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The aim of this study was to assess whether pole vaulters interacted differently with the 
pole during normal and perturbed approach phase conditions. Six national and 
international level athletes performed nine jumps, which were recorded and analysed. 
Pole vaulters were found to produce different coordination patterns when interacting with 
the pole during normal and perturbed approach phase conditions. The variable nature of 
the highly skilled athletes enforces the need for degenerate behaviours in achieving 
consistent performance outcomes. Athletes produced different coordination patterns, and 
should be considered on an individual basis in order to effectively, efficiently and safely 
improve performance.
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INTRODUCTION: During the pole vault approach phase the athlete must satisfy a number of 
task demands. These include achieving a high horizontal velocity, consistently achieving an 
accurate take-off location (Needham, Bezodis, Exell, Simpson, & Irwin, 2016) and
coordinating the lowering of the pole into the plant box (Frere, L’Hermette, Slawinski, & 
Tourny-Chollet, 2010). These task demands are coupled in nature and while attempting to 
satisfy them successfully, the athlete must interact with the pole. High horizontal velocities 
must be achieved while carrying the pole and an accurate take-off location must be achieved 
while also regulating the lowering of the pole towards a specific target. 
Frere et al. (2010) concluded that pole carriage caused decreases in running velocity
(between 4.5% and 11%) as a result of significantly smaller step lengths in novice athletes 
but, to date, no research has explored the pole-athlete interaction during the approach 
phase in trained athletes. Furthermore, the athlete must coordinate the lowering of the pole 
into the plant box from varying horizontal velocities and footfall locations. In both the training 
and competition environment these sources of approach phase variability can be attributed 
to external factors (such as weather and track conditions) or by training exercises that 
change the starting position of the run-up. In either situation, the athlete must be able to 
adjust the lowering of the pole so that it arrives in the plant box at the correct time while also 
adjusting the locomotor control pattern to achieve a desired take-off location without 
decreasing horizontal velocity at take-off.  
From a dynamical systems perspective, coordinated movement patterns emerge from the 
complex relationship between task, organismic and environmental control parameters 
(Newell, 1986). The selection of coordination patterns is driven by the process of self-
organisation in order to solve a movement problem (Wilson et al., 2008) and quantification of 
coordination between joints has proven insightful for understanding how joints, segments 
and/or individual systems interact. The aim of this research was to assess whether athletes 
interacted differently with the pole during normal and perturbed approach phase conditions. 
Perturbation was achieved by manipulating the starting location of the approach and thus 
introducing environmental variability. The purpose of this information was to inform coaching 
practitioners prescribing training exercises that aim to enhance this interaction in order to 
allow the athlete to effectively and efficiently satisfy the task demands outlined above.

METHODS: Participants & Protocol: National (n = 3, PB = 60-70% of World Record, P1-3) 
and international (n = 3, PB = 75-80% of World Record, P4-6) level female pole vaulters
were recruited. Ethical approval was granted by the University’s Research Ethics Committee 
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and all participants provided written informed consent. A multiple single-subject design was 
adopted.

Data Collection & Processing: Each participant performed nine jumps (three per condition)
over an elastic training bar (90% of personal best). To assess the response pattern of the 
pole-athlete system, the constraint domain was manipulated. This was achieved by 
perturbing the starting position conditions of the run-up in a random order between three
positions: self-selected, normal starting position (C1); 30 cm closer (C2); or 30 cm further 
away (C3) from the plant box. These conditions simulated those experienced by the athlete 
where a greater demand to regulate the footfall locations and pole lowering during the 
approach phase existed. 
3D kinematic data were collected using 15 Vicon Vantage cameras situated around the 
runway in order to capture the final steps of the approach phase. Camera sampling 
frequency was set at 250 Hz. Eighteen markers were placed on the athlete and pole to 
achieve a full body marker-set. Marker trajectories were tracked and gap filled before being 
filtered with a 4th order zero lag Butterworth filter. Optimal cut-off frequencies were 
determined for each marker using auto-correlation (Challis, 1999). Athlete centre of mass 
(CoM) location was determined using de Leva’s model (1996) and pole CoM was 
determined using specific measurements of the pole.
Pole-athlete system interaction was assessed using a modified vector coding procedure
(Chang et al., 2008) between the pole-ground and trunk-ground angle. Mean coupling
angles ( ) and coordination variability ( ) were calculated using directional statistics. 
were classified into one of four coordination patterns (Chang et al., 2008). These were pole-
phase or trunk-phase, where a single segment was moving, in-phase, where segments 
moved in the same direction, or anti-phase, where segments moved in opposite directions.
Time-series waveforms were normalised for the penultimate and final step with each step 
consisting of a stance and flight phase. Outcome measures including standard deviation of 
the take-off footfall location, which represents take-off accuracy (TOAcc) and percentage 
change in step velocity (SV) between penultimate and final step ( SV). Success rate 
represented the number of attempts taken to perform the required nine jumps during testing. 

RESULTS & DISCUSSION: The aim of this research was to assess whether the athlete 
interacted differently with the pole during normal and perturbed approach phase conditions. 
Overall, outcome measure results (Table 1) showed perturbing the approach phase did not 
greatly alter approach phase outcomes. All athletes were able to successfully complete 
jumps from both unperturbed (C1) and perturbed conditions (C2 & C3). For all but P3, there 
was no decrease in SV between penultimate and final step. In fact, most athletes were
accelerating in both unperturbed and perturbed conditions. P3 demonstrated a deceleration 
under all conditions suggesting that this performance decrease was independent of 
experimental conditions. Deceleration reduced by 7-8% when the approach was perturbed 
(C2 & C3). Interestingly, it appears that C2 & C3 increased the velocity of P3. 

Table 1
Approach phase outcome measures.

C1 C2 C3
TO Accuracy

(m)
SV TO Accuracy

(m)
SV TO Accuracy

(m)
SV Success 

Rate
P1 0.09 1% 0.09 1% 0.01 1% 90%
P2 0.07 2% 0.03 2% 0.06 2% 75%
P3 0.09 -10% 0.06 -2% 0.09 -3% 64%
P4 0.22 5% 0.11 2% 0.33 5% 100%

P5 0.07 3% 0.08 0% 0.08 0% 100%
P6 0.09 1% 0.09 1% 0.05 1% 100%
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With the exception of P4, TOAcc was not affected by the perturbations. While it may have 
been expected that end-point variability would increase if approach phase starting positions 
were manipulated, this was not the case for most participants. Participants were able to 
regulate or adapt their locomotor patterns in order to achieve their desired take-off location
(Needham et al., 2016) and achieve successful performance outcomes. It is unclear if P4’s 
lower TOAcc was product of experimental conditions and/or a reduced ability to regulate 
locomotor patterns as TOAcc was highest in C2 and lowest in C3. However, as a 100% 
success rate was achieved this increased end-point variability does not appear detrimental 
to the performance outcome. A key distinction between national (P1-3) and international 
level athletes (P4-6) in this sample was be highlighted by success rate. P4-6 were able to 
complete nine successful jump in nine attempts, hence a 100% success rate. However, P1-3
had success rates ranging between 64-90%. This highlights the need for athletes to increase 
degeneracy in movement patterns in order to provide robustness against perturbations 
(Barris, Farrow, & Davids, 2014) and facilitate consistent performance outcomes. From a 
performance perspective, the ability to complete successful jumps at every attempt is key in
championship finals where medal-winning positions are determined not just by heights 
cleared but by the number of failed attempts.  

Dynamical systems techniques were employed to quantify and between the athlete
and pole. During the penultimate and final steps, the athlete transitions the pole, moving the 
hands to an overhead position, coordinating the pole in preparation for take-off. National 
level athletes utilised a similar coordination pattern for all conditions. An example is provided 
in fig. 1. Classification of coordination pattern revealed that fluctuation between in-phase and 
pole-phase, i.e. both the pole and trunk were moving together or only the pole was moving. 
Frequency between these patterns was approximately 50/50 for both steps under all 
conditions. The response pattern that was observed here suggests that P1-3 adopted the
same motor response regardless of how the initial conditions were perturbed. A major 
influence of motor task strategy selection has been linked to perceptions and pervious 
experiences of the performer (James et al., 2003). P1-3 possessed limited experience and 
so selected a single inflexible strategy. In contrast, the international level athletes
demonstrated the selection of differing coordination patterns during the penultimate step (fig. 
1) for perturbed conditions. 

Figure 1. P3 (upper) & P5 (lower) coupling angle for all conditions (Green = C1, Blue = C2, Red 
= C3). TD = Touch Down (0, 50 & 100%), TO = Toe-off (25 & 75%). 0-50% = Penultimate Step, 50-
100% = Final Step. Grey background = In-Phase, white background = Anti-Phase.
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For participant’s P4-6, coordination classification revealed a pole-phase dominant pattern for 
C1. Under C2 and C3, frequency between classifications is evenly divided between all four 
patterns, demonstrating the emergence of a more complex coordination pattern. If previous 
perceptions and experiences are indeed an influencing factor in strategy selection then it 
seems plausible that participants of a higher skill level with greater experience would 
possess a greater number of motor solutions which suit the requirements of the system 
during a particular repetition (Lees & Bouracier, 1994). Hence, they can solve the movement 
problem and respond to perturbations in a more flexible manner.

For P1-3, ranged between 0° - 30° with the highest levels of occurring in the final 
10% of phase just prior to take-off. In contrast, for P4-6 ranged between 20° and 65° 
with peaks in variability evident between 10-40% and 90-100% of phase. These time points 
coincide with the athletes’ planting action and results support the concept that high can 
be associated with the transition between coordination patterns (Haken et al., 1985). 
Variability has been shown to decrease with practice but can also be high in expert 
performance. In this study, P1-3 presented low levels of while their more skilled 
counterparts, P4-6, presented higher levels. Results match the U-shaped hypothesis of 
(Wilson et al., 2008) although the addition of novice athletes in future research would be 
beneficial. Implications for training recommendations can be derived from these findings. 
Athletes who present low levels of  (e.g. P1-3) should engage in activities that promote 
functional variability during the approach phase, which contribute to the development of 
flexible motor patterns and consistent performance outcomes. Coaches should consider skill 
level and when prescribing training drills.

CONCLUSION: Pole vaulters produced different coordination patterns when interacting with 
the pole during normal and perturbed approach phase conditions. Athletes of a higher skill 
level exhibited a greater number of motor response patterns under perturbation, higher 
levels of and greater success rates. These differences were linked to skill level and 
highlight the need for degeneracy in movement patterns to cope with environmental 
variability. By relating these findings to the application of training theory, coaches can 
implement athlete specific training drills that effectively and efficiently enhance the ability to 
achieve consistent performance outcomes. 
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