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ABSTRACT 

SUB-LETHAL AND LETHAL EFFECTS OF A NEONICOTINOID PESTICIDE ON THE 

DEVELOPMENT OF NORTHERN LEOPARD FROG TADPOLES. 

By 

Travis Moe 

  Well-known global declines in amphibian populations have sparked decades of studies 

into potential causes (Stuart et al. 2004). Pesticides are a suspected contributor to declining 

populations (Bruhl et al. 2013). Imidacloprid is the most widely used insecticide in the world, but 

few studies have considered its potential effects on anurans. I conducted a static-renewal 

experiment to monitor the lethal and sub-lethal, developmental effects in Northern leopard frog 

tadpoles exposed to three concentration levels (250 ng/L, 8.5 mg/L, and 85 mg/L) of 

imidacloprid in a laboratory setting. Survivorship was 0% by day 23 of exposure to imidacloprid 

at the previously lowest known LC50 value for frogs of 85 mg/L. This served as the high 

concentration level in this study. Tadpoles exposed to imidacloprid had reduced length at 

metamorphosis compared with the control group (one-way ANOVA, p<0.001). Imidacloprid 

exposure concentration was inversely related to the rate of development of tadpoles (Somers’ d, 

p=0.009). Imidacloprid concentration level was positively associated with frequency of nuclear 

abnormalities. Exposure to imidacloprid may cause sub-lethal effects. Tadpoles exposed to 250 

ng/L imidacloprid (a concentration found in a Canadian wetland area) exhibited sub-lethal 

effects (e.g. binucleated, blebbed, lobed and notched nuclei), suggesting that these effects may be 

observed in the environment with wild populations of frogs.  More research is necessary to 

understand the lethal and sub-lethal effects of imidacloprid on Northern leopard frog tadpoles, 

but these results offer a basis for further research.  
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DEVELOPMENTAL EFFECTS OF IMIDACLOPRID EXPOSED NORTHERN LEOPARD 

FROG TADPOLES. 

ABSTRACT 

 Well-known global declines in amphibian populations have sparked decades of studies 

into potential causes (Stuart et al. 2004). Pesticides are a suspected contributor to declining 

populations (Bruhl et al. 2013). Imidacloprid is the most widely used insecticide in the world, but 

few studies have considered its potential effects on anurans. I conducted a static-renewal 

experiment to monitor the lethal and sub-lethal, developmental effects in Northern leopard frog 

tadpoles exposed to three concentration levels (250 ng/L, 8.5 mg/L, and 85 mg/L) of 

imidacloprid in a laboratory setting. Survivorship was 0% by day 23 of exposure to imidacloprid 

at the previously lowest known LC50 value for frogs of 85 mg/L. This served as the high 

concentration level in this study. Reduced length at metamorphosis was observed in the tadpoles 

exposed to imidacloprid compared with the control group (one-way ANOVA, p<0.001). An 

inverse relationship existed between imidacloprid exposure concentration and the rate of 

development of tadpoles (Somers’ d, p=0.009). Imidacloprid concentration level was positively 

associated with frequency of nuclear abnormalities. Exposure to imidacloprid may cause sub-

lethal effects. Tadpoles exposed to 250 ng/L imidacloprid (a concentration found in wetlands) 

exhibited sub-lethal effects (e.g. binucleated, blebbed, lobed and notched nuclei), suggesting that 

these effects may be observed in the environment with wild populations of frogs.  More research 

is necessary to understand the lethal and sub-lethal effects of imidacloprid on Northern leopard 

frog tadpoles, but these results offer a basis for further research.  
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INTRODUCTION 

 Population declines, in some cases leading to extirpations, have been observed in 

amphibians around the world.  Approximately 1/3rd of all amphibian species are now at risk for 

extinction, making this class of vertebrates the most threatened globally (Knapp et al. 2016, 

Sparling and Fellers 2009).  For more than 25 years, many studies attempted to understand these 

global declines.  The most likely causes of population declines include habitat destruction and 

fragmentation; emergent, widespread diseases such as chytridiomycosis; climate change; 

invasive species; and environmental pollutants, such as agrochemicals (Bruhl et al. 2013, Hof et 

al. 2011, Grant et al. 2016).  Some or all of these factors may interact in ways that amplify or 

reduce their individual effects, complicating management and conservation efforts (Hof et al. 

2011). For example, the use of newly developed agrochemicals (i.e. insecticides, herbicides, and 

fungicides) complicates possible interactions and may require multiple studies, across multiple 

taxa, to understand potential ecosystem effects.  In addition, the impacts of these chemicals may 

go unnoticed due to their sub-lethal (e.g. immune suppression or endocrine disruption) or 

generational effects (Hayes et al. 2006, Mason et al. 2013).  However, studies to understand the 

effects of individual causes remain vital, as many of them are poorly understood or the factors 

influencing them are constantly changing.   

 Approximately 40% of the global land surface is used for agricultural practices; 

consequently, the influence and exposure of agricultural zones to native populations is great and 

increasing (Foley et al. 2005).  Much of this land was formerly grasslands or forests, and then 

converted to agricultural lands, which receive a disproportionate and increasing amount of 

pesticides (Figure 1, Bruhl et al. 2013).  Chronic exposure to agrochemicals is common among 

non-target organisms within or near agricultural zones (Williams and Semlitsch 2009).  Anurans 
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(i.e. frogs and toads), because of their life history characteristics, serve as excellent, non-target 

species-indicators of environmental pollution.  These characteristics include thin, semi-

permeable skin that absorbs moisture (and potential pollutants) from the environment, foraging 

on insects and small aquatic organisms where bioaccumulation may become a concern, 

overwintering and breeding in small to medium sized pools that may be exposed to chemicals via 

runoff or spray, and laying unshelled eggs in soil or water where they could absorb chemicals 

(Blaustein et al. 2003, Denton and Bernot 2011, Price et al. 2007).  Despite these characteristics, 

amphibians are not part of the US Environmental Protection Agency’s (EPA) ecological risk 

assessment for non-target species when testing (or re-registering) a new pesticide (US EPA).  

Few studies have investigated the effects of neonicotinoids (but see Feng et al. 2004, Ade et al. 

2010, Puglis and Boone 2011, Ruiz de Arcaute et al. 2014).   

 Neonicotinoids are a group of relatively new, synthetic chemical insecticides (Hopwood 

et al. 2012).  Currently, there are seven recognized neonicotinoids.  Imidacloprid was the first 

one developed by Bayer Crop Science in 1985, and registered for use in the United States in the 

early 1990s (Tomizawa and Casida 2005).  High levels and widespread use of neonicotinoids 

was evident in the mid- to late 90’s (van der Sluijs et al. 2015).  Neonicotinoids largely replaced 

the organophosphates and carbamates to become the most widely used group of insecticides in 

the world.  Two primary reasons account for their widespread use, the first being their diverse 

mode of application (i.e., seed coatings, soil drenches, chemigation, or foliar sprays) (Hopwood 

et al. 2012).  Secondly, their systemic mode of action makes them preferable to many other types 

of pesticides.  Systemic insecticides often go against the use of integrated pest management 

practices because it treats a problem before one is present.  In addition, studies have estimated 

that only around 5% of the active ingredient from seed coatings are actually taken up by the 
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target crop; the majority of neonicotinoid is left to accumulate in the soil or runoff into 

underground or surface bodies of water (Goulson 2013). 

 In animals, imidacloprid’s (IMI; 1-(6-chloro-3-pyridinylmethyl)-N-nitroimidazolidin-2-

ylideneamine) mode of action is unclear, but it is thought to bind and affect the function of the 

nicotinic acetylcholine receptors (nAChRs).  These receptor sites are much more abundant in 

insects than mammals, making them selectively more toxic to invertebrates (Kreutzweiser et al. 

2007, Tomizawa and Casida 2005).  Imidacloprid breaks down into several possible compounds 

(6-chloronicotinic acid, 6-hydroxynicotinic acid, chloronicotinic aldehyde, olefin-IMI, 5-OH-

IMI, and 4-OH-IMI), each with differing levels of toxicity to target and non-target organisms.  

For example, one common metabolite of imidacloprid, 6-chloronicotinic acid (6-CNA), is also 

highly toxic to bees, thus increasing the exposure time to a potentially lethal compound or even 

causing a delay in lethality from imidacloprid application (or exposure) time (Simon-Delso et al. 

2015).  In addition to environmental exposure routes, food may also be a source for exposure 

because nicotine-derivative compounds, such as imidacloprid, can quickly and effectively cross 

the intestine barrier (Simon-Delso et al. 2015).   

Imidacloprid is commonly used for controlling sucking insect pests (e.g. aphids, 

whiteflies, planthoppers, thrips, and some coleopteran pests) (Figure 2, Jeschke et al. 2010).  A 

large portion (>80%) of the applied imidacloprid is not taken up by the plant, but released into 

the environment (Sur and Stork 2003, Tisler et al. 2009).  Imidacloprid’s long half-life in soil 

raises concern about its possible accumulation and transport to nearby water sources (Van Dijk et 

al. 2013).  Laboratory and field studies estimate imidacloprid’s 50% dissipation time ranges from 

28 to 1250 days, depending on the soil type.  Moreover, commonly reported concentrations in 

soil, water, and plants in field margins exceed LC50 levels for beneficial pollinators (Goulson 
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2013).  Although imidacloprid use in agriculture is declining due to the more diverse application 

options of two closely related neonicotinoids, thiamethoxam and clothianidin, imidacloprid 

remains the most commonly detected neonicotinoid in urban/suburban settings (Main et al. 

2016). 

 In non-target organisms exposed to pesticides, lethal effects (direct mortality) are 

relatively easy to detect, however, the sub-lethal effects are probably more common.  Sub-lethal 

effects of pesticide exposure may include reduced growth, development, fecundity, impaired 

immune system, altered behavior, genotoxic effects, and cytotoxic effects (Boina et al. 2009, 

Perez-Iglesias et al. 2014).  Although environmentally occurring concentrations of 

neonicotinoids are below reported lethal threshold levels for amphibians, sub-lethal effects are 

possible and are greatly understudied (van der Sluijs et al. 2015).  

 Biomonitoring markers provide a measurement for the level of cytogenetic damage 

produced from exposure to a toxic pollutant.  One of the most reliable methods to measure 

cytogenetic damage is analysis of the frequency of micronuclei (MN) in circulating nucleated 

erythrocytes (Fenech 2000, Perez-Iglesias et al. 2014, Ruiz de Arcaute et al. 2014, Vera-Candioti 

et al. 2010).  Micronuclei result from the loss of whole or partial chromosomes from daughter 

nuclei at mitosis and are relatively simple to detect and quantify, because they are separate from 

the main nucleus of the cell (Figure 3; Campana et al. 2003).   

 The goal of this study was to understand the lethal and sub-lethal effects of exposure to 

imidacloprid in Northern leopard frogs (Lithobates pipiens).  Three exposure concentrations of 

imidacloprid were monitored for mortality, metamorphosis, morphological development from 

hatching to metamorphosis, growth (weight and length), cytotoxicity assay for micronuclei 
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analysis and other nuclear abnormalities, and an attempt to detect residues of imidacloprid in 

liver samples.   

MATERIALS AND METHODS 

Test organisms, lab conditions, and general experimental design 

 I obtained egg clusters of L. pipiens from Carolina Biological Supply (#146430) on 

March 15 2016, and nearly all eggs hatched by March 21.  Fifteen individuals were transferred to 

each of eighteen, 10-gallon (37.85 L) aquaria in a laboratory setting.  A 12/12 h light/dark cycle 

was maintained, and tank conditions included: 12 L of dechlorinated tap water with artificial 

aeration, a short PVC pipe with a plastic platform on top for metamorphs, and a dark sheet 

covering half of the tank to provide cover from foot-traffic in the lab (Figure 4).  Average water 

conditions were as follows (mean ± S.E.): temperature, 17.66 ± 0.02 °C; pH, 7.94 ± 0.01; 

dissolved oxygen, 8.89 ± 0.01 mg/L.  Tadpoles were fed tadpole pellets from Carolina Biological 

Supply (#146500) approximately every two days.  An acclimation period of one week was 

allowed before the static-renewal dosing experiment began.  I monitored the development, 

behavior, and morphology of tadpoles until the experimental endpoint (day 185).  Tadpole 

development (weight and length over time) was measured every 10-15 days by randomly 

selecting five individuals from each tank.  To randomly choose tadpoles, I selected five tadpoles 

to measure by choosing five numbers from 1 to 15 and measuring the tadpoles that were netted 

corresponding to those numbers.  Morphological characteristics of developing tadpoles are 

described in detail and separated into stages of development (25-46) by Gosner (1960).  I 

subdivided the number of tadpoles that remained at the experimental endpoint into three groups 

based on Gosner stages of development (Gosner 1960).  These were stages 25-35, 36-41, and 42-

44, which roughly corresponded to the physical characteristics “no legs,” “hind legs with tail,” 
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and “four legs with tail,” respectively.  Frogs were euthanized by submersion in a buffered 

solution of MS-222 at 3 g/liter for 10 minutes or until movement ceased.  Chemical euthanasia 

was followed by decapitation and pithing, in accordance to American Society of Ichthyologists 

and Herpetologists (ASIH) protocol.  Frogs were euthanized near Gosner (1960) stage 46 (full 

resorption of tail and corner of mouth beyond eye).  Immediately following euthanization, I 

dissected out the livers, wrapped them in foil, and stored in a freezer (~-20o C) for further 

analysis.  At the same time, I created two slides per individual of peripheral blood smears via 

heart puncture.   

Static renewal testing 

 Static-renewal testing began on 01 April 2016.  Aquaria were cleaned and re-dosed every 

10-15 days throughout the experiment.  The static-renewal method was used in similar 

experiments with success (e.g., Brunelli et al. 2009, Mann and Bidwell 2001, Relyea 2004).  

Doses were administered blindly, with five aquaria each having a low, medium, and high 

concentration level of imidacloprid (250 ng/L, 8.5 mg/L, and 85 mg/L, respectively), and the 

three remaining aquaria served as the control group with no imidacloprid added.  Only three 

control tanks were used due to space constraints (Figure 5). 

Chemicals and reagents 

I obtained imidacloprid from a commercial formula, Imidapro® 2SC (Agrisel™) (Figure 

2).  The Giemsa solution for staining cells was obtained from Sigma-Aldrich, all other chemicals 

and reagents were obtained from VWR International. 
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Measuring imidacloprid concentration 

 Methods for liver preparation were modified from Mohan et al. (2010). Livers were 

excised, weighed (Thermo Fisher Scientific balance accurate to 0.1 mg) and blended with the 

extraction solvent (100% acetone) by mortar-pestle.  I transferred the mixture into a 

microcentrifuge tube and mixed further in an ultrasound bath before undergoing centrifugation at 

7400 rpm for 5 minutes. The above methods for mixing livers into solution differed from Mohan 

et al. (2010) in that these researchers used an orbital shaker for two hours. The supernatant was 

transferred into a round-bottom flask and concentrated under vacuum using a rotary flash 

evaporator.  I re-dissolved residues in as low a volume of acetonitrile as possible (approximately 

100 to 600 µl) and loaded them onto SPE cartridges (Lichrolut RP-18; pre-washed with acetone), 

and eluted with acetonitrile.  Samples were analyzed on HPLC (Varian 920-LC) equipped with 

ultraviolet (UV) detector.  The column was Agilent Zorbax SB-C18 (3.5 µm, 3.0 x 150 mm) 

with an injection volume of 20 µL and acetonitrile:water (25:75) as mobile phase at a flow rate 

of 0.9 ml/min for 10 minutes per sample.  The UV/Vis detector was set at 254 nm.  

Recording micronuclei and other nuclear abnormalities. 

 Micronuclei and cytoxicity assays followed procedures used by Ruiz de Arcaute et al. 

(2014), Vera-Candioti et al. (2010), and Fenech (2000).  I created peripheral blood smears 

following euthanasia of each animal onto clean, marked slides, air dried, and fixed with 100% 

cold methanol (4° C) for 20 min, and stained with 5% Giemsa solution for 15 min.  I scored 1000 

cells per frog under 1000x magnification on gridded slides. The MN criteria followed previous 

examination criteria from Vera-Candioti et al. (2010), that is, MN must possess (1) diameter 

smaller than 1/3 of the main nuclei, (2) non-refractability, (3) staining intensity similar to or 
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lighter than the main nuclei, (4) no overlapping, connection, or link, with the main nuclei, and 

(5) an MN boundary distinguishable from the main nuclei. 

 Other nuclear abnormalities were scored in the same manner and followed criteria 

previously reported (Ruiz de Arcaute et al. 2014, Strunjak-Perovic et al. 2009, and Cavas and 

Ergene-Gozukara 2003).  Specifically, binucleated cells contained two nuclei, blebbed nuclei 

were cells with one nucleus presenting a relatively small evagination of the nuclear membrane, 

lobed nuclei were larger evaginations than blebbed, which could have several lobes, and notched 

nuclei possessed vacuoles and substantial depth into a nucleus, without containing nuclear 

material (Figure 3).  The cytotoxicity assay was accomplished using the same slides as above, 

and determined by counting the total number of erythrocytes and erythroblasts out of 1000 cells 

and expressed as a frequency. 

Statistical Analysis  

 I used a one-way analysis of variance (ANOVA) with Tukey’s HSD post-hoc test to test 

for differences in the number of frogs that reached metamorphosis among treatments, and the 

weights and lengths of frogs that reached metamorphosis across all treatments.  The number of 

mortalities and the number of tadpoles remaining at the experimental endpoint were analyzed 

using Kruskal-Wallis test, because the data did not meet the equal variances test (Levene’s F-

test) for one-way ANOVA.  A directional measures (ordinal by ordinal) Somers’ d test was used 

to analyze the developmental stages of tadpoles still alive at the experimental endpoint.  The 

independent and dependent variables were concentration level and development stage, 

respectively.  Both weights and lengths over time were analyzed by linear mixed effects model 

(LMM) with ‘treatment’ and ‘days’ set as fixed effects with ‘days’ as a covariate, and ‘tanks’ 

assigned as random effects to check for any block effects.  Weights were log-transformed to 
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meet the assumptions of the analysis and the high-level treatment groups were removed from 

developmental analysis for LMM because all tadpoles were deceased by day 23.  All physical 

measures of aquaria conditions including temperature (o C), pH, and dissolved oxygen (mg/L) 

were analyzed using a one-way ANOVA with Tukey’s HSD post-hoc test.   

 The weights of livers extracted from the frogs that reached metamorphosis were analyzed 

using one-way analysis of covariance (ANCOVA) with Bonferroni adjustment for multiple 

comparisons.  The covariate for this test was days until metamorphosis, to adjust for any size 

differences as a result of additional development time. 

 I tested the micronuclei assay and other nuclear abnormality data using one-way ANOVA 

with Tukey’s HSD post-hoc or Kruskal-Wallis test.  The number of notched nuclei and the 

category of combined ‘other abnormalities’ (blebbed + notched + lobed), were log transformed 

to meet the assumptions for ANOVA.  All parametric and non-parametric ANOVAs/ANCOVAs 

were carried out in SPSS Statistical Program for the Social Sciences, version 24.  Linear mixed 

models were carried out in the program RStudio (version 3.3.3) for the developmental data of 

tadpole weights and lengths. 

RESULTS 

 Lethal Effects 

 The low, medium, and high concentration groups each started with 75 tadpoles and 

exhibited 33.3, 28.0 and 100.0% mortalities, respectively.  The control group started with 45 

tadpoles and exhibited 42.2% mortality (Table 1; Figure 6).  Significantly more mortalities 

occurred in the high concentration group (Kruskal-Wallis, df=3, p=0.008) than all other groups.  

The mean proportion of tadpoles that reached metamorphosis differed among treatments (Figure 
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7; one-way ANOVA, F3,14=18.207, p<0.001).  The high treatment group had significantly fewer 

tadpoles reach metamorphosis compared with all other groups.  The proportion of tadpoles alive 

at the experimental endpoint (day 185), was significantly lower in the high-level treatment group 

(Kruskal-Wallis, df=3, p=0.010) than in other groups (Table 2). 

 Sub-lethal Effects 

 For all sub-lethal, developmental effects, the high treatment group was absent from 

analysis because all tadpoles were dead by day 23.  As the imidacloprid treatment concentration 

increased, the development rate of tadpoles was slowed (Somers’ d, dev. dependent statistic =     

-0.299, p=0.009).  No significant differences in weights at metamorphosis were observed (Figure 

8; F2,75=2.849, p=0.064).  However, significant differences in lengths at metamorphosis were 

observed (Figure 8; F2,75=10.304, p<0.001).  Shorter lengths were observed in the low and 

medium treatment groups compared with the control group.  Developmental weights and lengths 

were analyzed with a linear mixed effects model (Figure 9; Figure 10).  No significant 

differences existed between treatments in weights over sampling days (F2,204=2.16, p=0.117), but 

length was significantly different between the control and medium treatment level groups 

(F2,10=5.33, p=0.026).  The mean tank conditions (pH, temperature, and dissolved oxygen) were 

not significantly different between treatment and control groups (Table 3).   

 There were no significant differences in the liver weights between treatment groups when 

development days were accounted for as a covariate (Figure 11; F2,72=2.906, p=0.061). The 

covariate ‘days’ did not appear to interact with the group. The HPLC methods used in this study 

resulted in an imidacloprid retention time of approximately 3.07 min. using a 99.9% pure 

imidacloprid standard (Figure 12). None of the chromatograms revealed any indication that 
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imidacloprid was present at detectable levels in the frogs’ livers, as evidenced by lack of a peak 

at the retention time of imidacloprid (3.07 min) (Figure 12).   

 Blood smears from a total of 70 individuals analyzed for micronuclei and other nuclear 

abnormalities revealed no significant differences in the number of MN produced by this pesticide 

across all groups (Table 4; Kruskal-Wallis, p=0.071).  However, the number of binucleated cells 

in the control, low, and medium level treatment groups were significantly different from each 

other, with frequency increasing with concentration level (Table 4; Kruskal-Wallis, p=0.002).  I 

observed significantly more notched nuclei in the medium level treatment group compared with 

the low and control groups (Table 4; F2,125=8.366, p<0.001).  The number of blebbed or lobed 

nuclei were not significantly different between all groups (Table 4; blebbed: F2,125=2.525, 

p=0.084; lobed: p=0.139).  When the ‘notched,’ ‘blebbed,’ and ‘lobed’ categories were 

combined into a single ‘other nuclear abnormalities’ category, the numbers produced were 

significantly higher in the medium-level treatment group compared with the low and control 

groups (Figure 13; F2,125=5.155, p=0.007).  The number of erythrocytes in 1000 cells was not 

significantly different between any group (Figure 14; Kruskal-Wallis, p=0.315).  These 

genotoxicity assays did not include the high treatment group because all tadpoles were dead by 

day 23 of the experiment. 

 Tadpole behavior and morphology was monitored daily throughout the experiment.  Any 

oddities were noted and summarized at the end of the experiment (Table 5).  The most 

commonly observed behaviors included slow-to-no response to a disturbance (e.g. shifting the 

tank or skimming out old food) and appearing disoriented in the tank.  The latter was most often 

observed in the tadpoles exposed to 85 mg/L imidacloprid and was characterized by tadpoles 

swimming or floating on their sides.   
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DISCUSSION 

 Exposure to 85 mg/L imidacloprid caused 100% mortality by day 23 of the experiment 

(Figure 6).  Although this concentration is higher than what is likely to occur in the environment, 

it is the lowest LC50 value reported for frogs exposed to imidacloprid.  The previous lowest LC50 

value comes from a study in Argentina on the Montevideo tree frog (Hypsiboas pulchellus) (Ruiz 

de Arcaute et al. 2014).  My results suggest that the LC50 value for L. pipiens exposed to 

imidacloprid is lower than that for H. pulchellus.  Although the design of my study was 

inadequate to calculate a true LC50 value, I was able to estimate a value ranging from ~27 to 40 

mg/L (Figure 15).  Future research should follow an EPA protocol design for calculating an 

accurate LC50 value for this species.  My results offer evidence for a lower LC50 value for 

imidacloprid exposed L. pipiens.  This range may be more informative for future studies using 

North American ranid frogs than values such as the one for H. pulchellus. 

 Mortalities occurred in all experimental groups, primarily in the early stages of 

development. This is typical in wild populations of L. pipiens (Calef 1973).  However, lab-reared 

tadpoles were provided all the food needed for survival with no threat of predation, contrary to 

wild populations. Thus, a similar level of mortality is slightly unexpected.  Tadpoles that 

survived to the experimental endpoint, but did not reach metamorphosis, were placed into three 

categories based on their level of development (Gosner stages 25-35, 36-41, 42-44).  On average, 

tadpoles in the control group developed faster than those exposed to 250 ng/L imidacloprid at the 

experimental endpoint.  The low treatment group was also more developed than the tadpoles 

exposed to 8.5 mg/L imidacloprid. Exposure to higher concentrations of imidacloprid resulted in 

slower developmental rates, up to a point where primarily mortalities occurred.  Slower 

development could affect the survival and fitness of wild populations of L. pipiens.  Tadpoles 
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found in ephemeral ponds may only have a narrow window to develop into frogs before standing 

water is no longer available and a longer development time may expose them to a longer period 

of predation risk (Alvarez and Nicieza 2002).  In such a scenario, delayed development could 

result in higher than normal mortality rates.  Delayed development could also affect the mating 

success of individuals that breed early in the season, especially when accounting for reduced size 

at metamorphosis.  In addition to slower development, the size of frogs that reached 

metamorphosis was reduced with increasing exposure concentrations (Figure 8).  Smaller frogs 

might suffer from lower fitness and reduced ability to escape predation. 

 One concern of my experiment involved the rearing temperature.  Although temperatures 

between experimental groups were not significantly different from each other, they were below 

the preferred range for L. pipiens.  In addition to the imidacloprid treatments, this could influence 

the rate of development.  Hatching to metamorphosis in L. pipiens typically ranges from 70 to 

110 days, with the longer periods occurring in the colder, northern areas of the species range.  

Previous studies demonstrated, as expected, that populations of L. pipiens located in southern 

Canada tolerated colder temperatures better than populations from northern Mexico (Goldstein 

2007).  Goldstein (2007) performed an experiment in which relict leopard frog tadpoles (L. onca) 

were acclimated to temperatures ranging from 15 to 35 oC and allowed to develop at acclimation 

temperatures.  The 15 oC group took longer to develop than any other; however, no significant 

differences existed in survival.  Because the temperatures in my study were around 17.7 oC on 

average, and L. pipiens is very closely related to L. onca, longer development may have benn 

influenced in part by temperature, but mortality was not temperature dependent.  It is worth 

noting that Goldstein (2007) used a species native to Southwestern United States, and these 

results may be irrelevant for a population local to Michigan’s Upper Peninsula, which deals with 
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much colder water temperatures during development.  Further studies are needed to ensure that 

temperature effects were not an important influence in tadpole survival. 

 Liver weights did not appear to be influenced by imidacloprid exposure, while 

controlling for body weight (Figure 11). In tadpoles, the liver is involved with the hormonal 

cascades that drive metamorphosis as well as creating blood cells, immune function, and 

metabolic processes (Hartigan et al. 2012).  No tadpoles exposed to 85 mg/L imidacloprid 

reached metamorphosis and all were too small at time of death for liver extraction, thus were 

excluded from HPLC analysis.  In all tadpole treatments, imidacloprid was not detected or 

occurred below detectable levels (< 2 ng/mL; Figure 12).  The nature of the static-renewal 

experiment may have allowed time for imidacloprid to be metabolized or broken down within 

the tadpoles before I measured residues within the liver. 

 Micronuclei presence in peripheral blood erythrocytes is a reliable measure for 

genotoxicity in amphibians produced by pesticides (Vera Candioti et al. 2009).  Micronuclei 

formation occurs when dividing cells do not distribute genetic material equally between the two 

daughter cells, because of chemical or radiation damage (National Toxicology Program, 2017).   

Increasing concentrations of imidacloprid resulted in increasing genotoxic effects, at varying 

significances, per 1000 cells (Table 4).  Every category showed a trend of increasing nuclear 

abnormalities quantified (MN, binucleated, blebbed, lobed, notched) with increasing 

imidacloprid concentrations.  Imidacloprid seems capable of inducing chromosomal damage.  

Chemicals capable of inducing chromosomal damage in somatic cells are potentially 

carcinogenic, or cancer causing.  Further, chromosomal damage in germ cells could result in 

reduced reproductive output or even birth defects in tadpoles (National Toxicology Program, 

2017). 
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 Abnormal tadpole behavior, such as odd swimming behaviors could impair predator 

avoidance and increase energy use from constantly restoring their up-right position.  Two 

individuals (one exposed to 250 ng/L and one exposed to 8.5 mg/L) displayed an odd deformity 

in the tail as a ‘notch’ near the base (Figure 17).  Both of these individuals swam in an awkward 

manner and the tail interfered with swimming once hind limbs developed.  The tails appeared to 

reabsorb normally near the end stages of development and both reached metamorphosis 

successfully.  Only two individuals in the experiment exhibited this morphological deformity, 

and there is no evidence to suggest exposure to imidacloprid was the cause.  In the wild, 

individuals with this deformity might not reach adulthood, as they would make an easy prey 

item. 

 The imidacloprid-based formulation used in this study contained 21.4% imidacloprid and 

the remainder was listed as ‘other ingredients’.  These ingredients are not typically made 

available to the public, and often contain surfactants, solvents, and adjuvants, some of which 

may have their own toxic effects on organisms (Vera Candioti et al. 2010).  Experiments using 

commercially prepared formulations are relevant because these are also the formulations used in 

agricultural settings.  Ideally, imidacloprid should also be tested in a pure form to understand its 

true effects to an organism. There is likely some variety of inactive ingredients used across 

multiple manufacturers, so every formulation could potentially have different effects in 

organisms.   

 Pesticides, by definition, have inherent toxicity (Ecobichon 1993), which is noticeable in 

target species but can elude detection in non-target species.  Due to their mode of action, 

neonicotinoids should be less toxic to non-target organisms, such as mammals, birds, 

amphibians, and fish. However, increasing numbers of studies, focusing on long-term sub-lethal 
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effects, reveal that neonicotinoids may pose just as much of a threat to some populations as 

broad-spectrum pesticides (Goulson 2013; Kohler and Triebskorn 2013).  Single-pesticide 

exposure in the environment is rare-- it is more common that multiple pesticides exist and 

interact in the environment at a time.  The toxicity of neonicotinoids and their metabolites 

increase when used in combination with other pesticides (Simon-Delso et al. 2015).  As a result, 

the sub-lethal effects caused by laboratory exposure to environmentally realistic concentrations 

of a single pesticide may become amplified in the environment.  Although studies investigating 

the effects of multiple pesticide exposure scenarios at environmentally realistic concentrations 

are not common, they should be considered for management and conservation decisions.  Long-

term studies are necessary to reveal some sub-lethal effects and generational effects; however, 

such studies cannot keep up with the rate of newly introduced pesticides into the environment. In 

addition to potential interactions with surfactants, solvents, metabolite compounds, and other 

pesticides present in the environment, numerous new neonicotinoids are in development or 

approved for use in China.  All of these new compounds are cis-neonicotinoids at the nitro or 

cyano group, which are known to cause very different toxic effects compared to the trans-

neonicotinoids (Simon-Delso et al. 2015). 

 Detrimental effects to developing L. pipiens tadpoles at moderate concentrations of 

imidacloprid exposure are evident from this study.  Imidacloprid concentrations of 85 and 8.5 

mg/L are not likely found in the environment, but the effects at these levels reveal the potential 

effects caused by imidacloprid exposure.  More importantly, sub-lethal effects appear to occur at 

the cellular level when exposed to imidacloprid concentrations of only 250 ng/L.  This 

concentration level was measured in surface water wetland areas of southern Canada, near 

agricultural zones.  More recently, surface water samples from agricultural regions of California 
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have exceeded imidacloprid concentrations of 1.05 µg/L, more than four-fold the lowest 

concentration used in this study (Sadaria et al. 2016).  The US EPA reported the Aquatic Life 

Benchmark for imidacloprid at 1.05 ug/L, based upon the most sensitive aquatic toxicity data for 

multiple taxa (https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-

benchmarks-pesticide-registration).  Further research should investigate if similar sub-lethal 

effects occur in wild populations of anurans during development in these areas where 

imidacloprid exposure is common.  Well-informed decisions regarding the proper timing, use, 

and amounts of imidacloprid, and other pesticides, should incorporate studies such as this one, 

that focus on overlooked, but susceptible, non-target organisms.   
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TABLES AND FIGURES 

 

 

 

Table 1: Survivorship summary including the starting number of L. pipiens tadpoles raised under different concentrations of 
imidacloprid, those that that reached metamorphosis, those that died, and those that were still alive at the experimental 
endpoint (day 185).  *Significant differences in metamorphs, mortalities, and tadpoles alive at experimental endpoint were 
observed between the high-level concentration group and all others.   

 

 

 

 

 

 

 

 

 

 

Concentration 
Level 

No. of 
tadpoles 

No. of 
metamorphs 

Metamorphs 
(%) 

No. of 
mortalities 

Mortalities 
(%) 

No. of 
tadpoles alive 

at day 185 

Tadpoles 
alive at day 

185 (%) 

Control 45 16 35.60 19 42.20 10 22.20 

Low (250 ng/L) 75 32 42.70 25 33.30 18 24.00 

Medium (8.5 mg/L) 75 30 40.00 21 28.00 24 32.00 

High (85 mg/L) 75 0* 0.00* 0* 100.00* 0* 0.00* 
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Table 2: Stage of development of all L. pipiens tadpoles still alive at the experimental endpoint 
(day 185).  Stages were determined based on physical development features, described in  
Gosner (1960). As treatment concentration increased, the number of tadpoles at higher stages of 
development decreased. 

 

 

 

 

 

 

 

 

 

 

 

 

Concentration 
Level 

Tadpoles 
alive at 

experimental 
endpoint (%) 

No. of tadpoles at particular 
stages of development. 

Stage 
25-35 
days 

(no legs) 

Stage  
36-41 
days 

(hind legs) 

Stage  
42-44 
days  

(four legs) 

Control 22.2    0   7 3 

Low (250 ng/L) 24.0    5   9 4 

Medium (8.5 mg/L) 32.0    13   6 5 
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 Table 3: Physical conditions (temperature, pH, dissolved oxygen) of experimental  
 tanks that housed L. pipiens, under three different levels of imidacloprid shown as mean ± SE.   
 Note: Measurements for high concentration-level tanks were only recorded until all tadpoles  
 were dead (within 23 days).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Concentration Level 
Avg. Temp 

(°C) 
Avg. pH 

Avg. D.O. 
(mg/L) 

Control 17.76 ± 0.05 7.92 ± 0.03 8.93 ± 0.03 

Low (250 ng/L) 17.71 ± 0.04 7.97 ± 0.02 8.89 ± 0.02 

Medium (8.5 mg/L) 17.69 ± 0.05 7.91 ± 0.02 8.86 ± 0.02 

High (85 mg/L) 16.39 ± 0.15 7.93 ± 0.02 8.93 ± 0.03 
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Table 4: Micronuclei assay and other nuclear abnormalities from blood smears obtained from metamorphosed L. pipiens 
tadpoles raised in tanks with different levels of imidacloprid.  .  Two blood smears were obtained from each frog and 1000 cells 
per individual were counted.  Abnormalities are reported as mean ± S.E. *Significant differences in binucleated cells and 
‘notched’ abnormalities. 

 

 

 

 

 

 

 

 

 

 

Concentration 
No. of 
Frogs 

Sampled 

No. of 
Cells 

Analyzed 

Avg. no. of 
MN Cells  

Avg. no. of 
BN Cells 

Avg. no. of other nuclear abnormalities 

Blebbed Notched Lobed 

Control 15 25,000 0.48 ± 0.16 0.20 ± 0.10* 1.36 ± 0.32 1.44 ± 0.39* 0.52 ± 0.15 

Low (250 ng/L) 27 51,000 1.16 ± 0.25 0.59 ± 0.14* 1.86 ± 0.31 2.24 ± 0.30* 0.63 ± 0.12 

Medium (8.5 mg/L) 28 52,000 1.92 ± 0.44 1.23 ± 0.22* 2.51 ± 0.37 3.73 ± 0.43 1.15 ± 0.20 
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Table 5: Anecdotal observations of behavior and physical abnormalities of L. pipiens for each of the imidacloprid treatment 
groups.  Disturbances were implemented by shifting the tanks.  Disorientation was observed when a tadpole turned sideways 
while floating or swimming; most individuals would orient themselves upright after a short period of time.  Only two physical 
deformities were observed in the low and medium treatment groups. 

 

 

 

 

 

 

 

Treatment  Observations 

Control 
Three individuals out of 45 exhibited slow reaction or no reaction to netting or disturbance.  No apparent 
physical deformities were observed in this group. 

Low          
(250 ng/L) 

Eight individuals exhibited slow or no reaction to netting or disturbance.  Eleven individuals exhibited 
disorientation while swimming or floating.  These individuals turned onto their sides and would right 
themselves.  One individual developed a deformity with its tail (see Figure 16). 

Medium     
(8.5 mg/L) 

Five individuals exhibited slow or no reaction to netting or disturbance.  Six individuals exhibited 
disorientation while swimming or floating.  One individual developed a tail deformity in the same way 
that another did from the low treatment group (see Figure 16). 

High            
(85 mg/L) 

At least half of the individuals in these treatment tanks exhibited disorientation and turning on their 
sides.  Many also exhibited slow or no reaction to netting or disturbance.  No apparent physical 
deformities were observed, however, all tadpoles were dead by day 23 of the experiment and were very 
small. 
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Figure 1: Map of United States depicting the estimated use of imidacloprid (in pounds per square mile) on agricultural lands beginning in 1992 (top 
left) to 2014 (bottom right).  These maps were obtained from the United States Geological Survey as part of the National Water-Quality Assessment 
Program.  (https://water.usgs.gov/nawqa/pnsp/usage/maps/show_map.php?year=1992&map=IMIDACLOPRID&hilo=L).  

https://water.usgs.gov/nawqa/pnsp/usage/maps/show_map.php?year=1992&map=IMIDACLOPRID&hilo=L
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Figure 2:  Agrisel ImidaPro 2SC® served as the imidacloprid-
based pesticide (active ingredient 21.4%) used in this study.  
Chemical structure of imidacloprid displayed in lower-left of 
image. 
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Figure 3: Examples of L. pipiens erythrocytes from tadpoles exposed to three levels of imidacloprid observed under 1000x magnification.  a) Normal 
erythrocyte; b) Micronucleus; c) Binucleated cell; d) Notched nucleus; e) Blebbed nucleus; f) Lobed nucleus. 
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Figure 4:  Side-view of experimental tank design used to test the effect of imidacloprid on 
tadpoles.  Every tank had a covered and uncovered half, pvc pipe with a platform resting at 
water level near the center for leopard frog metamorphs to climb onto, air tube with an air 
stone attached, and 12 L of dechlorinated water. 
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Figure 5: Experimental design displaying all experimental tanks with their imidacloprid treatment 
concentrations (lower right) and locations on shelves in the aquatics facility.  Treatments were 
randomly assigned and applied blindly so that the experimenter did not know which tanks received 
treatments. 
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Figure 6: Survivorship of L. pipiens tadpoles through duration of experiment in which tadpoles 
were exposed to three concentration levels of imidacloprid.  Treatment groups started with 75 
individuals and the control group started with 45 individuals. 
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Figure 7: Cumulative metamorph curve of L. pipiens tadpoles through duration experiment in which 
tadpoles were exposed to three concentration levels of imidacloprid.  Note: the high treatment-level 
group (85 mg/L) had no metamorphs. 
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Figure 8: Average weights and lengths of L. pipiens at metamorphosis in tadpoles exposed to different 
levels of imidacloprid. Weights of treatment and control groups were not significantly different (p=0.064).  
a,b On average, imidacloprid-exposed frogs were significantly shorter than the control group at 
metamorphosis (p<0.001). Bars surrounding averages are standard errors. 

a 

b 

b 
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Figure 9: Average weights of L. pipiens tadpoles exposed to different levels of imidacloprid throughout 
the experiment.  Weights of five randomly selected tadpoles per tank were recorded on static-renewal 
days.  No significant differences existed in developmental weights over time between treatment groups 
(p=0.117).  Note: the high-level treatment group was ignored for statistical analysis because of high 
mortality.. 
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Figure 10: Average length of L. pipiens tadpoles over time, measured as total length (TL) in relation to level 
of imidacloprid. Lengths of five randomly selected tadpoles per tank were measured on static-renewal days.  
Significantly different developmental lengths existed between control and medium group tadpoles 
(p=0.026). The high-level treatment group was ignored for significance. 
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Figure 11: Average weight of livers extracted from metamorphosed L. pipiens tadpoles raised in 
tanks with different levels of imidacloprid.  There were no significant difference across the groups 
(p=0.061).  Bars surrounding averages are standard errors. 
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Figure 12: Chromatograms of (a) L. pipiens liver solution from control group; (b) L. pipiens liver 
solution from low-treatment group; (c) imidacloprid (PESTANAL®) 99.9% pure standard prepared 
at a concentration of 0.09 mg/L.  Retention time of imidacloprid peak is 3.07 min.  Absorbance 
was measured at 254 nm using Varian-LC UV-VIS detector.  Visible peaks in (a) and (b) are dead 
time (tM) and no imidacloprid peak was present in any treatment solutions. 
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Figure 13:  Average number of blebbed, notched, and lobed nuclear abnormalities (combined) from L. 
pipiens tadpoles raised in different levels of imidacloprid.  These abnormalities were combined and 
analyzed as one category labeled ‘other nuclear abnormalities.’  Control and low treatment groups had 
significantly fewer abnormalities than the medium treatment group (p=0.007).  Bars surrounding 
averages are standard error. 
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a 
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Figure 14: The number of erythrocytes and erythroblasts per 1000 cells were counted from MN 
assays from L. pipiens that were raised at different levels of imidacloprid. They are represented as a 
percentage (1000 cells = 100%), and no significant differences were observed between the groups. 
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Figure 15: Number of L. pipiens tadpoles killed at each concentration level.  Data were plotted with the 
high treatment level (85 mg/L) designated as 100% concentration level because all tadpoles died from 
this treatment.  Both linear (solid) and exponential (dashed) equations, R2 values, and trendlines are 
displayed and LC-50 values were calculated for both relationships.  Calculated LC-50 values, linear = 
27.26 mg/L and exponential = 39.56 mg/L, are estimates using the three data points available. 
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Figure 16: Images of an individual L. pipiens tadpole during development with a tail deformity.  
The above individual is from a low concentration-level treatment tank (250 ng/L).  Another 
individual with the same deformity was monitored from a medium concentration-level 
treatment tank (8.5 mg/L). 
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