3-2016

Reactive strength index-modified in different plyometric tasks

Josh Walker

Sarah B. Clarke
Northern Michigan University

Emma Waller

Aaron Robey-Broome

Randall L. Jensen
Northern Michigan University

Follow this and additional works at: http://commons.nmu.edu/facwork_conferencepresentations

Part of the Exercise Science Commons, and the Sports Sciences Commons

Recommended Citation
Walker, Josh; Clarke, Sarah B.; Waller, Emma; Robey-Broome, Aaron; and Jensen, Randall L., "Reactive strength index-modified in different plyometric tasks" (2016). Conference Presentations. 155.
http://commons.nmu.edu/facwork_conferencepresentations/155

This Conference Presentation is brought to you for free and open access by NMU Commons. It has been accepted for inclusion in Conference Presentations by an authorized administrator of NMU Commons. For more information, please contact kmcdonou@nmu.edu,bsarjean@nmu.edu.
Reactive Strength Index-modified in different plyometric tasks

Poster · March 2016

5 authors, including:

Josh Walker
Leeds Beckett University
4 PUBLICATIONS 0 CITATIONS
SEE PROFILE

Sarah B Clarke
Northern Michigan University
35 PUBLICATIONS 18 CITATIONS
SEE PROFILE

Randall L Jensen
Northern Michigan University
119 PUBLICATIONS 1,164 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

- Neuromuscular and Functional Outcomes of Operatively Treated Achilles Tendon Ruptures View project
- COMPARISON OF CLINICAL VERSUS MECHANICAL MEASUREMENTS IN DETECTING LOWER LIMB ASYMMETRIES ASSOCIATED WITH A SECOND ACL INJURY View project

All content following this page was uploaded by Sarah B Clarke on 08 July 2016.
The user has requested enhancement of the downloaded file.
Reactive Strength Index-modified in different plyometric tasks

Josh Walker¹, Sarah B. Clarke¹, Emma V. Waller¹, Aaron Robey-Broome¹, and Randall L. Jensen²

¹ Institute for Sport, Physical Activity & Leisure, Leeds Beckett University
² School of Health and Human Performance, Northern Michigan University

Purpose

Plyometric exercise training is thought to be essential for the development of the stretch-shortening cycle¹ and can therefore be used to improve performance measures such as vertical jump height².

Reactive Strength Index-modified (RSI$_{\text{mod}}$) is a reliable method of measuring an athlete’s explosiveness during plyometric exercises such as depth jumps and countermovement jumps¹.

The purpose of the research was to measure the between-limb differences in RSI$_{\text{mod}}$ across three plyometric tasks. The research also investigated differences in RSI$_{\text{mod}}$ between the three tasks for both limbs.

Method

Participants:

N=11, Recreationally-active, Age = 20.4 ± 1.5 years, Height = 1.74 ± 0.07 m, Body mass = 80.1 ± 12.9 kg.

Standardised warm-up on a cycle ergometer with jumping video-assisted protocol familiarisation.

Countermovement Jump (CMJ) • Hands placed on hips • Limbs on separate force platforms Stop Jump (SJ) • Three steps before jump • Land on both limbs • Limbs on separate force platforms Dominant Leg Jump (DLJ) • Unilateral stop jump • Three steps before jump • Land on dominant limb Non-dominant Leg Jump (NLJ) • Unilateral stop jump • Three steps before jump • Land on non-dominant limb

All jumps performed in a randomised order. Each jump repeated three times, and an average of each jump was used.

Results

- No significant difference in RSI$_{\text{mod}}$ between limbs in any of the jumps (p>0.05).
- For the dominant limb, RSI$_{\text{mod}}$ was significantly greater in SJ than CMJ (p=0.002, d=1.75) and the DLJ (p<0.001, d=1.74).
- For the non-dominant limb, RSI$_{\text{mod}}$ was significantly greater in SJ than CMJ (p<0.001, d=1.66) and the NLJ (p<0.001, d=1.67).

<table>
<thead>
<tr>
<th></th>
<th>CMJ</th>
<th>Stop Jump</th>
<th>DLJ vs. NLJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominant</td>
<td>0.52±0.10b</td>
<td>0.83±0.23ac</td>
<td>0.52±0.12b</td>
</tr>
<tr>
<td>Non-Dominant</td>
<td>0.52±0.11b</td>
<td>0.84±0.25ac</td>
<td>0.49±0.16b</td>
</tr>
<tr>
<td>Between-limb</td>
<td>0.02</td>
<td>0.02</td>
<td>0.14</td>
</tr>
<tr>
<td>Cohen’s d</td>
<td>Trivial</td>
<td>Trivial</td>
<td>Small</td>
</tr>
</tbody>
</table>

References

Conclusion

- SJ is a more explosive type of movement, and coaches may want to make use of this form of plyometric task when looking to enhance performance variable such as speed and power.
- As no between-limb differences were found, coaches and researchers probably should not use RSI$_{\text{mod}}$ as a measure of limb asymmetry.
- Lower RSI$_{\text{mod}}$ in single-limb tasks shows participants were less able to produce similar forces over similar contact times.
- Future studies should measure RSI$_{\text{mod}}$ in athletes of different sporting activities, such as team sports vs. individual sports, as well as to establish whether RSI$_{\text{mod}}$ limb asymmetries exist in males and females separately.

Acknowledgements

- This study was supported in part by the Northern Michigan University College of Health Sciences and Professional Studies.
- Thank you to Dr Catherine Tucker the Learning Support Officers at Leeds Beckett University for assisting with equipment setup and data collection.

Author

Josh is a Level 6 Sport & Exercise Science student at Leeds Beckett University.

j.walker3695@student.leedsbeckett.ac.uk

@joshwalker456