hydrochloride was obtained from Sigma-Aldrich (St. Louis, 

MO), and PD149163 was obtained from RTI International (Research Triangle 

Park, NC). Imipramine and PD149163 were dissolved in 0.9% saline and 

administered at doses of 1.0 mg.kg or 10.0mg/kg, and 0.1 mg/kg or 1.0 mg/kg 

respectively. Imipramine, PD149163 and saline were administered 30 minutes 

prior to experimental procedures via intraperitoneal injection at a volume of 10 

mL/kg. All of the drugs were in salt form.   

 

Behavioral procedures 

The experimental procedures began one month after the animals arrived 

from the breeder. Day one of the procedures consisted of acclimation to the 

testing environment for one hour, followed by the forced swim test procedure. 

One week after the forced swim test, the locomotor assessment occurred.  
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Forced Swim Test 

The forced swim test procedures were similar to those described by 

Castagne, Moser, and Porsolt (2009). On the first day of testing, mice were 

allowed to acclimate to the environment of the experimental room for 1 hour in 

their home cages. Testing sessions lasted a total of 360 seconds and upon 

completion of the session animals were placed in a cage lined with paper towels 

positioned next to a space heater to dry and warm the animals. To minimize distress, 

animals were not manually dried by the experimenters, but instead were allowed to 

remain in the paper towel lined cages until sufficiently dry before being returned to 

their home cages. According to standard scoring methods for this procedure 

(Castagne et al., 2009), immobility time is typically only scored in the final 240 

seconds of the trial sessions as animals usually display very little immobility in the 

first 120 seconds (Castagne et al., 2009). For the purposes of this study, animal 

behavior was recorded for the entire 360 seconds of the testing session, and 

behavior from the first two minutes of the testing session was scored and 

analyzed separately from behavior in the final four minutes of the testing session. 

Mice were randomly assigned to a drug treatment group and received a single 

injection of imipramine (1.0 mg/kg or 10.0 mg/kg), PD149163 (0.1 mg/kg or 1.0 

mg/kg) or saline 30 minutes prior to the testing session. Immobility was defined 

as a lack of all movement except those movements necessary to keep the animals 

head above the water. Testing sessions were recorded on video and the total 

duration of immobility and the latency to the first episode of immobility were 

scored by an observer blind to the experimental conditions. A reduction in time 
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spent immobile and increased latencies to the first episode of immobility were 

used as indices of antidepressant efficacy.  

 

Locomotor assessment  

To rule out non-specific motor effects as a causal factor for any observed 

differences in immobility behavior between groups a locomotor assessment was 

performed one week following the forced swim test procedure. The locomotor 

assessment was carried out in the same room as the forced swim test and all 

animals received the same test substance and dose that were given before the 

forced swim test. Animals received the test substance 30 minutes prior to being 

placed in the locomotor apparatus. Testing sessions lasted for 20 minutes, and 

the total distance traveled was calculated using Noldus Ethovision XT 7.0 

software (Noldus Information Technology, Leesburg, VA). 

 

Apparatus 

 The locomotor apparatus was a wooden box with four separate identical 

compartments measuring 45.72 cm long x 45.72 cm wide and 27 cm tall. The 

floor and side walls were painted white in color to provide contrast to the animals 

black color. Animals were tested three at a time each in their own individual 

compartment of the apparatus. 
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Statistical analysis  

The dependent variables measured for the forced swim test were total time 

spent immobile in the first two minutes, and the final four minutes of the testing 

session, and the latency to the first episode of immobility. The dependent variable 

measured for the locomotor analysis was total distance traveled. A one-way 

between groups analysis of variance was used to analyze the effects of each drug 

(doses and saline) on each measure. Any statistically significant differences were 

further analyzed using a Dunnet’s post-hoc analysis to determine which 

treatment groups differed from saline control groups. Also, an independent 

samples t-tests was performed to determine if the measures taken from the 

control animals for imipramine differed from the control animals for PD149163. 

All analyses were conducted using GraphPad Prism for Windows version 6.0 

(GraphPad Software, La Jolla, CA). 
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RESULTS 

 

Forced Swim Test	  

Time spent immobile: final 4 minutes 

Figure 1 represents the mean for the total time spent immobile in the final four 

minutes of the testing session for imipramine- and saline- treated mice. Administration of 

imipramine significantly changed the total time spent immobile F(2,21)=7.014, p<0.01. A 

significant decrease in the total time spent immobile was found at the 10.0 mg/kg dose of 

imipramine in comparison to saline.  

Figure 2 represents the mean for the total time spent immobile in the final four 

minutes of the testing session for PD149163- and saline- treated mice. Administration of 

PD149163 significantly altered the total time spent immobile F(2,21)=7.505, p<0.01, 

which was due to a significant decrease in the total time spent immobile at both the 

0.1mg/kg and the 1.0 mg/kg dose compared to saline.  

Figure 3 represents the mean for the total time spent immobile in the last four 

minutes of the testing session for the imipramine-paired control animals versus the 

PD14916-paired control animals. The average time spent immobile between the 2 groups 

was not significantly different t(14)=1.689, p>0.05. 
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Time spent immobile: first two minutes 

Figure 4 represents the mean for the total time spent immobile in the first 2 

minutes of the testing session for imipramine- and saline- treated mice. Administration of 

imipramine significantly affected the total time spent immobile F(2,21)=13.18, p<0.001, 

due to a significant reduction in the time spent immobile at both the 1.0 mg/kg and the 

10.0 mg/kg doses in comparison to saline.  

Figure 5 represents the mean for the total time spent immobile in the first 2 

minutes of the testing session for PD149163- and saline- treated mice. Administration of 

PD149163 significantly changed the total time spent immobile F(2,21)=5.108, p<0.05, 

due to a significant decreased the total time spent immobile at the 0.1 dose compared to 

saline.  

Figure 6 represents the mean for the total time spent immobile in the first 2 

minutes of the testing session for the imipramine-paired versus PD149163-paired control 

animals. Immobility times for the two groups were not significantly different 

t(14)=0.265, p>0.05.  

Latency to the first episode of immobility 

Figure 7 represents the mean latency to the first episode of immobility for the 

imipramine- and saline-treated mice. Administration of imipramine significantly altered 

the latency to the first episode of immobility F(2,21)=6.939, p<0.01, due to a significant 

increase in the latency at the 10.0 mg/kg dose versus saline.  
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Figure 8 represents the mean latency to the first episode of immobility for the 

PD149163- and saline- treated mice. PD149163 treated animals did not significantly 

differ from their saline control counterparts F(2,21)=2.887, p>0.05. 

Figure 9 represents the mean latency to the first episode of immobility for 

imipramine-paired and PD149163-paired control animals. The mean latencies for the two 

groups were not significantly different t(14)=0.863, p>0.05.  

 

Locomotor Assessment 

Total distance traveled 

Figure 10 represents the mean for the total distance traveled during the open field 

test for imipramine- and saline-treated mice. Administration of imipramine significantly 

affected the total distance traveled F(2,21)=14.830, p<0.001, which was due to a 

significant decrease in the total distance traveled at the 10.0 mg/kg dose of imipramine 

compared to saline. 

Figure 11 represents the mean for the total distance traveled during the open field 

test for PD149163- and saline-treated mice. Administration of PD149163 significantly 

altered the total distance traveled F(2,21)=4.733, p<0.05, due to a significant reduction in 

the distance traveled at the 1.0 mg/kg dose in comparison to saline. 

Figure 12 represents the mean for the total distance traveled for imipramine-

paired and PD149163-paired control animals. The total distance traveled for the two 

groups did not significantly differ t(14)=0.5033, p>0.05.   
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All figures represent the mean plus the standard error of the mean.  

Figure 1: Imipramine: Immobility in the Final 4 Minutes 

 
Figure 1 represents the mean for the time spent immobile in the final four minutes of the 
testing session for imipramine- and saline- treated mice. Treatment with 1.0 mg/kg of 
imipramine had no significant effect when compared to saline control animals (p>0.05). 
Treatment with 10.0 mg/kg of imipramine significantly reduced the time spent immobile 
(p<0.01) compared to saline-treated animals.  
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Figure 2: PD149163: Immobility in the Final 4 Minutes 

 
Figure	  2	  represents	  the	  mean	  for	  the	  total	  time	  spent	  immobile	  in	  the	  final	  4	  
minutes	  of	  the	  testing	  session	  for	  PD149163-‐	  and	  saline-‐	  treated	  mice.	  Treatment	  
with	  0.1	  mg/kg	  of	  PD149163	  produced	  a	  significant	  reduction	  in	  the	  time	  spent	  
immobile	  compared	  to	  saline	  controls	  (p<0.01).	  Treatment	  with	  1.0	  mg/kg	  of	  
PD149163	  also	  significantly	  decreased	  the	  time	  spent	  immobile	  in	  comparison	  to	  
saline	  control	  animals	  (p<0.05).	  	  
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Figure 3: Comparison of Controls: Immobility in the Final Four Minutes 

 
Figure	  3	  represents	  the	  mean	  for	  the	  total	  time	  spent	  immobile	  in	  the	  last	  four	  
minutes	  of	  the	  testing	  session	  for	  the	  imipramine-‐paired	  control	  animals	  versus	  the	  
PD14916-‐paired	  control	  animals.	  The	  mean	  time	  spent	  immobile	  for	  the	  two	  control	  
groups	  did	  not	  significantly	  differ	  (p>0.05).	  	  
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Figure 4: Imipramine: Immobility in the First 2 Minutes 

	  
Figure	  4	  represents	  the	  mean	  for	  the	  total	  time	  spent	  immobile	  in	  the	  first	  2	  minutes	  
of	  the	  testing	  session	  for	  imipramine-‐	  and	  saline-‐	  treated	  mice.	  Treatment	  with	  1.0	  
mg/kg	  of	  imipramine	  produced	  a	  significant	  decrease	  in	  the	  time	  spent	  immobile	  
compared	  to	  saline	  treatment	  (p<0.05).	  	  Treatment	  with	  10.0	  mg/kg	  of	  imipramine	  
also	  significantly	  decreased	  the	  time	  spent	  immobile	  in	  comparison	  to	  saline	  
administration	  (p<0.0001).	  
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Figure 5: PD149163: Immobility in the First 2 Minutes 

	  
Figure	  5	  represents	  the	  mean	  for	  the	  total	  time	  spent	  immobile	  in	  the	  first	  2	  minutes	  
of	  the	  testing	  session	  for	  PD149163-‐	  and	  saline-‐	  treated	  mice.	  Administration	  of	  0.1	  
mg/kg	  of	  PD149163	  produced	  a	  significant	  decrease	  in	  the	  time	  spent	  immobile	  in	  
comparison	  to	  saline	  administration	  	  (p<0.01).	  Treatment	  with	  1.0	  mg/kg	  of	  
PD149163	  did	  not	  significantly	  alter	  the	  time	  spent	  immobile	  (p>0.05).	  	  
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Figure 6: Comparison of Controls: Immobility in the First 2 Minutes 

	  
Figure	  6	  represents	  the	  mean	  for	  the	  total	  time	  spent	  immobile	  in	  the	  first	  2	  minutes	  
of	  the	  testing	  session	  for	  the	  imipramine-‐paired	  versus	  PD149163-‐paired	  control	  
animals.	  The	  mean	  time	  spent	  immobile	  for	  the	  imipramine	  and	  PD149163	  paired	  
control	  animals	  did	  not	  significantly	  differ	  (p>0.05).	  	  
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Figure 7: Imipramine: Latency to First Episode of Immobility 

Figure	  7	  represents	  the	  mean	  latency	  to	  the	  first	  episode	  of	  immobility	  for	  the	  
imipramine-‐	  and	  saline-‐treated	  mice.	  Administration	  of	  1.0	  mg/kg	  of	  imipramine	  
did	  not	  significantly	  alter	  the	  latency	  to	  the	  first	  episode	  of	  immobility	  (p>0.05).	  
Treatment	  with	  10.0	  mg/kg	  produced	  a	  significant	  increase	  in	  the	  latency	  to	  the	  first	  
episode	  of	  immobility	  (p<0.01).	  
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Figure 8: PD149163: Latency to First Episode of Immobility 

	  
Figure	  8	  represents	  the	  mean	  latency	  to	  the	  first	  episode	  of	  immobility	  for	  the	  
PD149163-‐	  and	  saline-‐	  treated	  mice.	  Application	  of	  0.1	  mg/kg	  or	  1.0	  mg/kg	  
PD149163	  failed	  to	  produce	  a	  significant	  change	  in	  the	  latency	  to	  the	  first	  episode	  of	  
immobility	  versus	  saline	  administration	  (p>0.05).	  	  
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Figure 9: Comparison of Controls: Latency to First Episode of Immobility 

	  
Figure	  9	  represents	  the	  mean	  latency	  to	  the	  first	  episode	  of	  immobility	  for	  
imipramine-‐paired	  and	  PD149163-‐paired	  control	  animals.	  The	  mean	  latencies	  to	  
the	  first	  episode	  of	  immobility	  for	  the	  PD149163-‐	  and	  imipramine-‐paired	  control	  
groups	  did	  not	  significantly	  differ	  (p>0.05).	  	  
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Figure 10: Imipramine: Total Distance Traveled 

	  
Figure	  10	  represents	  the	  mean	  for	  the	  total	  distance	  traveled	  during	  the	  open	  field	  
test	  for	  imipramine-‐	  and	  saline-‐treated	  mice.	  Administration	  of	  1.0	  mg/kg	  of	  
imipramine	  did	  not	  significantly	  alter	  the	  total	  distance	  traveled	  versus	  saline	  
administration	  (p>0.05).	  Treatment	  with	  10.0	  mg/kg	  of	  imipramine	  produced	  a	  
significant	  decrease	  in	  the	  total	  distance	  traveled	  versus	  saline	  administration	  
(p<0.01).	  	  
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Figure 11: PD149163: Total Distance Traveled 

	  
Figure	  11	  represents	  the	  mean	  for	  the	  total	  distance	  traveled	  during	  the	  open	  field	  
test	  for	  PD149163-‐	  and	  saline-‐treated	  mice.	  Treatment	  with	  0.1	  mg/kg	  of	  PD149163	  
did	  not	  significantly	  affect	  the	  total	  distance	  traveled	  in	  comparison	  to	  saline-‐
treated	  animals.	  Administration	  of	  1.0	  mg/kg	  of	  PD149163	  produced	  a	  significant	  
reduction	  in	  the	  total	  distance	  traveled	  versus	  saline	  control	  animals	  (p<0.05).	  
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Figure 12: Comparison of Controls: Total Distance Traveled 

	  
Figure	  12	  represents	  the	  mean	  for	  the	  total	  distance	  traveled	  for	  imipramine-‐paired	  
and	  PD149163-‐paired	  control	  animals.	  
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DISCUSSION 

 

In the final four minutes of the testing session, the time period analyzed in a 

typical forced swim test procedure, imipramine produced a significant decrease in the 

time spent immobile at the 10.0mg/kg dose, while failing to produce a significant 

decrease at the 1.0 mg/kg dose. These results are consistent with previous experiments 

where doses of 1.0 mg/kg failed to produce reductions in immobility while the 10.0 

mg/kg dose produced consistent reductions, even after the animals were given the test 

substances daily for 14 consecutive days (Kitamura et al., 2004). PD149163 produced 

significant decreases in immobility in the final four minutes of the testing session at both 

the 0.1 mg/kg and 1.0 mg/kg doses. The results of this experiment provide the first report 

of the effects of PD149163 in the forced swim test, although previous research has 

demonstrated the ability of intracranial administration of the full neurotensin peptide to 

reduce immobility in rats (Cervo et al., 1992). The mean time spent immobile in the final 

four minutes of the testing session for the PD149163- and imipramine-paired saline 

control groups did not significantly differ, indicating that any observed differences 

between the treatment groups and their saline counterparts were not due to abnormalities 

in the controls their results were compared to.  

According to the original forced swim test procedures, the first two minutes are 

typically excluded from analysis as animals generally display little immobility during this 

time period (Castagne et al., 2009). However, the present study sought to examine if 

differences in these first two minutes exist. Both doses of imipramine produced 
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significant reductions in the time spent immobile in the first two minutes, while only the 

10.0 mg/kg did in the final four minutes of the session. Only the 0.1 mg/kg dose of 

PD149163 produced a significant decrease in immobility in the first two minutes, while 

both doses significantly reduced immobility in the final four minutes. These results 

indicate that additional inquiry may be needed into the delay to the onset of these 

substances, and how the therapeutic response differs with varying pretreatment times. In 

the first two minutes no differences were observed between the imipramine- and 

PD149163- paired saline controls, indicating again that any observed differences were 

not due to abnormalities in control group performance.  

While the latency to the first episode of immobility is not a result frequently 

reported in a forced swim test, the present study sought to examine whether either of the 

test substances would cause a delay in the animals adoption of the immobile posture. If 

the duration of immobility in the forced swim test can be considered an index of 

behavioral despair, and a reduction in this behavior is an indication of therapeutic 

efficacy, then a protracted period of escape-related or swimming behaviors before the 

animal adopts the passive posture may also be a possible manifestation of antidepressant 

effects. Imipramine significantly increased the latency to the onset of immobility at the 

10.0 mg/kg dose, while the 1.0 mg/kg dose of imipramine and both doses of PD149163 

failed to produce a significant effect. However, the differences between the results from 

the first two minutes and the final four minutes of the testing session indicate the 

possibility that altering pretreatment time courses may yield different results. The 

latencies to the onset of the first immobility displayed by the imipramine- and 

PD149163-paired control mice did not differ, indicating again that any observed 
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differences between the treatment groups and their controls were not due to abnormalities 

in the control groups.  

The reasons for excluding the first two minutes of the testing session from 

analysis are not adequately explained in any version of the protocol encountered during 

the course of this experiment. In Porsolt’s forced swim test protocol he simply states that 

animals do not spend very much time immobile in the first two minutes, and the more 

stable levels of immobility in the final four minutes of the testing session provide a more 

reliable baseline for making comparisons between treatment groups (Castagne et al., 

2010). One possible explanation comes from observing the species differences between 

the forced swim test for rats and the forced swim test for mice. In the rat protocol as 

described by Porsolt, animals are subjected to two periods of swimming and three 

administrations of the test substances. The first day is used as a habituation period 

wherein the animals are placed in the apparatus for 15 minutes and no behavioral 

recording occurs. Following the habituation period the animals receive an injection of the 

test substance. The next day, 4 hours before the testing session, the animals receive 

another administration of the test substance. Finally, 30 minutes before the test, the 

animals receive a third and final administration of the test substance. The testing session 

lasts for a total of 5 minutes and all of the behavior is recorded. The habituation period is 

performed in rats because unlike mice they perform other behaviors like diving that 

significantly alter baseline immobility times. Therefore, subjecting them to the 

habituation period allows for higher levels of immobility on the testing day. Excluding 

the first two minutes of the testing session for mice could possibly function as a 

habituation period in compensation for the lack of an actual pre-test habituation period. 
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On the other hand, the habituation period performed in the rat protocol has generated 

some criticism. This initial exposure could actually reflect a learning period, allowing the 

rat to learn the most efficient way to survive in this inescapable environment. In that 

sense, immobility is an adaptive behavioral mechanism and may not be considered an 

index of despair. Alternatively, an increase in immobility on the second day in the rat 

protocol could exemplify learned helplessness, wherein the animal has actually learned 

that the environment is inescapable and ceases efforts to escape (Petit-Demouliere et al., 

2005). When mice are exposed to a pre-test habituation like the one performed in the 

typical rat protocol, the experienced animals exhibit higher levels of immobility than 

naïve animals when compared during a 5 minute testing session (Alcaro et al., 2002). 

This pre-exposure could also either be a case of adaptation, or stress induced learned 

helplessness. Either way, skipping the pre-test habituation session in the mouse protocol 

removes this possible source of influence, and may therefore provide for more stable 

behavior in mice. Whatever the case, it is impossible to infer any absolute evidence of 

human affective behavioral states from observing animal behavior. What we do know is 

that drugs with antidepressant effects in humans reduce the amount of time rats and mice 

spend immobile in this task, despite the species differences in protocols.   

In the locomotor assessment, none of the drug treatments produced an increase in 

general locomotor behavior. This is an important fact to note, as this particular screening 

model is prone to producing false positives. These results indicate that the reductions in 

immobility observed in the forced swim test were not due to a stimulant-like effect, and 

may actually represent potential antidepressant effects of the test substances. The 10.0 

mg/kg dose of imipramine and the 1.0 mg/kg dose of PD149163 actually produced a 
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decrease in the total distance traveled during the locomotor assessment. While the ability 

of imipramine to reduce locomotor behavior has been noted (Gutierrez-Garcia et al., 

2009), one possible explanation for the observed reduction in locomotor behavior is the 

action of imipramine, or it’s metabolite desipramine, as an antagonist at the histamine H1 

receptor (Owens et al., 1997; Sugar et al., 1984). The sedative effects of tricyclic 

antidepressant medications are well documented and thus they are frequently prescribed 

as sleep aids (Plattner et al., 2011).  

Previous research has shown that mice lacking the NTS1 receptor exhibit higher 

levels of locomotor activity than their wild type counter parts (Li et al., 2010). This 

hyperactivity has been attributed to disregulation of dopamine transmission in the 

striatum as a result of the deletion of NTS1 receptor. In wild type mice, administration of 

neurotensin or neurotensin analog drugs such as PD149163 effectively block increases in 

locomotor behavior in response to stimulant treatment (Kalivas et al., 1984; Feifel et al., 

2008), an effect that is thought to be due to possible interactions between the NTS1 and 

D2 receptors (Tanganelli et al., 1993; Fuxe et al., 1992; Li et al., 1995). Although it is 

unclear precisely how neurotensin modulates locomotor behavior under normal 

circumstances, the possibility for influences exist through it’s influence on mesolimbic 

dopaminergic functioning, and input from the nucleus accumbens to cortical 

glutamatergic neurons and their input to feedback loops returning to midbrain dopamine 

producing nuclei (Antonelli et al., 2002).  

This study has provided the fist indication that the neurotensin analog drug 

PD149163 exhibits antidepressant-like effects in the forced swim test. Additional 
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research into the time course, and the effects of this compound at varying doses will 

provide more insight into the potential to use PD149163 as a novel antidepressant drug. 

These findings, coupled with the other evidence gathered thus far into the therapeutic 

potential of the neurotensin system indicate that neurotensin analog drugs like PD149163 

may have the potential to alleviate the symptoms of depression in human patients.  
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APPENDIX B 

 

 

anim

al ID 

treatment weight date Time 

immobile (s) 

(final 4m) 

TI first 2 

min. 

Latency to 

first 1st 

2/final 4 

1 Veh 24 2I11 125.64 56.71 11s/6.3s 

2 Veh 27 2I11 145.72 59.45 10.6/1.73 

3 Veh 24 2I11 143.11 52.1 3.68/7.28 

4 Imipramine 

1.0 mg/kg 

24 2I11 139.89 59.3 6.33/0 

5 Imipramine 

1.0 mg/kg 

24 2I11 41.75 18.76 33.73/11.15 

6 Imipramine 

1.0 mg/kg 

26 2I11 62.29 11.82 63.48/28.85 

7 PD 0.1mg/kg 25 2I11 110.82 19.82 11.28/18.56 

8 PD 0.1mg/kg 23 2I11 122.32 20.16 76.5/4.91 

9 PD 0.1mg/kg 25 2I11 69.85 7.31 83.13/35.48 
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10 Veh 25 2I11 130.61 25.52 42.58/0 

11 Veh 24 2I11 173.3 24.2 76.23/0 

12 Veh 26 2I11 89.85 46.53 63.73/0 

13 Imipramine 

1.0 mg/kg 

23 2I11 72.3 14.59 38.52/26.4 

14 Imipramine 

1.0 mg/kg 

25 2I11 143.45 24.32 58.51/3.13 

15 Imipramine 

1.0 mg/kg 

26 2I11 143.8 20.3 65.88/1.63 

16 PD 0.1mg/kg 25 2I11 115.55 0 126.8/5.86 

17 PD 0.1mg/kg 27 2I11 136.84 42.45 5.23/12.83 

18 PD 0.1mg/kg 25 2I11 149.03 24.33 69.25/0 

19 Imipramine 

1.0 mg/kg 

24 2I11 82.29 22.98 43.16/19.15 

20 Imipramine 

1.0 mg/kg 

26 2I11 73.18 10.02 6.23/24.68 

21 Veh 25 2I11 138.59 44.93 3.33/0 

22 PD 0.1mg/kg 24 2I11 120.91 18.84 65.65/0 
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23 PD 0.1mg/kg 25 2I11 83.69 21.89 39.8/26.92 

24 Veh 23 2I11 152.22 27.54 74.82/0 

25 Veh 26 2I12 188.7 48.71 69.85/0 

26 Veh 25 2I12 163.32 49.38 7.98/1.81 

27 Veh 26 2I12 183.83 56.86 25.83/0 

28 Imipramine 

10.0 mg/kg 

25 2I12 0 0 360 

29 Imipramine 

10.0 mg/kg 

24 2I12 63.44 14.43 65.21/6.38 

30 Imipramine 

10.0 mg/kg 

24 2I12 136.62 29.77 53.83/0 

31 PD 1.0mg/kg 23 2I12 101.49 2.06 75.26/34.75 

32 PD 1.0mg/kg 25 2I12 111.79 26.79 1.18/15.53 

33 PD 1.0mg/kg 28 2I12 93.58 23.58 0/25.35 

34 Veh 23 2I12 119.95 47.45 32.99/4.18 

35 Veh 23 2I12 146.67 16.67 80.61/0 

36 Veh 27 2I12 194.39 35.87 3.53/0 

37 Imipramine 25 2I12 80.58 8.97 88.16/14.46 
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10.0 mg/kg 

38 Imipramine 

10.0 mg/kg 

24 2I12 64.01 0 128.56 

39 Imipramine 

10.0 mg/kg 

24 2I12 35.39 0 150.11 

40 PD 1.0mg/kg 25 2I12 137.65 46.09 0/0 

41 PD 1.0mg/kg 24 2I12 155.76 32.15 0/0 

42 PD 1.0mg/kg 24 2I12 123.59 16.25 74.36/0 

43 Imipramine 

10.0 mg/kg 

24 2I12 112.54 0 122.78/2.78 

44 Imipramine 

10.0 mg/kg 

23 2I12 60.12 2.58 110.68/29.8

1 

45 Veh 23 2I12 136.44 35.96 28.8/7.21 

46 PD 1.0mg/kg 24 2I12 119.85 44.05 0/0 

47 PD 1.0mg/kg 24 2I12 138.14 15 0/4.21 

48 Veh 24 2I12 140.4 31.64 15.13/5.73 
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