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This study investigates if signal complexity is a useful measure to delineate between 
patients diagnosed with athletic groin pain (AGP) and uninjured controls. The 3D 
biomechanics of 65 AGP patients and 50 uninjured controls were examined during a 
lateral hurdle hop exercise. The complexity of hip moments was examined using 
quadratic sample entropy and statistically tested using independent t-tests. The results 
from this study demonstrated that the AGP group had significantly less complexity in hip 
moments in comparison to the uninjured control group with effect size ranging from 0.53 
- 0.96. These findings would suggest that signal complexity of hip moments may be a 
useful measure to distinguish between those with and without AGP. 
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INTRODUCTION: Biomechanical analysis of field sport injuries [including athletic groin pain 
(AGP)] has traditionally focused on magnitude-based representation (e.g. maxima and 
minima values) of biomechanical signals using discrete or continuous signal analysis. 
However, the structure of a signal, for example its complexity, is also a rich source of 
additional information (S. Pincus & Huang, 1992). Complexity refers to the deterministic 
structural richness contained within a signal that emerges from the dynamic interaction of 
multiple components, organized around and summating to an outcome goal (Komar, Seifert, 
& Thouvarecq, 2015). Pathology or injury is theorized to reduce the degrees of freedom 
available to the system to achieve a movement task and hence there may be a reduction in 
signal complexity (Harbourne & Stergiou, 2009). Whilst recent research has begun to 
examine the biomechanics of AGP using traditional metrics, including examinations of 
stiffness and measures of variability, to date no research has examined complexity in AGP 
patients and its ability to delineate between injured and uninjured controls. 
It has been suggested that the hip joint is particularly important in the pathomechanics 
associated with AGP (Franklyn-Miller et al., 2016). During dynamic weight bearing tasks the 
hip joint works to transfer load from the lower limb to pelvis and any alterations in hip 
mechanics will alter the resultant hip joint force (Lewis, Sahrmann, & Moran, 2010). This in 
turn may overload the commonly painful pubic symphysis region and the adjacent muscular, 
ligamentous, and cartilaginous structures, which act to stabilise it (Meyers, Greenleaf, & 
Saad, 2005). The purpose of this investigation was therefore to examine complexity in hip 
joint moments in AGP patients in comparison to uninjured controls. It was hypothesised that 
the AGP group would have significantly lower complexity when compared to an uninjured 
group.

METHODS: Sixty-five male subjects with AGP (mean ± SD: age 24.6 ± 4.8 yrs., height 180.5 
± 5.8 cm, mass 81.5 ± 8.5 kg), along with fifty male controls (mean ± SD: age 23.9 ± 3.4 yrs., 
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height 179.7 ± 9.26 cm, mass 79.8 ± 13.8 kg) participated in this study. Each participant 
attended the lab on one occasion for a biomechanical examination of the lateral hurdle hop 
test. This test involved a lateral hop over a 15 cm hurdle followed by an immediate hop back 
to the initial starting position. The AGP participants were examined on their symptomatic 
side, contra lateral leg flexed at a 90-degree angle and hands unrestricted for balance. The 
uninjured control group were matched proportionally for leg dominance. Participants were 
instructed to undertake the hop as explosively as possible. Three repetitions of this exercise 
were undertaken to obtain mean scores. Eight infrared cameras (250Hz; Vicon, UK), 
synchronized with two force platforms (1000Hz; AMTI, USA), were used to collect data. 
Reflective markers were placed at bony landmarks according to Plug-in-Gait marker 
locations (Vicon, UK). Marker and force data were filtered using a fourth order low pass 
Butterworth filter at 15 Hz. The data was subsequently exported to Matlab 2013b 
(Mathworks, USA), where signal entropy was calculated and the statistical analysis 
conducted. To calculate signal entropy, hip moments were examined during the period of 
initial contact to toe off. Initial contact and toe off were defined respectively as the instances 
at which the vertical ground reaction force exceeded and fell below a 5N threshold. No time 
normalisation procedures were performed to avoid any kind of alteration to the dynamics of 
time series. Entropy was calculated using quadratic sample entropy as outlined in Lake & 
Moorman (2011). The underlying concept of entropy is that in simple waveforms, sequences 
or subsections are repeated regularly, while this is not the case in a complex wavefrom. In 
this respect, the first step of calculating quadratic sample entropy is to calculate the 
conditional propability that two short subsections of a waveform that match within a tolerance 
of acceptability will continue to match at the next point. This calulation is termed sample 
entropy and is calculated as follows: given a waveform containing t consecutive data points 
(x1,x2,x3…xt), a subsection of this waveform of length m<t and starting at point i (xi, 
xi+1,….xi+m-1) is termed a template [Tempm(i)]. This template is compared to subsequent 
subsections of length m within the total waveform. Every time a match between the template 
and subsequent subsections of the waveform is observed within an acceptable tolerance of 
disimilarity (r >0), the match is counted and their conditional probabilities are summed and 
divided by t – m. This creates the variable A. This process is then repeated for [Tempm+1(i)] 
creating the variable B. The sample entropy (equation 1) is then calculated as the negative 
natural logarithm of the conditional probability of a match of length m+1 given a match of 
length m:

Sample Entropy = -ln (A/B) (1)

Quadratic sample entropy can then be calculated by adding the natural logarithm of 2r, 
thereby removing the influence of the size of t through normalisation (Lake & Moorman, 
2011) (equation 2): 

Quadratic sample entropy = Sample Entropy + ln (2r)                 (2) 

For this study, quadratic sample entropy was calculated with m = 2 and r = 0.2*standard 
deviation of the signal being examined (S. Pincus & Huang, 1992).  A series of t-tests were 
utilised to compare AGP results to uninjured results, however no adjustment for multi 
comparisons was deemed necessary (Hopkins, Marshall, Batterham, & Hanin, 2009). All 
results are presented as mean ± SD and Cohen’s effect size was reported as small (0.2 – 
0.5), medium (0.5 – 0.8), and large (> 0.8). 

RESULTS: Complexity was significantly less in the AGP group in comparison to the control 
group at the hip in all three planes with effect sizes ranging from medium to large (Table 1). 

Table 1: Mean Quadratic sample entropy for hip moment waveforms (ordered in terms of effect 
size – D). 
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Variable AGP Pre Uninj Controls AGP Pre vs. Uninj Controls
Mean ± SD Mean ± SD D Sig

Hip Flex/Extensor -0.50±0.45 -0.05±0.37 0.96 < 0.01
Hip Ab/Adductor -0.97±0.30 -0.75±0.34 0.67 < 0.01

Hip Int/Ext Rotator -2.20±0.32 -2.03±0.32 0.53 0.01
AGP = athletic groin pain, Uninj = Uninjured, D = Cohen’s D effect size, Sig = significance (p).

DISCUSSION: This study sought to investigate if biomechanical complexity was a useful 
measure to delineate between those with and without AGP during a lateral hurdle hop task. 
Overall the AGP had significantly less complexity in hip moments as measured by quadratic 
sample entropy in comparison to the uninjured control group. The lower joint moment 
complexity observed in the AGP group is supported by previous gait research indicating that 
injured individuals with chronic ankle instability (Terada et al., 2015) and knee osteoarthritis 
(Tochigi, Segal, Vaseenon, & Brown, 2012) have lower complexity in measures of ankle 
frontal plane kinematics and tri-axial leg accelerations, respectively. In other domains, lower 
signal complexity has also been identified in centre of pressure data in concussed athletes 
(Cavanaugh et al., 2006) and in various pathological biological signals including: heart rate 
atrial fibrillation (Lake & Moorman, 2011) and electroencephalograms in Alzheimer’s disease 
(Simons, Abasolo, & Escudero, 2015). 
While the present study did not examine the underlying pathophysiology associated with this 
loss of complexity in AGP patients, it has been suggested within the general biological 
literature that reduced complexity is associated with a reduction in the number of, or the 
coupling and co-ordination between, sensory inputs (Cavanaugh, Guskiewicz, & Stergiou, 
2005; S. M. Pincus, 1994). There are a number of potential explanations for the findings of 
this study. Firstly, the reduced complexity may represent a risk factor for the development of 
AGP as the reduced complexity could represent an inability to respond to perturbations,
which are common during field-based sports. It is unclear from the present study however if 
complexity precedes AGP or is a result of this injury, and further research is warranted.
Secondly, it is possible that the AGP group are utilising a more regular, rigid, motor 
behaviour in an attempt to avoid pain (or perceived threat of pain) associated with this 
condition. In fact previous research has demonstrated that compensatory movements can be 
retained even when pain is no longer present (Tucker, Larsson, Oknelid, & Hodges, 2012). A
final explanation of our findings is that the lower complexity may reflect neuromuscular 
detraining. Indeed previous research has demonstrated that heart rate complexity is reduced 
after just four weeks of detraining (Heffernan, Fahs, Shinsako, Jae, & Fernhall, 2007) and a
reduction of training load is common in AGP in order to manage the pain associated with this 
condition (Hölmich & Thorborg, 2014). 

CONCLUSION: The results from this study suggest that biomechanical complexity of hip 
moments is a useful measure to delineate between those with and without athletic groin pain 
during a lateral hurdle hop test. Future research should examine the kinetic and kinematic 
complexity of all lower limb joints in AGP patients and compare the findings directly to more 
traditional biomechanical metrics (e.g. maxima and minima measures). 

REFERENCES 
Cavanaugh, J. T., Guskiewicz, K. M., Giuliani, C., Marshall, S., Mercer, V. S., & Stergiou, N. (2006). 
Recovery of postural control after cerebral concussion: New insights using approximate entropy. 
Journal of Athletic Training, 41(3), 305–313. http://doi.org/doi: DOI: 10.1016/j.pmrj.2009.03.011
Cavanaugh, J. T., Guskiewicz, K. M., & Stergiou, N. (2005). A nonlinear dynamic approach for 
evaluating postural control: new directions for the management of sport-related cerebral concussion. 
Sports Medicine (Auckland, N.Z.), 35(11), 935–950.
Franklyn-Miller, A., Richter, C., King, E., Gore, S., Moran, K., Strike, S., & Falvey, E. (2016). Athletic 
groin pain (part 2): a prospective cohort study on the biomechanical evaluation of change of direction 

1166

35th Conference of the International Society of Biomechanics in Sports, Cologne, Germany, June 14-18, 2017



identifies three clusters of movement patterns. British Journal of Sports Medicine, (Accepted), 1–10. 
http://doi.org/10.1136/
Harbourne, R. T., & Stergiou, N. (2009). Movement variability and the use of nonlinear tools: 
principles to guide physical therapist practice. Physical Therapy, 89(3), 267–282. 
http://doi.org/10.2522/ptj.20080130
Heffernan, K. S., Fahs, C. A., Shinsako, K. K., Jae, S. Y., & Fernhall, B. (2007). Heart rate recovery 
and heart rate complexity following resistance exercise training and detraining in young men. 
American Journal of Physiology. Heart and Circulatory Physiology, 293(5), H3180-6. 
http://doi.org/10.1152/ajpheart.00648.2007
Hölmich, P., & Thorborg, K. (2014). Epidemiology of Groin Injuries in Athletes. Sports Hernia and 
Athletic Pubalgia. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4899-7421-1_2
Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive Statistics for 
Studies in Sports Medicine and Exercise Science. Med . Sci . Sports Exerc, 41(1), 3–12. 
http://doi.org/10.1249/MSS.0b013e31818cb278
Komar, J., Seifert, L., & Thouvarecq, R. (2015). What Variability tells us about motor expertise: 
measurements and perspectives from a complex system approach. Movement & Sport Sciences - 
Science & Motricité, (89), 65–77. http://doi.org/10.1051/sm/2015020
Lake, D. E., & Moorman, J. R. (2011). Accurate estimation of entropy in very short physiological time 
series: the problem of atrial fibrillation detection in implanted ventricular devices. American Journal of 
Physiology. Heart and Circulatory Physiology, 300(1), H319–H325. 
http://doi.org/10.1152/ajpheart.00561.2010
Lewis, C. L., Sahrmann, S. A., & Moran, D. W. (2010). Effect of hip angle on anterior hip joint force 
during gait. Gait & Posture, 32(4), 603–7. http://doi.org/10.1016/j.gaitpost.2010.09.001
Meyers, W. C., Greenleaf, R., & Saad, A. (2005). Anatomic basis for evaluation of abdominal and 
groin pain in athletes. Operative Techniques in Sports Medicine, 13, 55–61. 
http://doi.org/10.1053/j.otsm.2005.01.001
Pincus, S., & Huang, W. (1992). Approximate entropy: statistical properties and applications. 
Communications in Statistics-Theory and  …. Retrieved from 
http://www.tandfonline.com/doi/abs/10.1080/03610929208830963
Pincus, S. M. (1994). Greater signal regularity may indicate increased system isolation. Mathematical 
Biosciences, 122(2), 161–181. http://doi.org/10.1016/0025-5564(94)90056-6 
Simons, S., Abasolo, D., & Escudero, J. (2015). Classification of Alzheimer’s disease from quadratic 
sample entropy of electroencephalogram. Healthcare Technology Letters, 2(3), 70–3. 
http://doi.org/10.1049/htl.2014.0106
Terada, M., Bowker, S., Thomas, A. C., Pietrosimone, B., Hiller, C. E., Rice, M. S., & Gribble, P. A. 
(2015). Alterations in stride-to-stride variability during walking in individuals with chronic ankle 
instability. Human Movement Science, 40, 154–162. http://doi.org/10.1016/j.humov.2014.12.004
Tochigi, Y., Segal, N. A., Vaseenon, T., & Brown, T. D. (2012). Entropy analysis of tri-axial leg 
acceleration signal waveforms for measurement of decrease of physiological variability in human gait. 

, 30(6), 
897–904. http://doi.org/10.1002/jor.22022
Tucker, K., Larsson, A. K., Oknelid, S., & Hodges, P. (2012). Similar alteration of motor unit 
recruitment strategies during the anticipation and experience of pain. Pain, 153(3), 636–643. 
http://doi.org/10.1016/j.pain.2011.11.024

Acknowledgements
This study was funded by the Sports Surgery Clinic as industrial partner of INSIGHT Centre for Data 
Analytics, Dublin City University, and Science Foundation Ireland (SFI) under Grant Number 
SFI/12/RC/2289. 

1167

35th Conference of the International Society of Biomechanics in Sports, Cologne, Germany, June 14-18, 2017


	ISBS 2017 Proceedings_neu.pdf

