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ABSTRACT 

BASIGIN-2 MEDIATED ACTIVATION OF ERK1/2 SIGNALING IN HUMAN 

GLIOBLASTOMA MULTIFORME CELLS 

By 

Erik Peterson 

 Glioblastoma multiforme (GBM) is the most common malignant form of human 

brain cancer. GBM tumor cells overexpress the protein Basigin (Bsg) at the cell surface 

where it contributes to malignancy via stimulation of matrix metalloproteinase (MMP)  

expression in surrounding normal tissues, resulting in the degradation of the extracellular 

matrix (ECM) surrounding tumors, promoting remodeling of the tumor borders, 

stimulating growth. In work by Belton et al. (2008), human uterine endometrial cells 

treated with a recombinant form of human basigin possessing the extracellular domain of 

the Bsg protein (rBsg-ECD) showed activation of the Mitogen-Activated Protein Kinase 

(MAPK) signaling pathway proteins, ERK1/2. This effect was mediated by rBsg-ECD 

binding to the Basigin-2 (Bsg-2) at the cell surface. In this research, U87-MG human 

GBM cells were treated with purified rBsg-ECD protein to measure changes in the 

phosphorylation of the ERK1/2 proteins. The results indicate the presence of a signaling 

loop within GBM tumors where soluble Bsg protein stimulates signal transduction 

through Bsg-2 at the cell surface. rBsg-mediated ERK1/2 stimulation is inhibited by the 

antioxidant compound Resveratrol, suggesting that the signaling mechanism through 

Bsg-2 involves the Epidermal Growth Factor Receptor (EGFR). Taken together, these 

results indicate that soluble Basigin protein stimulates signaling events through the 

MAPK signaling pathway by binding to Bsg-2 on the surface of GBM cells.  
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INTRODUCTION 

 

 

 

 Glioblastoma multiforme (GBM), or Grade IV astrocytoma, is the most common 

malignant form of human brain cancer, representing 15% of all brain tumors diagnosed in 

patients2. These tumors are generally located in the cerebral white matter of the brain and 

generally arise from a population of glial cells called astrocytes. GBM tumors 

characteristically possess a central core of necrotic (dying) tissue surrounded by 

anaplastic (rapidly growing) cells that exhibit limited differentiation characteristics. The 

outer border of the tumor generally possesses a high degree of vascularized tissue which 

is thought to develop in response to the resulting low oxygen levels within the tumor 

microenvirnoment. Prognosis for patients that develop of a GBM tumor is very grim. The 

general life expectancy following diagnosis is 12 to 15 months with a five-year survival 

rate to 3-5%3. The current standard of care is to aggressively resect the tumor and provide 

local radiation therapy, as well as chemotherapy using the prodrug temozolomide. 

Unfortunately, many patients experience the recurrence of tumors that are resistant to 

temozolomide following treatment4. Recurrence of the tumor, even after maximum 

treatment, is common and most likely attributed to a population of tumor-initiating cancer 

stem cells that resist most known conventional treatment methods.  

 The aggressive nature of the disease can be attributed to changes in the molecular 

biology of the tumor cells. For example, the epidermal growth factor receptor gene 
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(EGFR) is one of the most commonly mutated genes in GBM tumors, and changes to the 

EGFR gene and protein, or the signaling cascade emanating from it promote pro-survival 

signaling cascades leading to tumor growth5. Often times, GBM tumors will express a 

variant of the EGFR called EGFRvIII, consisting of a truncated and constituently active 

form of the EGFR protein6. Constitutively activated EGFR vIII activates the Mitogen 

Activated Protein Kinase (MAPK) signaling pathway in the absence of normal ligand-

receptor interactions leading to changes in gene expression within the tumor. The EGRF 

signaling pathway possesses a number of other signaling molecules that when mutated 

can also potently induce a pro-cancerous phenotype. This includes the enzymes Raf, 

MEK, and ERK1/2, which all function together with EGFR and the small G-protein Ras 

to promote stimulation of the cell cycle resulting in the inappropriate growth of cells. 

Understanding how all of these proteins work together to promote the progression of 

GBM tumors is crucial to the development of new and more effective treatments. 

 In the tumor microenvironment, one of the main factors driving tissue remodeling 

and promoting metastasis and tumor cell growth is the protein Basigin-2 (Bsg-2). This 

immunoglobulin-like transmembrane glycoprotein is known by several other names, 

including EMMPRIN and CD147, and is commonly expressed in human endothelial cells 

and red blood cells, with known roles in tissue remodeling required for mammalian 

embryonic implantation and development of retinal cells in the eye1, 8. Basigin is also 

implicated in spermatogenesis, fertilization, and lymphocyte responsiveness, due to its 

wide expression across numerous lymphatic cells9. There are currently four known 

isoforms of the basigin protein, Bsg-1-4, but the functions of Bsg-1, -3, and -4 are not 

well understood1. The Bsg-2 protein possesses two Ig-like loops, each stabilized by 
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disulfide bridges between cysteine residues at amino acids 157 and 203 and the 242 and 

301, respectively, in the Bsg-2 sequence. All Basigin isoforms also possesses a conserved 

transmembrane sequence and a short cytoplasmic domain that possesses no known 

signaling domain.  

The predominant form of human basigin found in cells (Bsg-2) possesses 269 

amino acids with a core mass of 29.2 kDa (UNIPROT Entry P35613)9. Bsg-2 can be 

glycosylated on three asparagine residues as it transits through the secretory pathway 

resulting in two forms of the molecule containing variable amounts of glycosylation: the 

high-glycosylated form has a mass of 50-60 kDa and a low-glycosylated form has a mass 

of approximately 42kDa. 10, 11. Basigin-2 possesses high-mannose and complex-type 

glycan structures attached to three asparagine sites in the high glycosylated form (at 

amino acids 160, 278, and 302), and one polysaccharide group attached to the asparagine 

at position 302 in the low glycosylated form11-13. The degree of glycosylation appears to 

control subcellular localization and protein interactions. The low glycosylated form 

interacts preferentially with the protein caveolin-1, which appears to prevent the complex 

from interacting with other factors within the cell and is prevented from forming 

clusters10, 12. When the protein is highly glycosylated, Bsg-2 can form aggregates at the 

cells surface, where it possesses biological activity by stimulating surrounding cells 

through direct cell-cell interactions or through release of membrane vesicles containing 

Bsg-2. Furthermore, the high glycosylated form of Bsg-2 is known to associate with 

additional membrane proteins such as integrin α3β1 to promote cellular migration 

through the ECM and internal cellular architectural alterations14.  
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One of the hallmarks of any cancer is its ability to spread from its primary growth 

site to secondary locations in a process called metastasis. There are multiple barriers to 

metastasis, including the physical barrier of the basement membrane proteins of the 

extracellular matrix (ECM). In order for cancer cells to spread into surrounding tissues, 

they must break down this physical barrier produced and secreted by normal 

mesenchymal cells such as stromal fibroblasts. Such fibroblast cells also possess the 

ability to produce the enzymes required to remodel the ECM as needed. This is 

accomplished through the production of a family of enzymes called matrix-

metalloproteinases (MMPs). Interestingly, elevated expression of Bsg-2 in cancer cells 

can induce surrounding fibroblasts to express MMPs that function to degrade the ECM, 

facilitating break down of the basement membrane separating tissues to promote tumor 

metastasis1, 14-18. In fact, it was this observation that led to Bsg-2 previously being named 

the Extracellular Matrix MetalloPRoteinase Inducer19
. Early studies by Chitra Biswas 

(1984) suggested that a soluble factor released from carcinoma cells called Tumor cell-

derived Collagenase Stimulating Factor (TCSF) was able to stimulate normal fibroblasts 

to produce the MMPs 1-320. Subsequently, TCSF was shown to be a soluble form of the 

Bsg-2 protein20.  

In tumor tissue, particularly GBM tissue, Bsg is usually overexpressed on the cell 

surface within lipid rafts21-23. During the process of vesicular shedding, budding pieces of 

tumor cell membrane containing high levels of Bsg-2 are released into the ECM, 

targeting stromal fibroblasts, other tumor cells, or other healthy cell types found in the 

local area of the tumor. The binding of Bsg-2 at the cellular surface has been shown to 

induce MMP expression in stromal fibroblasts, causing degradation of the ECM14-18. Bsg 
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stimulates the release of various MMPs, most notably MMPs-2, and -9 in GBMs. 

Through the use of antisense RNA to block Bsg function, MMP-2/-9 secretions in GBM 

cells were decreased heavily, along with vascular endothelial growth factor (VEGF)24. In 

other work performed by Sameshima et al. (2000), Bsg was found to induce MMP 

expression in brain-derived fibroblast cells, implicating this complex relationship in the 

human brain27. This work also illustrated the ability of Bsg-2 to stimulate the production 

of activated Gelatinase A (MMP-2) which cleaves both gelatinous and collagenous 

filaments in the ECM, via the increased production of “membrane type” MMPs-1 and -2. 

Through the inhibition of Bsg-2 with function-blocking antibody, secreted levels of both 

“membrane type” MMPs and MMP-2 were decreased24.  

In healthy tissue, MMP production and subsequent enzymatic action is 

implemented in tissue remodeling and repair after damage or in response to cell growth. 

However, in cancer, with the matrix degraded, dividing tumor cells can move into the 

space, causing growth of the tumor. As this process continues, cancerous cells are able to 

continuously gain ground within the body, eventually reaching vascular tissue, which it 

can use as an expressway to another location in the body to establish a site of metastasis. 

In conjunction with MMP induction and extracellular matrix degradation, Bsg-2 can 

associate with proteins known as integrins, which possess two different subunits, alpha 

(α) and beta (β), that determine their exact function depending on the combination of 

alpha and beta subunits. These proteins function mechanically to move a cell through the 

ECM by facilitating and sensing adhesion to the ECM. When normal cells don’t receive a 

signal through their integrins at their surfaces, they can be subjected to the process of 

anoikis where the cell will undergo apoptosis due to detachment to the ECM25. This 
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biological mechanism is designed to prevent the detachment and relocation of cells to 

new tissues. Cancerous cells are able to avoid anoikis and spread, believed to be partially 

mediated by the interaction between basigin and integrins. Cells overexpressing the 

basigin-2 protein have been shown to be able to grow and proliferate independent of 

basement membrane attachment in a Drosophila melanogaster model25. Bsg-2 

association with integrin α6β1, particularly the overexpression of both, is known to 

increase the invasiveness of hepatoma tumor cells, evidenced by the decrease in invasive 

potential when knocked down with function blocking antibodies against α6β126. Bsg-

2/α3β1 interaction produces similar effects, as well upregulation of proteins downstream 

of integrins in their signaling pathway28. In the context of GBM cells, not much research 

has found a relationship between basigin and integrin expression and action. However, 

there is evidence that integrin α6, which associates with Bsg-2, is involved in the 

regulation of GBM stem cells and serves as a glioblastoma stem cell marker27. When 

targeted, inhibition of integrin α6 led to a decrease in self-renewal potential, proliferation, 

and tumor initiation capacity28. In work by Chintala et al. (1996), it was shown that 

integrin α3β1 could modify MMP-2 induction and influence tumor cell invasiveness in 

GBM29.  

Bsg-2 is also implicated in the process of angiogenesis, both MMP-dependent and 

-independent, promoting increased nutrient exposure and utilization by a tumor30. Such 

an ability would be necessary for metastatic cell survival upon arriving in a new location 

within the body. This process was evidenced by the abolition of blood vessel formation in 

vitro when Bsg-2 was subjected to RNAi to block its function. This relationship is further 

investigated in the work by Voigt et al. (2009) where knockdown of Bsg-2 reduced the 
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expression of vascular endothelial growth factor (VEGF) that promotes the formation of 

blood vessels that could supply a tumor with the blood flow it requires31. The relationship 

between Bsg-2, MMPs-1, -2, and -9, and angiogenesis was investigated in a melanoma 

cancer model, where it was noted that MMP-2/9 expression occurs independent of Bsg-

232. However, upon knockdown of Bsg-2, melanoma cells displayed a reduced ability to 

metastasize to other sites and lost a significant degree of neovascularization. MMPs-2 

and -9 are shown to be expressed in human GBM tumors, where they correlate with 

VEGF and tumor vascularization32. In a human clinical model, GBM tumors taken from 

patients showed a high degree of correlation between Bsg-2 expression and tumor 

grade33. Along with that finding, the expression of Bsg-2 protein was also positively 

correlated with VEGF and Mevalonate Diphosphate Decarboxylase (MVD), both 

angiogenic factors. Patients with early stage tumors showed low expression of Bsg and 

VEGF/MVD, whereas high grade gliomas possessed high levels of all three33. Work 

published in 2000 by Sameshima et al. indicated that Bsg-2 could be found in the human 

brain only in vascular endothelial cells in healthy tissue, but not in actively proliferating 

vascular tissue in GBMs25. Taken as such, an indirect means for promoting 

vascularization via MMP induction by Bsg might be implicated in neoplastic GBM 

tissue.  

Increased blood flow derived from the interaction between Bsg, MMPs, and 

VEGF will allow tumor cell populations to gain better access to energy supplies, namely 

in the form of glucose molecules to use for ATP synthesis. One trademark of cancer is 

the process of aerobic glycolysis. The synthesis of ATP energy stores during the process 

of glycolysis ordinarily results in the production of two pyruvate molecules from a single 
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glucose molecule. When this process occurs without sufficient oxygen present in cells, 

such as during strenuous exercise or rapid tumor cell growth, pyruvate is converted to the 

waste product lactate requiring it to be exported from the cell. In tumor tissue, the cells 

will only undergo glycolysis, even in the presence of oxygen. This phenomenon is known 

as the Warburg Effect, after the work performed by Dr. Otto Warburg. With the 

constitutive aerobic glycolysis, cancerous cells need to uptake glucose at a significantly 

increased rate compared to normal cells, needing to process a massive amount of the 

sugar monomers to produce enough ATP to proliferate and spread34. As lactate builds up 

within the cells, the intracellular space begins to acidify, leading to organelle and 

cytoskeletal degradation and eventual cell death35. In cancerous tissue, cells will exhibit 

increased monocarboxylate transporter levels, particularly MCTs 1 and 4, of which Bsg is 

a chaperone36-38. MCTs are large transmembrane proteins with 12 transmembrane 

domains. In the cell membrane, Bsg will associate with the MCT protein, acting as a 

“pseudo-subunit”. The association between the two molecules is believed to be the result 

of charged interactions between amino acids on either protein. Basigin contains a 

conserved glutamate residue at the 218th amino acid position, where MCT expresses two 

possible candidates that could facilitate this association37. Within the third 

transmembrane domain of MCT-1, there are two arginine residues at positon 86 and 302 

that show the potential to bind to the negatively charged glutamate, but there isn’t enough 

evidence to declare what amino acids are actually responsible37. Bsg-2 is required to 

chaperone MCTs bound to lactate molecules to the cell surface from the inside of the 

cell38. As such, cancerous cells, including GBM, that overexpress Bsg-2 at the cell 

surface have an increased capacity to remove waste products and protect themselves36-40. 
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In Bsg-2-null mice, it was observed that in retinal pigment epithelial cells, MCT-1, -3, 

and -4 levels were lost without the expression of Bsg-240. The work by Marchiq et al. 

(2015) outlined the importance of Bsg-2 in stabilizing the function of MCTs-1 and -4 in 

the role of glycolytic tumor growth and survival39. In later work, it was shown that 

genetic disruption of Bsg-2 in glycolytic tumor cells was shown to decrease functional 

levels of the MCTs in the plasma membrane39, 40. Further work using function-blocking 

antibodies against Bsg in colon cancer and melanoma cells caused necrotic cell death, as 

opposed to apoptosis due to increased intracellular pH and decreased ATP levels41. In the 

same study, normal fibroblast cells weren’t subjected to the same cell death, inhibited 

glycolysis, and obstructed disposal of waste as cancerous cells. This phenomenon is due 

to the fact that cancerous cells rely on glycolysis to obtain their ATP energy, whereas the 

normal healthy cells perform oxidative phosphorylation41.  

Basigin-2 is also known to associate with cyclophilins (Cyps)42. These molecules, 

found both internally and externally, act as receptors for immunosuppressants, 

modulators of inflammatory responses, and trafficking proteins inside of cells. In certain 

cancers, CypA, a natural ligand for Bsg, is highly expressed42. In the work by Min Li et 

al., (2006) exogenous CypA was found to stimulate cell proliferation in a pancreatic 

cancer cell model, mediated by binding to Bsg in a dosage dependent manner, stimulating 

the ERK1/2 and p38 signaling pathways43. In other work, it was found that binding of 

Bsg to Apolipoprotein D, a 29kDa secreted chaperone protein, was competitively 

abrogated by binding of CypA to Bsg44. Basigin expression is also known to be affected 

by Cyp6045. Cyp60 binds to Bsg at proline-211 at the transmembrane domain, directly 

adjacent to the ECD of Bsg. When bound to the Bsg, Cyp60 regulates Bsg expression on 
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the cell surface, modulating the targeting of the Bsg protein45. Despite previous research 

into the relationship between Cyps and Bsg in cancer, there is little evidence that the two 

interact within the brain.  

In their 2008 publication, Belton et al. synthesized a 24-25kDa recombinant form 

of human Bsg-2 (rBsg), comprised of the extracellular domain (rBsg-ECD) of the protein 

attached to a histidine tag1. The protein was synthesized using a bacterial expression 

vector that expressed the protein in the periplasmic space between the cell wall and 

internal cell membrane of the bacteria. In this oxidizing environment, the recombinant 

protein is able to form stable disulfide bridges due to the non-reducing state of the 

periplasm, and can be isolated using an osmotic shock lysis method. The rBsg protein 

mimics the biological activity of the high glycosylated form of natural Bsg-2 so that it 

cells will recognize the protein as the natural Bsg-2 protein upon binding to the cell 

surface. This phenomenon is due to the stable tertiary structure of the recombinant 

protein, illustrating that glycosylation is responsible only in part for the biological 

activity of Bsg-2. In human uterine endometrial cells, rBsg was shown to induce ERK1/2 

phosphorylation through binding to human Bsg-2 at the cell surface1. When activated via 

phosphorylation, ERK1/2 phosphorylates transcription factors that cause cell cycle 

progression and cell survival46, 47. There is also evidence that the MAPK pathway does 

indeed play a role in tumor survival through oncogenes co-opting ERK1/2 into 

deregulating Bcl-2 proteins that contribute to cell survival48. rBsg was shown to bind to 

other, unknown receptors besides Bsg-2, illustrating a degree of uncertainty as to what 

protein rBsg stimulated the cells through1.  Bsg-Bsg binding-mediated ERK1/2 

activation, which is normally seen in response to growth factors in a healthy cell 
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population, is of much significance. It signifies that in a tumor microenvironment, where 

nutrients are being depleted at a high rate, this signaling pathway can still be activated in 

tumor cells, which can then push their cell cycles forward and proliferate using the Bsg-

mediated ERK1/2 phosphorylation, potentially facilitating some of the previously 

discussed mechanisms. Since GBM cells express high levels of intramembranous Bsg-2, 

there is the potential that vesicular shedding of Bsg-2 can induce a pro-survival 

autocrine/juxtacrine signaling loop within a cancer cell population.  

The MAPK signaling pathway is regulated through the EGFR receptor at the 

surface of cells. In normal cells, after ligand binding, the EGFR protein will activate a 

signaling cascade, starting with the activation of Ras protein. Once Ras is activated, it 

phosphorylates the Raf protein, which in turn phosphorylates MEK, a 

serine/threonine/tyrosine kinase (Fig. 1). Activated MEK in turn will activate ERK1/2 by 

adding a phosphate group onto the threonine-202/185 and tyrosine-204/187 residues on 

the ERK1/2 protein46. ERK1/2 is composed of two proteins that weigh 44kDa and 

42kDa. The protein normally functions as a serine/threonine kinase that adds phosphate 

groups to transcription factors to activates them and stimulate mRNA and protein 

production to drive the cell cycle forward and promote nucleic acid synthesis47. 

Normally, ERK1/2 is sequestered in the cytoplasm, preventing its function48. Once 

ERK1/2 is phosphorylated is translocated to the cell nucleus where it phosphorylates 

numerous transcription factors, including ELK, STAT, c-JUN, and c-FOS. When these 

factors become active, they promote cell survival and cell cycle progression49. In cells 

where the MAPK pathway has been mutated and is constitutively activated, the cells can 

grow out of control, promoting the development of cancer50. EGFRvIII is a mutated form 
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of the normal EGFR protein. However, it is missing most of the extracellular domain and 

is constitutively sending growth signals into the cell, promoting the increased activity of 

ERK1/26. Degraded ECM proteins produced by Bsg-2 mediated MMP activation can also 

stimulate EGFR signaling by binding to the cell surface in the tumor microenvironment, 

potentiating a juxtacrine signaling loop    (Fig 2)15. In the work by Grass et al. (2013), it 

was shown that Bsg-2 and EGFR are found in close proximity in lipid rafts that interact 

to drive forward cell invasiveness in a breast cancer cells, establishing a firmer base for 

investigating the effects of Bsg-2 stimulation of the EGFR-MAPK pathway in GBM 

cells21. 

The phytoalexin resveratrol (RSV) is a polyphenol commonly found in grapes, 

berries, and some species of pine tree. Normally, the molecule is produced in plants in 

response to stress, where it acts on numerous effectors to decrease stress-induced 

damage51. This is believed to occur due to the activation of sirtuins by RSV, which 

allows for cell growth signals to be transduced, mitigating stress-related damage52. RSV 

has been shown to inhibit the activation of ERK1/2 in vitro in mammalian cells, where it 

also acts as an inhibitor of the downstream effectors of ERK1/2 such as c-JUN, c-FOS, 

and other transcription factors as well53, 54. However, it was determined that ERK1/2 

could be hyperphosphorylated in response to RSV treatment in a chronic myeloid 

leukemia cell model, indicating a potential variance of effect between tissue types55. RSV 

also has the ability to promote the reversal of TMZ resistance by acting on the NF-κB 

pathway to reduce the activity of O’6-methyguanine DNA-methyltransferase (MGMT)4. 

Further, RSV possesses the ability to inhibit or activate cell cycle kinases, and other 

proteins, such as WAF/p21, to stop cell cycle progression at the G1-phase, force 
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cancerous cells out of the S-phase, and can reverse hyper-phosphorylation of the Rb 

tumor suppressor56. High concentrations alone were cytotoxic beyond a 60µM 

concentration when given to cells in vitro, possibly due to the endocytosis of the RSV, 

which was determined to cause the activation of multiple signaling pathways culminating 

in apoptosis in colon cancer and leukemia cells, as well as inhibition of the MAPK 

pathway4, 53, 57. RSV also has the ability to inhibit MMPs-2/9, VEGF, and EGFR, which, 

as stated previously, are found in human GBM cells51, 54, 58. RSV can act as an estrogen 

agonist, as well as an antagonist to the aryl hydrocarbon nuclear receptor, but neither 

function would be significant enough exert RSV’s inhibitory, anti-inflammatory, and pro-

tumor suppressor effects59. The exact mechanisms for these actions are largely unknown, 

and there is a lot of evidence pointing in multiple directions. However, in the work by 

Colin et al. (2011), it was determined that RSV enters cells at lipid rafts in the membrane 

via clathrin-independent endocytosis, where it was also shown that ERK proteins 

accumulate after RSV exposure57. This could indicate the inhibition of receptors that 

would otherwise stimulate ERK1/2 phosphorylation. This proposition is supported by the 

discovery that, when introduced to cells, RSV antagonizes the EGFR-dependent 

phosphorylation of ERK1/2, which can in turn, downregulate the expression of Bsg-2, 

and the fact that RSV endocytosis activates pro-apoptotic cell signaling pathway 

activation53, 57, 58. EGFR, as discussed earlier, is commonly found in lipid rafts. RSV was 

also found to reduce GBM cell invasiveness, however, not through the EGFR pathway 

discussed60, 61.While it has been shown that RSV will inhibit ERK1/2 activation in cells 

treated with PMA, an inducer of ERK1/2 phosphorylation, it hasn’t been investigated 

whether or not RSV will inhibit ERK1/2 activation in GBM cells that are treated with 
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rBsg or even fetal bovine serum (FBS), which has been shown to activate the protein 

kinases1, 53. This project sought to establish the relationship between rBsg treatment of 

human GBM cells, MAPK pathway activation, and ERK1/2 inhibition via resveratrol. 
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Figure 1: The EGFR receptor transduces signals along multiple signaling pathways. 
Once activated, EGFR proteins become phosphorylated and activate the 
EGFR/Ras/ERK1/2 signaling pathway, along with others, that drives gene expression, 
cell motility, and cell-cycle progression. Activation of ERK1/2 causes phosphorylation of 
ELK1, which in turn transcribes genes responsible for proliferation and cell survival. 
Taken from “Integration of EGFR inhibitors with radiochemotherapy” by Nyati et al., 
2006, Nature Reviews Cancer, Vol. 6, pg. 876-885. Copyright 2006 by Nature Publishing 
Group. Used with permission. 
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Figure 2: Mechanism for tumor cell invasion. The basement membrane produced by 
normal stromal and endothelial cells serves as a physical barrier to the metastasis of 
cancer cells within the body. Extracellularmatrix proteins found in the basement 
membrane and the ECM are broken down by enzymes called matrixmetalloproteinases. 
This enzymatic action causes a break in the basement membrane, allowing cancerouscells 
to spread. Taken from “The microenvironment of the tumor-host interface” by L.A. 
Liotta and E.C.Kohn, 2001,  Nature, Vol 411, pg. 375-379. Copyright 2001 by Nature 
Publishing Group. Used with permission. 

 

 

 

 

 

 

 



17 
 

 

 

 

 

 

 

 

 

 

 

Figure 3: Molecular communication at the tumor invasion front. MMPs released 
from both normal endothelial and fibroblast cells can be stimulated by the release of 
signaling molecules from cancerous cells such as VEGF, bFGF, and Bsg-2 (not pictured). 
MMP mediated degradation of ECM proteins causes activation of the EGFR signaling 
pathway in the cancerous cells, signaling the cells to begin dividing. Taken from “The 
microenvironment of the tumor-host interface” by L.A. Liotta and E.C. Kohn, 2001, 
Nature, Vol 411, pg. 375-379. Copyright 2001 by Nature Publishing Group. Used with 
permission. 
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AIMS AND GOALS 

 

 

 

 Glioblastoma multiforme is the most common malignant form of human brain 

cancer, characterized by an aggressive nature and poor prognosis. GBM, unlike normal 

brain tissue, expresses high levels of the protein Basigin-2 (Bsg-2), an Ig-like 

transmembrane protein with numerous pro-cancer cell signaling properties. It was 

previously described by Belton et al. (2008) that a recombinant form of human Bsg-2 

(rBsg), containing the extracellular domain of the protein, could bind to normal Bsg-2 at 

the surface of human endometrial stromal cells, stimulating MMP production and 

activating the EGFR-Ras-ERK1/2 signaling pathway. This pathway, when activated, 

allows for the transcription of proteins that drive the cell cycle forward and promote cell 

survival. When the pathway is constitutively activated as is often the case in cancers, 

uncontrolled cellular growth and proliferation can occur, leading to tumor growth.  

I hypothesized that treating human GBM cells with rBsg would cause activation 

of ERK1/2 by binding to Bsg-2 at the cell surface, illuminating an autocrine/juxtracrine 

signaling loop used by GBM tumor cells. To accomplish this, rBsg would be produced 

via a bacterial expression vector containing the sequence for rBsg that the protein could 

be isolated and purified from. Once sufficient purified protein was isolated, GBM cells 

would be treated with the rBsg protein, lysed, and analyzed for changes in ERK1/2 

phosphorylation. Recombinant Basigin-2 would then be conjugated to a Ultraviolet (UV) 
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light-activated hetero-trifunctional cross linker that, when exposed to UV light, would 

transfer a biotin tag from the rBsg “bait protein” to any transmembrane protein that the 

rBsg had bound to at the cell surface. This would then allow for the isolation of the 

putative receptors, with Bsg-2 being at the top of the list of those suspected to bind rBsg 

based off of previous findings. The activation of ERK1/2 by rBsg would then be blocked 

by the antioxidant phytoalexin Resveratrol (RSV) that has been shown to disrupt ERK1/2 

signaling in hopes of establishing a link between RSV and Bsg-2 mediated ERK1/2 

signal activation. 
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METHODS AND MATERIALS 

 

 

 

Cell Culture 

U87-MG human glioblastoma multiforme cells (ATCC) were obtained from 

cryostorage from the UMBTC. For propagation, cells were grown in Eagle’s Modified 

Essential Medium (EMEM) (Lonza) + 10% Fetal Bovine Serum (FBS) (Lonza) in 75cm2 

cell culture flasks. For treatment assays, cells were plated on 35mm, tissue-treated cell 

culture dishes to allow for ease of access and a uniform cell number when grown to 

confluency.  

Control and Experimental Protein Lysate Collection 

All control and treatment cells were grown to confluency in 35mm dishes, 

achieving a cell count of roughly 1.0x106 cells per dish. Prior to any control or 

experimental treatment, cells were serum starved using serum-free EMEM for 18-24hrs 

to synchronize their cell cycles and prevent further growth. A time course assay was 

created to be able to observe a stepwise increase in ERK1/2 activation in the U87 cells, 

consisting of six treatment periods at room temperature (0sec, 30sec, 1min, 2min, 5min, 

and 10min) comparing ERK1/2 phosphorylation between unstimulated cells and cells 

stimulated with FBS or rBsg. The time course was eventually changed to 0min, 5min, 

10min, 15min, 20min, and 30min incubation times at 37oC to properly induce the cells. 
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Control cells were plated, grown to confluency, and serum starved for 18-24hrs 

prior to treatment. Unstimulated control cells were treated for the allotted time periods 

with serum-free EMEM at 37oC. Stimulated cells were treated with EMEM+10% FBS 

for the allotted time period at 37oC. Once each treatment was completed, cells were lysed 

with 0.5mL ice-cold 1% NP-40 lysis buffer and placed on ice for five minutes. A cell 

scraper was used to collect all cell material and debris to one edge of the 35mm dish. The 

mixture of lysis buffer and cellular material was transferred to a labeled 1.5mL centrifuge 

tube and vortexed vigorously to ensure complete lysis. All centrifuge tubes containing 

cell lysates were centrifuged at 21000x the force of gravity (g) for 10min at 4oC. The 

supernatants were removed and transferred to separate, clean 1.5mL centrifuge tubes and 

placed on ice. Lysates were immediately subjected to a BCA (ThermoFisher) assay to 

determine protein concentration according to the manufacturer’s protocol. All lysate 

samples were stored at -20oC. A separate set of control cells were subjected to resveratrol 

(RSV) (TCI America) treatment to inhibit ERK1/2 phosphorylation. It was determined 

through Western Blot analysis that cells would be given a 2hr pre-treatment of 30µM 

RSV and a co-treatment of 30µM in the appropriate treatment media. Control cells to be 

treated with RSV were serum starved for 18-24hrs prior to the addition of RSV. Each 

dish of cells was given serum-free EMEM+30µM RSV for 2hrs and incubated at 37oC. 

Cells were then given either serum-free EMEM+30µM RSV (Unstimulated cells) or 

EMEM+10% FBS+30µM (stimulated) for the allotted time period. The treated cells were 

then washed and lysed under the same conditions as non-RSV-treated control cells and 

subsequently subjected to a BCA assay. These lysates were stored at -20oC.   
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Bacterial Cell Culture 

The expression vector BL-21RP E. coli bacteria were the gift of Dr. Belton for 

use in the isolation of recombinant human basigin-2 (rBsg) from a glycerol stock, stored 

at -80oC. These cells contained the pASK-IBA44 plasmid containing the sequence for 

rBsg with a polyhistidine tag, and ampicillin (Amp) and chloramphenicol (Chl) resistance 

genes. Bacteria were streaked directly onto an LB agar plate containing 100µg/mL 

ampicillin and 34µg/mL chloramphenicol and grown overnight at 37oC in the dark.   

rBsg Isolation 

 A single colony of BL-21RP cells containing the rBsg plasmid was picked and 

used to inoculate 5mL of LB broth+Amp+Chl. The inoculated LB broth was grown 

overnight at 37C in the dark at 200rpm on a shaker. The overnight culture was streaked 

onto two LB+Amp+Chl agar plates. These plates were grown overnight at 37oC in the 

dark. Exposure to light does not affect protein expression. A single colony from the 

overnight cultures was used to inoculate 5mL of SOC media (2% w/v tryptone, 0.5% w/v 

yeast extract, 8.56mM NaCl, 2.5mM KCl, ddH20 to 1000mL, 10mM MgCl2, 10mM 

MgSO4, 20mM glucose) containing 100ug/mL Amp and 34µg/mL Chl, which was 

allowed to culture for 5hrs at 37oC in the dark. Four milliliters of the pre-culture were 

added to 200mL SOC media containing 100µg/mL Amp and 34µg/mL Chl in a 1L 

Erlenmeyer. The newly inoculated 200mL of SOC was allowed to culture for 12hr at 

200rpm at 37oC in the dark. Four 1L Erlenmeyer flasks were filled with 200mL of SOC 

containing 100ug/mL Amp. Fifty milliliters of the overnight SOC culture were added to 

each of the four 1L Erlenmeyer flasks containing SOC+Amp. These were allowed to 

culture for 1hr at room temperature at 200rpm. After 1hr, 25µL of 2mg/mL 
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anhydrotetracycline (ACROS) in dimethylformamide were added to each of the cultures 

to induce rBsg protein expression. The induced cultures were allowed to continue 

culturing for 4hrs at room temperature at 200rpm. The entire culture volume was 

transferred, on ice, to 50mL conical tubes (twenty tubes in total) and centrifuged at 

3220xg for 10mins at 4oC in an Eppendorf 5810 centrifuge with a swinging bucket rotor. 

The supernatant was decanted off and the wet weight of the bacterial cell pellet was 

measured. Twenty five milliliters of Sucrose buffer (30mM Tris-Cl pH 8.0, 20% w/v 

sucrose) was added to each pellet and each pellet was thoroughly resuspended. Fifty 

microliters of 0.5M EDTA (pH 8.0) were added to each tube and mixed. The bacterial 

suspensions were allowed to incubate on ice for 10mins. The tubes were centrifuged at 

3220xg for 20mins at 4oC. The supernatant was decanted off and 25mL of MgSO4 buffer 

(5mM MgSO4) were added to each pellet and each pellet was resuspended. The bacterial 

suspensions were allowed to incubate on ice for 10mins before being centrifuged at 

3220xg for 20mins at 4oC. The supernatants of each osmotic shock lysate (OSL) tube, 

which contained rBsg protein, were consolidated into a single 500mL bottle and stored at 

4oC and on ice until it was ready to be concentrated. Four Millipore 10K centrifugal 

filters (Sigma-Aldrich) were obtained and chilled on ice. Fifteen milliliters of OSL were 

added to each filter tube. The filter tubes were then centrifuged at 3220xg at 4oC and a 

starting time of 20mins, which gradually increased as more protein was collected. This 

was repeated until the entire 500mL OSL sample was concentrated to roughly 4mL. The 

OSL in each centrifugal filter was then washed with 15mL 1X Wash Buffer (300mM 

NaCl, 50mM NaH2P04 pH 8.0) three times until the concentration of MgSO4 was 

<0.0015mM. A 50µL sample of OSL was saved for BCA and SDS-PAGE analysis. The 



24 
 

final OSL concentrate was collected using a 20-200µL Eppendorf Research Plus 

micropipettor and stored at -20oC. To purify the rBsg sample, two milliliters of cobalt 

Talon Affinity Beads (G-Biosciences) in 50% ethanol suspension were aliquoted into a 

15mL conical tube and centrifuged at 1000xg for 2mins at 4oC. The beads were washed 3 

times with 15mL 1X Wash Buffer (used earlier), centrifuged at 1000xg for 2mins at 4oC, 

and the supernatant was discarded between each wash. After the final wash, the OSL 

sample was added to the beads and placed in a rotator at 4oC for 2hr. The beads were 

centrifuged at 1000xg for 2mins at 4oC. The supernatant was removed and stored at -

20oC in a 15mL conical labeled “Unbound rBsg Purification Fraction” for BCA and 

SDS-PAGE analysis. The beads were washed with 10mL Ni-NTA Buffer (1X Wash 

Buffer, 5mM Imidazole, 0.5mM PMSF) and centrifuged at 1000xg for 2mins at 4oC. The 

supernatant was removed and stored at -20oC in a 15mL conical labeled “rBsg 

Purification Wash #1” for BCA and SDS-PAGE analysis. The beads were washed two 

more times with 10mL Ni-NTA Buffer. The beads were suspended in a final 10mL Ni-

NTA buffer and were added to a 15mL column. The beads were allowed to settle and the 

Ni-NTA buffer was allowed to move through the matrix until the meniscus reached the 

top of the beads. Five more milliliters of Ni-NTA buffer were added and allowed to run 

through the column to wash the beads. Ten milliliters of Elution Buffer (1X Wash Buffer, 

200mM Imidazole, 0.5mM PMSF) was added to the column and allowed to move 

through the matrix. The eluent was collected in a single 15mL conical. The purified rBsg 

sample was concentrated using two more Millipore 10K centrifugal filters. The final 

concentrated, purified rBsg was stored indefinitely -20oC. 
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rBsg Treatment of U87-MG Cells and Protein Lysate Collection 

 U87-MG cells were plated in 12, 35mm culture plates and allowed to grow to 

confluency. rBsg generated during my purifications would be used for the following 

experiments. The cells were serum-starved for 18-24hrs prior to treatment. Six plates 

would be used for rBsg monotreatment and the other six would be given a combination 

treatment of rBsg and RSV. Cells that were to be given RSV treatment were incubated 

with 30µM RSV in serum-free EMEM for 2hr at 37oC prior to time course treatments. 

Conditioned media was warmed in a 37oC water bath prior to the assay. Working with 

one set of experimental plates at a time, the media was aspirated off of the cells and 1mL 

serum-free EMEM containing 10µg/mL rBsg or 10µg/mL rBsg+30uM RSV was added to 

each plate and one of each was allowed to incubate for 5min, 10min, 15min, 20min, 

30min, or 60min, one plate from each treatment condition for each time period. At the 

conclusion of the given time period, the conditioned media was aspirated off and 0.5mL 

ice-cold 1% NP-40 lysis buffer (20 mM HEPES buffer [pH 7.0-7.4] 1% NP-40, 0.5% 

Sodium Deoxycholate, 150 mM NaCl, 2 mM EDTA pH 8, 2.5 mM Sodium 

Pyrophosphate) was added to the cells. The plates were rocked to spread the detergent 

and were placed on ice for at least 5mins. A cell scraper was used to collect all cell 

material and buffer to one edge of the plate. All material inside the plate was transferred 

to a clean, chilled, and labeled 1.5mL centrifuge tube using a micropipettor and vortexed 

vigorously to ensure complete lysis. Lysates were placed on ice until all plates for a given 

had been processed. All lysates were centrifuged at 21000xg at 4oC for 10mins. The 

supernatant from each tube was transferred to a correspondingly labeled, chilled 1.5mL 

centrifuge tube and stored at -20oC. Lysates were subjected to BCA analysis according to 
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the manufacturer’s specification to determine protein concentration for use in SDS-PAGE 

and Western Blot analysis.  

Sulfo-SBED rBsg Binding Assay 

An aliquot of rBsg protein was obtained from Dr. Belton for this assay due to time 

constraints, at a concentration of 1.7mg/mL in 0.5mL in a 1.5mL microcentrifuge tube 

and stored at 4oC until ready to use in the label transfer assay. Sulfo-SBED biotin label 

transfer reagent (ThermoScientific) was obtained and one “No-Weigh” microtubule of 

reagent was opened, in the dark, and mixed with 22uL of DMSO until dissolved. In the 

dark, 11µL of dissolved Sulfo-SBED reagent was added to the 0.5mL of rBsg protein and 

incubated at room temperature for 30mins. Five Slide-A-Lyzer dialysis units 

(ThermoScientific) were allowed to soak in ice-cold dH2O for 15mins before usage. A 

beaker was filled with ice-cold PBS and a magnetic stir bar and was placed inside a 

cooler filled with ice. The dialysis units were filled with 100uL of labeled protein and 

placed into a float which was then placed into the ice-cold PBS and allowed to dialyze for 

2hrs in the dark. Once the dialysis was complete, the purified rBsg-SBED samples were 

transferred to individual 1.5mL centrifuge tubes, containing roughly 170µg of protein in 

each and were stored at -80oC. 

U87-MG cells were grown in six 35mm plates until confluent. The old media was 

removed and the cells were washed with PBS (Lonza). The PBS was removed and the 

cells were given 3mL of pre-warmed serum-free EMEM and were incubated overnight at 

37oC. Three treatment groups were used for the label transfer assay: untreated cells 

exposed to UV light in a UV Stratalinker (Stratagene) for 5mins at a 5cm distance at max 

power, 5min treatment with rBsg-SBED in serum-free EMEM at 37oC prior to exposure 



27 
 

to the UV light, and a 10min treatment with rBsg-SBED at 37oC before treatment with 

UV light. In a dark cell culture hood, the serum-free media was aspirated, and the cells 

were washed with PBS. After aspirating the PBS, pre-warmed serum-free EMEM 

containing 30µg/mL of rBsg-SBED was added and the cells were allowed to incubate. 

Once the incubation was complete, the cells were immediately transferred to the UV 

Stratalinker, with the lids off, and exposed to UV light for 5mins at a distance of 5cm at 

maximum power. The cells were removed from the Stratalinker and placed in the cell 

culture hood. The media was aspirated and saved and the cells were washed with PBS 

thoroughly. The cells were given 0.5mL of ice-cold 1% NP-40 lysis buffer (20 mM 

HEPES buffer [pH 7.0-7.4] 1% NP-40, 0.5% Sodium Deoxycholate, 150 mM NaCl, 2 

mM EDTA pH 8, 2.5 mM Sodium Pyrophosphate), which was rocked to spread it evenly 

across the cells, and transferred to ice for 5mins. The lysates were collected using a cell 

scraper to scrape all cellular material to one edge of the 35mm plate, where they were 

collected using a micropipettor to a pre-chilled and labeled 1.5mL microcentrifuge tube, 

which was stored on ice until all lysates were prepared. Untreated cells were given only 

serum-free EMEM prior to UV light exposure. All lysates were vortexed vigorously and 

then centrifuged for 10mins at 4oC at 21000xg in an Eppendorf 5810R tabletop 

centrifuge. The supernatant of each lysate was transferred to a new, pre-chilled and 

appropriately labeled 1.5mL centrifuge tube and stored at -20oC until ready to use. The 

label transfer assay was performed once more, using the same methods, with treatment 

media containing 120µg/mL rBsg-SBED. All lysates were subjected to SDS-PAGE and 

Western Blot analysis. The second set of lysates, exposed to 120µg/mL of rBsg-SBED, 

was run in duplicate gels along with serial dilutions of pure rBsg-SBED alone at 1/10, 
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1/100, and 1/1000 concentrations of the stock rBsg-SBED. One gel was exposed to 

reducing conditions, while the other one was non-reduced. 

Western Blot Analysis 

 Treated U87-MG lysates were subjected to SDS-PAGE with 10ug of protein per 

well in BioRad Mini-PROTEAN TGX 4-15% gels with 50uL wells and were allowed to 

run at 150V until the dye front began to move off of the gels. Proteins were transferred 

(Transfer buffer composition: 25mM Tris-Cl, 192mM glycine, pH 8.3, 20% methanol, 

0.1% w/v SDS) at a constant 0.10A for 10hrs at RT onto PVDF membranes. All blots 

were blocked with 20mL of 5% Non-fat Dry Milk (NFDM) in Tris-Buffered Saline + 

0.1% Tween-20 (TBST) (50mM Tris, 150mM NaCl, 0.1% w/v Tween-20 

[ThermoFisher]) for 1.5hrs at room temperature with gentle rocking. Primary antibodies 

were diluted in TBST to the appropriate concentration in 20mL for each membrane and 

incubated on the membranes for 1.5hrs at room temperature with gentle rocking. Primary 

Ab solution was decanted off of the membranes and 20mL of TBST was added to wash 

the blots three times for 10mins each. Secondary antibodies were diluted in TBST to the 

appropriate concentration in 20mL for each membrane and incubated on the membranes 

for 1.5hrs with gentle rocking. The secondary Ab solution was decanted off and 20mL of 

TBST was added to wash the blots three times for 10mins each. West Pico ECL reagent 

(ThermoFisher) was prepared during the final wash. Four milliliters of ECL reagent was 

added to each blot and allowed to incubate at room temperature for 5mins. The 

membranes were sealed in saran wrap and secured in an imaging cassette. The 

membranes were exposed to film for 2sec, 10sec, 30sec, 5min, and overnight. Exposed 

film was processed by a Kodak X-Omat Film Processor in the UMBTC Dark Room. 
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ERK1/2 antibodies were purchased from Cell Signaling Technologies. Basigin-

Extracellular Domain (ECD) antibodies were synthesized and obtained from stocks 

prepared by Dr. Belton. Antibodies used: RAH anti-pERK1/2 (1:2000) (Cell Signaling), 

RAH anti-ERK1/2 (1:1000) (Cell Signaling), MAH anti-EMMPRIN-ECD (1:1000), 

MAH anti-Hsp90 (1:1000), GAR-HRP secondary Ab (1:25000), GAM-HRP secondary 

Ab (1:20000) (ThermoFisher). NeutrAvidin-HRP (ThermoScientific) was used for 

imaging lysates from the Sulfo-SBED label transfer assay at two dilutions based off of 

the supplier’s recommendations (1:20000, 1:4000). 
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RESULTS 

 

 

 

Recombinant Basigin Isolation, Purification, and Analysis 

 It was hypothesized that rBsg protein, described in Belton et al. (2008), could 

stimulate the ERK1/2 signaling pathway in U87-MG human GBM cells. In order to 

obtain rBsg, it had to be produced in a bacterial expression vector that would allow for 

quick production of large amounts of the protein. The rBsg, in order to maintain its 

demonstrated biological activity, needed to be expressed in the periplasmic space of the 

BL21 E. coli bacteria. The periplasm of the bacteria has an oxidizing environment, 

causing the disulfide bridges between the Bsg-ECD cysteine residues to form. BL21 E. 

coli transformed with the pASK-IBA44 plasmid containing the sequence for rBsg were 

grown in culture overnight in a warm room. The following day, bacterial rBsg protein 

expression was induced with 2mg/mL anhydrotetracycline for 4hrs at room temperature. 

Osmotic shock lysates containing the recombinant protein were obtained and 

concentrated to purify the rBsg, which were incubated with cobalt beads to bind the 

histidine tag on the rBsg for affinity chromatography. The cobalt beads have an affinity 

for histidine residues, in this case, at the C-terminal end of the recombinant protein. 

When the rBsg was incubated with the beads, the poly-histidine tags bound to the cobalt 

beads, pulling the protein out of the Ni-NTA buffer solution. During the chromatography, 
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any unbound material can be washed off before adding the elution buffer, allowing for 

the isolation of pure protein off of the beads. Once the rBsg was purified, it was able to 

be analyzed for its purity by SDS-PAGE and Western blotting.  

 The initial preparation of the rBsg protein revealed that most of the recombinant 

protein was eluted in the first four 1mL fractions, with the largest amount coming out 

after the second 1mL of eluent (Fig. 4A lane 4). As the elution fractions were collected, 

less and less protein was observed in the SDS-PAGE gels (Fig. 4A lanes 5-8, Fig. 1B 

lanes 2-6). In lane 7 of Fig. 4B, the unbound fraction collected after the cobalt bead 

incubation contained a large amount of rBsg not bound to beads, indicating an issue with 

the rBsg-to-bead binding.  

The first two rBsg isolation preparations and purifications revealed issues with the 

purification protocol that led to incomplete purification of the concentrated osmotic 

shock lysate (Fig. 1-2). The estimated size of the rBsg protein is 24.0kDa. Prominent 

bands in the “unbound” fractions in lanes 3 and 5 at the same weight as the purified rBsg 

indicate that not all of the rBsg was bound to the cobalt beads. To remedy the immediate 

problem, the unbound fractions were incubated with more cobalt beads and subjected to 

affinity chromatography, isolating more, but not all of the rBsg. The third preparation 

differed from the others in that during the cobalt bead incubation, the beads/sample were 

placed in a rotator in a 4oC cold room. It was believed that incubating the recombinant 

protein with the cobalt beads for a longer time and a colder temperature would promote 

higher yields. SDS-PAGE analysis revealed a much greater purification of the protein 

than seen before (Fig. 6).  



32 
 

The first two preps were combined to make a sample with a protein concentration 

of 810ng/µL and a final volume of 650µL. Serial dilutions were made of the combined 

first two preparations of rBsg protein, ranging from 810ng/µL down to 0.081ng/µL, 

diluting by ten-fold at each dilution step for the purpose of testing the sensitivity of 

Coomassie staining and the West Pico Enhanced Chemoluminescence (ECL) imaging 

system (ThermoFisher), as well as for the presence of purified rBsg protein. The ECL 

reagent contains a chemical known as luminol, which, upon reaction with an oxidating 

agent such as HRP, will produce blue light. When imaging film is exposed to the light 

and subsequently developed and fixed, a black mark will appear on the film, indicating 

the presence a protein targeted by the Western blot. Coomassie staining will detect 

proteins as long as a given protein’s concentration is above 100ng/µL. This leads us to 

expect a lack of bands for all samples below that 100ng/µL concentration. One microliter 

of each dilution was run out onto each of two SDS-PAGE gels. One gel was stained with 

Coomassie brilliant blue (Fig. 7), revealing only a single band in the 810ng well. The 

other was subjected to Western blot analysis and probed for the presence of the rBsg 

protein (Fig. 8 rBsg). The results of this test would indicate that the bands seen in 

Coomassie stained gels are indeed rBsg, further proving that purified recombinant protein 

was isolated. Visible bands were observed in the 810ng, 81ng, and 8.1ng wells, with the 

intensity of the bands decreasing as the amount of protein decreased. The lack of bands in 

the 0.81ng and 0.081ng wells indicates that the chemiluminescent substrate isn’t able to 

detect concentrations that low. The larger molecular weight band in the 810ng lane 

indicates the presence of dimers between rBsg molecules, an expected result given the 

natural ability of normal Bsg-2 to form homodimers1 ,9, 10, 14 . After the completion of the 
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rBsg analysis, all three preparations were combined into a single sample and were 

concentrated down to a final volume of 1.5mL with a concentration of 458.2µg/mL, or 

roughly 0.6873mg of purified rBsg.  

Early Control Cell Lysate Collection Attempts 

 In later experiments, rBsg protein would be given to U87 cells in an attempt to 

stimulate ERK1/2 phosphorylation. In order to be able to draw any conclusion from the 

results of said experiments, there would need to be a control to compare the results to. 

Normally, cells are exposed to numerous growth factors and nutrients, both in vivo and in 

vitro, which cause the stimulation of the ERK1/2 pathway because it is employed by both 

healthy and cancerous cells. In cell culture practices, fetal bovine serum (FBS) and other 

nutrient sources are used to allow cells to grow and divide, partly by stimulation of the 

ERK1/2 pathway. This trait was used to compare the effects of rBsg protein to FBS to 

observe if the recombinant protein could mimic the ERK1/2-stimulatory effects.  

Prior to the establishment of a  control cell lysate collection and analysis protocol, 

numerous western blots were performed in an attempt to establish pERK1/2 levels in 

serum stimulated U87-MG cells. All lysate collections were performed after a time 

course of treatment with EMEM+10%FBS where cells were exposed to FBS for 0sec, 

30sec, 1min, 2min, 5min, and 10min prior to lysis. SDS-PAGE and Western blot analysis 

were performed on the lysates, however, very little usable data come out of all of the 

different attempts (Early serum treated U87 lysates, Fig 9-12). Most blots performed had 

incomplete transfers, resulting in the absence of a molecular weight standard protein 

ladder to use in sample identification (Fig 9-11). Some blots showed nonspecific binding 

of the secondary antibody to the molecular weight standards, causing the presence of 
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large smears on the ladder (Fig. 12-13). Most blots showed large smearing of sample 

bands. Jurkat cells obtained from Cell Signaling Technologies were run out on an SDS-

PAGE gel and subjected to Western blot analysis (Fig. 13). These cells were used in an 

attempt to diagnose if the problems with imaging stemmed partly from the U87-MG 

lysates that I had prepared. The two vials of Jurkat T-cell lysates, obtained from Cell 

Signaling Technologies, expressed either pERK1/2 levels or no ERK1/2 phosphorylation, 

acting as positive and negative controls respectively. The blot itself was somewhat 

interpretable, leading to the observation that negative control Jurkat cells in lane 2, cells 

that contained no ERK1/2 phosphorylation, showed no banding at the estimated 

molecular weight of the ERK1/2 protein, while the positive control Jurkat cells did show 

pERK levels in lane 3 (Fig. 13). These cells were not used for any other experiments after 

the issues with the Western blotting protocol used were fixed. It was later determined that 

the failure of the preliminary blots were, in part, due to the use of improper antibody 

dilution buffers that inhibited proper protein labeling. 

Antibody Nonspecific Binding Test Assay 

 After the issues with the Western blot protocol were fixed by obtaining the correct 

dilution buffers and minor technique changes, all of the antibodies to be used needed to 

be tested for nonspecific binding under this new protocol. In some cases, some antibodies 

will show some specificity to proteins with similar amino acid compositions, causing an 

antibody designed to detect one target protein to bind to an off-target protein, skewing the 

results and showing signal where there should not be any. This can occur with both 

primary and secondary antibodies. Primary antibodies should only bind to the protein that 

they were raised up against. Secondary antibodies should only bind to any antibodies 
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produced in the host that they are targeted against. To accomplish this, SDS-PAGE was 

performed on U87-MG cell lysates that were either unstimulated or stimulated with 10% 

FBS in EMEM for 5mins, having been given only serum-free EMEM. These lysates were 

then subjected to all of the antibodies that would be used during the course of the 

experiment (Fig. 14). The purpose of this experiment was to test to make sure that our 

primary antibodies worked (Fig. 14A) and that there was no nonspecific binding of our 

secondary antibodies to anything on the PVDF membranes (Fig. 14B). All of the primary 

antibodies worked, and neither of the secondary antibodies exhibited nonspecific binding. 

Resveratrol Treatment Assay 

 The antioxidant phytoalexin resveratrol was selected as an inhibitor of ERK1/2 

phosphorylation based on previous works51-59. RSV is also shown to act through the 

ERK1/2 signaling pathway to inhibit Bsg-2 expression, making the molecule an even 

more interesting player in terms of experimenting with the relationship between ERK1/2 

signaling and Bsg-253.Prior to establishing control cell lysates, the appropriate method of 

RSV treatment needed to be determined. A 200mM stock solution of RSV in 100% 

ethanol was prepared for use in treating U87-MG cells. In prior work performed by 

Huang et al. (2008), cells incubated with RSV 2hrs prior to treatment and lysis showed 

ERK1/2 phosphorylation inhibition53. Other works used direct treatments in conjunction 

with other substances56. To address this variance in RSV treatment, U87-MG cells were 

grown in culture and treated with different conditions of 30µM RSV to determine the 

most effective method of inhibiting ERK1/2 phosphorylation (Fig 15). Performing this 

test would allow for the first observation of how RSV acts upon ERK1/2 phosphorylation 

in response to stimulation with naturally occurring growth factors, mimicking a body’s 
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natural environment.. Unstimulated cells given only serum-free EMEM showed no 

decrease in the levels of phosphorylated ERK1/2, as did unstimulated cells incubated for 

2hrs with 30µM RSV in serum-free EMEM prior to being given only serum-free EMEM 

(Fig. 15, Lanes 1 and 2). Unstimulated cells were used to test to see if RSV had any 

effect on total ERK1/2 levels. Given the nature of cancer cells, some ERK1/2 

phosphorylation was expected to be seen, especially if the cells expressed the EGFRvIII 

protein, which, as described earlier, constitutively produces signals down its effector 

pathways. Control cells stimulated for 5mins with 10% FBS, only, in EMEM showed the 

highest levels of ERK1/2 phosphorylation (Fig 15. Lane 5). Cells stimulated with 10% 

FBS in EMEM in the presence of 30µM RSV after a 2hr pre-treatment with RSV in 

serum-free EMEM showed the greatest amount of ERK1/2 inhibition when compared 

with control cells stimulated in the absence of RSV (Fig 15. Lane 7). After analysis of the 

blot using the NIH ImageJ software, it was found that ERK1/2 phosphorylation in cells 

pre- and co-treated with RSV was 8.2% that of cells given only FBS (Fig. 16). Due to this 

finding, it was decided that for all RSV treatments, cells would be given a 2hr pre-

treatment with 30µM RSV in serum-free EMEM and a 30µM RSV co-treatment at the 

time of experimental condition treatment. 

Unstimulated Baseline ERK1/2 Phosphorylation in U87-MG Cells 

 U87-MG cells were given serum-free EMEM treatment to establish baseline 

levels of ERK1/2 phosphorylation if there was any during the time course (Fig. 17). The 

western blot revealed that the levels of ERK1/2 phosphorylation are consistent when 

given only serum-free media. However, these cells were incubated at room temperature 
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during the initial time course that was developed with time points of 0sec, 30sec, 1min, 

2min, 5min, and 10min.  

Serum-Stimulated ERK1/2 Phosphorylation in U87-MG Cells 

 As previously stated, it was hypothesized that rBsg, when given to human GBM 

cells, could stimulate the ERK1/2 signaling pathway. Once activated, ERK1/2 

phosphorylates numerous transcription factors that promote cell survival and cell cycle 

progression in not only healthy cells, but in tumor cells as well, usually to a much higher 

degree. In order to establish a positive control for rBsg treatment, U87-MG cells were 

treated with 10% FBS in EMEM to stimulate ERK1/2 phosphorylation in what are 

normal, in vitro culture conditions which would then be compared to the level of 

phosphorylation seen in cells treated with only rBsg. Cells were treated with the serum 

containing media during two different time courses and incubation temperatures. The first 

consisted of time periods of 0sec, 30sec, 1min, 2min, 5min, and 10min at room 

temperatures (Fig. 18). The second time course consisted of longer periods of 0min, 

5min, 10min, 15min, 20min, and 30min at 37oC (Fig. 19). The initial experiment was 

considered inaccurate due to the fact that it was performed at room temperature. In order 

for the results of the experiment to be considered accurate, it was decided that the 

conditions needed to mimic the body’s internal conditions, thus the switch to 37oC. The 

first time course experiment showed a time-dependent increase in ERK1/2 

phosphorylation in responses to the serum treatment. When performed in the presence of 

RSV, there is a substantial reduction of ERK1/2 activation. The exposures to film shown 

in Fig. 18 are of different exposure length due to overexposure of the film to the blots of 

RSV-free treatment conditions at the same exposure time as the treatments containing 
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RSV, as indicated. The second time course revealed similar results. However, rather than 

a continual increase in ERK1/2 phosphorylation as seen in Fig. 18., a peak in pERK1/2 

levels is seen between 10min and 15min after the addition of the treatment media, 

followed by a steady plateau in later time periods. This signifies that the cells have 

reached peak ERK1/2 phosphorylation where the maximum amount of signal is being 

produced. The effects of the RSV are also similar to those seen in the first time course. 

The RSV treatment mitigated the peak phosphorylation event at the 10min period to 

50.2% of the non-inhibited cells, an event not observed during the first time course (Fig. 

19, Fig. 20). The RSV was also shown to lose its effect at longer exposure times, 

indicated by the increasing intensity of the pERK1/2 bands seen on the blot. This is could 

be due to the uptake of RSV into the cells. As more of the RSV is pulled out of solution 

and is processed by the cells, the less of an effect in can produced, however, this is just 

speculation. The images seen in Fig. 19 were obtained at the same exposure length, 

illustrating a better comparison between the two experimental groups.  

rBsg Treatment of U87 Cells 

 Now that control levels of ERK1/2 phosphorylation in response to serum-

treatment had been established, U87-MG cells were grown in culture and prepared for 

treatment with rBsg protein grown during the purification attempts performed for this 

work. In this experiment, purified protein was dissolved into serum-free EMEM media 

and given to cells in the same manner as the serum-containing media in an attempt to 

observe if the hypothesized interaction would occur. Giving cells only rBsg in serum-free 

EMEM is necessary because any observed phosphorylation of ERK1/2 would mean that 

the rBsg alone was responsible for the signal activation. Similar to the control cells, two 
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differing time courses were used, one with shorter incubation times at room temperature, 

and the other with longer incubation times at 37oC. The initial set of lysates was deemed 

inaccurate, leading to the formation of the second time course (Figure 21). This 

inaccuracy was due to incubating cells at room temperature rather than 37o7C. For Bsg-2 

to begin stimulating cells, it must be endocytosed by cells at lipid rafts. In order for that 

interaction to happen, the conditions need to be correct. Since no observed 

phosphorylation occurred, it was hypothesized that room temperature, roughly 20oC, was 

far too low for the endocytosis of the rBsg to occur. For both time courses, the U87 cells 

were treated with either 10µg/mL rBsg in serum-free EMEM or 10µg/mL rBsg+30µM 

RSV after a 2hr pre-treatment with 30µM RSV. After completion of the first time course 

assay, there was no increase in ERK1/2 phosphorylation observed (Fig. 21). Similarly, no 

real changes or trends could be observed in the blot containing lysates from cells treated 

with rBsg and RSV, providing little insight into the relationship between the two (Fig. 

21). During the second time course, the cells were exposed to their treatment for longer 

periods of time at 37oC rather than 20oC. These changes illustrated a better relationship 

between rBsg and ERK1/2 phosphorylation. The lysates obtained from this time course 

showed an increase in ERK1/2 phosphorylation with a strong peak between 10min and 

15min, similar to the serum-stimulated U87 lysates, although, rather than a plateau in 

signaling, there is a sharp drop off in signaling, mostly likely due to the loss of rBsg 

available to cause stimulation of the ERK1/2 proteins (Fig. 22), however, this is 

speculation. In the cells treated with rBsg and RSV, there is a 23.7% decrease of rBsg-

mediated ERK1/2 phosphorylation at the peak phosphorylating event at 10mins (Fig. 23). 

Unstimulated cells showed no pERK1/2 when exposed to rBsg in any of the samples. 
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Different from the serum-stimulated cells, there is no increase in ERK1/2 activation in 

the later time periods.  

Sulfo-SBED Label Transfer Assay 

 After observing that rBsg does indeed cause ERK1/2 stimulation, it was 

hypothesized that the rBsg was binding to normal human Bsg-2 at the surface of the 

cancer cells, along with others potentially. In order to test this, a way of identifying the 

putative receptors for the rBsg was needed. Purified rBsg protein was incubated with a 

molecule known as Sulfo-SBED (ThermoFisher) that would bind to rBsg via an NHS 

ester. The molecule consists of the amine reactive NHS ester, a UV light-activated aryl 

azide group, a cleavable disulfide spacer arm, and a transferable biotin tag. The molecule 

works by being conjugated to a “bait protein”, using its NHS ester group, by incubating 

the bait protein with the Sulfo-SBED. This conjugation does not affect the bait protein’s 

binding capibilities. When labeled bait protein is put into solution and given to cells, the 

protein can bind to receptors at the surface of the cells. Then, the cells are exposed to UV 

light, which causes the aryl azide to transfer the biotin tag to the receptor protein. This 

will only occur when a bait protein is bound to its receptor, not while floating free. After 

exposure to denaturing agents such as SDS, DTT, and heat, the disulfide spacer arm will 

be cleaved, leaving the biotin tag to be completely transferred to the receptor. Once the 

biotin tag is fully tranferred to the receptor, it can be identified by using a NeutrAvidin-

HRP (ThermoFisher) detection protein and ECL reagent during Western blot analysis of 

treated cell lysates. U87-MG cells were treated with rBsg attached to the Sulfo-SBED. 

Cells were exposed to the labeled protein for two different time periods, similar to the 

simple rBsg treatments described earlier, but after the incubation was completed, the cells 
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were exposed to UV light for 5mins at a 5cm distance and at the maximum power of the 

Stratalinker 1800 instrument in order to activate the crosslinker and transfer the biotin tag 

to anything that was bound ot the rBsg-SBED. Lysates treated with 30µg/mL rBsg-SBED 

were tested for the presence of the biotin tag using NeutrAvidin-HRP protein 

(ThermoScientific), the Bsg-2 extracellular domain using an antibody raised up against 

rBsg, and phosphorylated ERK1/2. Western blot analysis revealed only single bands in 

the 5min and 10min exposures at roughly 26kDa in NeutrAvidin-HRP blots at the 1:4000 

dilution of the protein (Fig. 21). This indicates that only rBsg was biotinylated, signifying 

an issue with either label transfer or self-dimerization of the rBsg, which has been known 

to happen1. The lysates showed activation of ERK1/2 in all treatment groups, indicating a 

stimulus caused by the rBsg-SBED (Fig. 22). The Bsg-2 extracellular domain was also 

identified with bands at roughly 26kDa and 50kDa, the latter of which only being visibile 

after a 5min film exposure prior to film processing (Fig. 22). The other set of lysates, 

exposed to 120µg/mL rBsg-SBED, were run out on SDS-PAGE gels as either denatured 

or non-denatured samples, alongside three serial dilutions of the stock of rBsg-SBED 

protein at dilutions of 1/10, 1/100, and 1/1000 (Fig. 23). The purpose of the denatured vs. 

nondenatured samples was to see if cleavage of the disulfide spacer arm was actually 

occurring. These gels were only probed with NeutrAvidin-HRP. Nonreduced samples 

should have had intact biotin tags, whereas reduced rBsg-SBED should have had no 

biotinylation when probed with NeutrAvidin-HRP. In the denatured gel, all lysate 

samples only showed the presence of biotinylated rBsg (Fig. 23). This observation 

signifies that there is still an issue with the bait protein, most likely self-dimerization. The 

serial dilutions only showed a doublet band at in the 1/10 dilution of the stock rBsg-
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SBED protein, indicating that there is still rBsg protein with the biotin tag. The 

denaturation should have caused the dissociation of the rBsg with the SBED molecule. In 

the nondenatured gel, the rBsg-SBED is detected in all lysate samples used, indicating no 

label transfer to any molecule other than the rBsg. The serial dilutions have visible bands 

in the 1/10 and 1/100 dilutions while the 1/1000 lane shows nothing (Fig. 23). All bands 

in the nondenatured gels moved farther down the gel due to not being fully denatured.  
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Figure 4. SDS-PAGE analysis of rBsg-ECD elution fractions. The rBsg-ECD protein 
was purified using cobalt agarose affinity chromatography beads and analyzed by 
coomassie staining of SDS-PAGE gels. Protein fractions were eluted from a column 
using 200mM imidazole in phosphate buffer and collected as 1mL samples. 10µL 
samples of each fraction were resolved through 4-15% TGX SDS-PAGE gels, and the 
gels were stained with coomassie brilliant blue. Eluted fractions are shown in lanes 2-8 in 
gel A and lanes 2-6 in gel B. The purified rBsg-ECD protein is visible at ~26kDa (arrow). 
Lane 7 in gel B represents the “unbound” material following affinity purification, 
indicating that some rBsg-ECD remained in this fraction following purification. The 
molecular weight standards are shown in lane 1 in each gel and the values shown on the 
left represent their molecular mass in kilodaltons (kDa). 
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Figure 5. SDS-PAGE of concentrated rBsg-ECD and unbound protein fractions. The 
purified protein produced from the first two attempts at affinity purification were 
concentrated and desalted using 10K MWCO centrifugal filters (Millipore). Lanes 2 and 
3 show the purified and concentrated rBsg-ECD protein and the unbound fraction from 
the first prep; Lanes 4 and 5 show the purified and concentrated rBsg-ECD protein and 
the unbound fraction from the second prep. The prominent bands in lanes 3 and 5 (arrow) 
indicate that a significant amount of the rBsg-ECD was not recovered during purification. 
The molecular mass of the protein standards shown in lane 1 are listed on the left in 
kilodaltons (kDa). 
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Figure 6. SDS-PAGE of final rBsg-ECD purification. The rBsg-ECD protein 
purification procedure was modified in order to improve recovery of the recombinant 
protein, This included using a longer incubation of the osmotic shock lysate with cobalt 
beads at 4°C on a rotator mixer. Compared to the previous purification attempts shown in 
figures 1 and 2, there appears to be a reduced amount of rBsg-ECD in the unbound 
fraction (lane 5), and a greater amount of purified protein collected (lane 9) than there 
was in the previous attempts. Lane assignments: Lane 3 = osmotic shock lysate, Lane 5 = 
unbound fraction, lane 7 = first wash fraction of column, Lane 9 = Purified rBsg-ECD. 
The molecular mass of the protein standards shown in lane 1 are listed on the left in 
kilodaltons (kDa). 
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Figure 7. Coomassie blue stained SDS-PAGE of serial diluted rBSG-ECD. Ten-fold 
dilutions of concentrated rBsg-ECD were prepared and the indicated amounts of rBsg-
ECD in nanograms were resolved by 4-15% SDS-PAGE. The top of the figure indicates 
the mass of protein present in each lane. Note that there are blank lanes containing no 
protein in the alternating lanes (-). The recombinant protein is visible only in the lane 
containing 810ng of protein because of the limit of detection for the dye. The molecular 
mass of the protein standards shown in lane 1 are listed on the left in kilodaltons (kDa). 
Please see figure 5 for the immunoblot analysis of duplicate gels. 
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Figure 8. Basigin immunoblot analysis of rBsg-ECD dilution series. Ten-fold 
dilutions of concentrated rBsg-ECD used in Figure 4 were resolved by 4-15% SDS-
PAGE. The top of the figure indicates the mass of protein present in each lane. Note that 
there are blank lanes containing no protein in the alternating lanes (-). Following transfer 
of the proteins to PVDF membrane, the blot was probed with a 1:1000 dilution of the 
P2C2-1-D11 monoclonal antibody (Belton 2008). A commercial goat anti-mouse HRP-
conjugated secondary antibody (Thermo Scientific) was used at a 1:20,000 dilution to 
detect the primary antibody, and blot treated with the Pierce Pico Chemiluminescence 
Reagent to detect the labeled proteins (Thermo Scientific). Film was exposed to the 
membrane for 3 seconds and then processed using a Kodak X-Omat film processor. The 
immunoblot blot analysis revealed the presence of an rBsg-ECD monomer (single arrow) 
and an rBsg-ECD dimer (double arrow) in the lane containing 810ng of protein. It should 
be noted that the immunoblot could detect as little as 8ng of the protein.  
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Figure 9. Analysis of ERK1/2 expression in U87MG cells. U87MG cells were treated 
with either serum-free culture media (bottom) or culture media containing 10% fetal 
bovine serum (top) for the time periods shown. Cell lysates were resolved by SDS-PAGE 
and processed for immunoblotting to detect the extracellular regulated kinases 1 and 2 
(ERK1/2) with a rabbit anti-ERK1/2 monoclonal antibody diluted 1:1000, and an anti-
rabbit IgG HRP-conjugate diluted 1:1000 (Cell Signaling Technologies). Images were 
obtained using the Pico Chemiluminescent Substrate (Thermo Scientific) and a Kodak X-
Omat film processor. While some signal is apparent, the results failed to detect the 
expected proteins at 42 and 44kDa.  
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Figure 10. Analysis of ERK1/2 activation in U87MG cells treated with FBS. U87MG 
cells were treated with either serum-free culture media (bottom) or culture media 
containing 10% fetal bovine serum (top) for the time periods shown. Cell lysates were 
resolved by SDS-PAGE and processed for immunoblotting to detect the activation of 
extracellular regulated kinases 1 and 2 (ERK1/2) with the anti-phosphoERK1/2 
monoclonal antibody diluted 1:2000, and the anti-rabbit IgG HRP-conjugate diluted 
1:1000 (Cell Signaling Technologies). Images were obtained using the Pico 
Chemiluminescent Substrate (Thermo Scientific) and a Kodak X-Omat film processor. 
While there appears top be an increasing amount of signal in response to serum 
treatment, the results failed to detect the expected individual proteins at 42 and 44kDa.  
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Figure 11. Repeat analysis of ERK1/2 activation in U87MG cells treated with FBS. 
In an attempt to improve upon the results shown in figure 7, the experiment was repeated. 
U87MG cells were treated with either serum-free culture media (bottom) or culture media 
containing 10% fetal bovine serum (top) for the time periods shown. Cell lysates were 
resolved by SDS-PAGE and processed for immunoblotting to detect the activation of 
extracellular regulated kinases 1 and 2 (ERK1/2) with the anti-phosphoERK1/2 
monoclonal antibody diluted 1:2000, and the anti-rabbit IgG HRP-conjugate diluted 
1:1000 (Cell Signaling Technologies). Images were obtained using the Pico 
Chemiluminescent Substrate (Thermo Scientific) and a Kodak X-Omat film processor. 
While there appears top be an increasing amount of signal in response to serum 
treatment, once again the results failed to detect the expected individual proteins at 42 
and 44kDa.  
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Figure 12. Repeat analysis of ERK1/2 expression in U87MG cells treated with 
serum-free media. This is a repeat of the experiment shown in the bottom panel of figure 
6. U87MG cells were treated with serum-free culture media for the time periods shown. 
Cell lysates were resolved by SDS-PAGE and processed for immunoblotting to detect the 
extracellular regulated kinases 1 and 2 (ERK1/2) with a rabbit anti-ERK1/2 monoclonal 
antibody diluted 1:1000, and an anti-rabbit IgG HRP-conjugate diluted 1:1000 (Cell 
Signaling Technologies). Images were obtained using the Pico Chemiluminescent 
Substrate (Thermo Scientific) and a Kodak X-Omat film processor. While the blot shows 
the expected presence of individual bands, their relative migrations and intensities were 
not . 
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Figure 13. Jurkat T-cell lysate immunoblots for phosphorylated ERK1/2. In an 
attempt to trouble shoot the lack of results from previous experiments using the anti-
phoshoERK1/2 antibody, Jurkat T-cell lysates purchased from Cell Signaling 
Technologies were resolved by SDS-PAGE and immunoblotted using the anti-
phosphoERK1/2 (1:2000). Lane 1 contained the protein molecular weight standard, lane 
2 contained the unstimulated Jurkat T-cell lysate, and Lane 3 contained the stimulated 
Jurkat T-cell lysate. As before, the blots were treated with the Pico Chemiluminescent 
Substrate (ThermoFisher) and exposed to film for 24 hours. The blot revealed non-
specific labeling of the protein ladder in lane 1 and a lack of specific banding in the 
stimulated Jurkat T-cell lysate (lane 3). The absence of a signal in this positive control 
lysate indicated that the methods used for immunoblotting were not working.   
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Figure 14. Primary and secondary antibody control immunoblot analysis. Detergent-
soluble cell lysates were collected from U87MG cells treated for 5 minutes with cell 
culture media containing 10% FBS (+), or media lacking FBS (-). Equal amounts of 
protein were loaded in each lane (20ug) and resolved by SDS-PAGE. Immunoblot 
analysis was performed according to Belton et al. (2008) using the following four 
primary antibodies: rabbit anti-human total ERK1/2 (Cell Signaling Technologies; diluted 
1:1000), rabbit anti-human phosphoERK1/2 (Cell Signaling Technologies; diluted 
1:2,000), mouse anti-human Hsp90 (Origene; diluted 1:1,000), and mouse anti-human 
EMMPRIN-ECD (1:1,000). The horseradish peroxidase (HRP) conjugated secondary 
antibodies used were both from Thermo Scientific: goat anti-rabbit HRP-conjugate 
(diluted 1:20,000) and goat anti-mouse HRP-conjugate (diluted 1:20,000). The images on 
the left demonstrate specific labeling of the proteins at the correct molecular weights. The 
images on the right represent duplicate immunblots lacking the primary antibodies 
demonstrating that the signals produced on the left were not a result on non-specific 
secondary antibody binding. The feint band in the EMMPRIN-ECD blot (labeled with an 
asterisk *) is the low glycosylated form of human Basigin-2. 
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Figure 15. Characterization of the effects of Resveratrol on ERK1/2 activation in 
U87MG cells treated with FBS. The indicated U87MG cultures (lanes 2, 3, and 5) were 
pre-treated with 30µM RSV in serum-free media for 2 hours prior to treatment with 10% 
FBS. Lanes 5 and 6 also contained RSV in the treatment media (co-treatment) . 
Following a 5 minute stimulation with 10% FBS (lanes 2-6), the cells were lysed and the 
lysates subjected to immunoblot analysis using the anti-phosphoERK1/2 primary 
antibody (1:2000) anti-totalERK1/2 primary antibody (1:1000). Lane Assignments: 1) 
Unstimulated 2) Unstimulated+RSV pre-treatment 3) Serum-stimulated+RSV pre-
treatment 4) Serum-stimulated 5) Serum-stimulated+RSV pre-treatment+RSV co-
treatment 6)Serum-stimulated+RSV co-treatment.  
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Figure 16. Pre-treatment and Co-treatment of cells with 30µM RSV produces the 
greatest amount of inhibition of FBS-stimulated ERK1/2 activation in U87MG cells. 
The indicated U87MG cells (Lanes 2, 3, and 5) were pre-treated with 30µM RSV in 
serum-free media for 2hrs prior to lysis (Lane 2) or treatment with 10% FBS (Lanes 3 
and 5). Lanes 5 and 6 also contained 30µM RSV in the treatment media. Following a 
5min stimulation with 10% FBS (Lanes 3-6), the cells were lysed and probed for ERK1/2 
phosphorylation levels. The immunoblots were subjected to analysis using NIH ImageJ 
software. Lane 4 represented the maximum amount of ERK1/2 activation and all values 
were normalized to that value. The level of ERK1/2 phosphorylation seen represent 
percent values of the maximum amount of ERK1/2 phosphorylation seen in Lane 4. Cells 
pre-treated and co-treated with 30µM RSV showed the largest degree of ERK1/2 
inhibition, showing only 8.2% of the maximum amount of ERK1/2 activation. This 
method of RSV treatment was selected.   
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Figure 17. RSV treatment of U87MG cells to determine baseline ERK1/2 expression 
and phosphorylation levels. U87-MG cells were treated with serum-free culture media 
containing 30µM RSV for the stated time periods in an attempt to detect changes in the 
level of ERK1/2 phosphorylation and total ERK1/2 protein levels. Following treatment, 
the cells were washed with cold PBS, lysed and immunoblotted with the anti-
phosphoERK1/2 primary antibody (1:2000) or the anti-totalERK1/2 primary antibody 
(1:1000). The blots were imaged using the Pico Chemiluminescent Substrate 
(ThermoFisher) and a Kodak X-Omat film processor. These images were obtained from a 
10sec exposure to film. 
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Figure 18. Resveratrol treatment of U87MG cells reduces FBS-induced ERK1/2 
phosphorylation at room temperature (21°C). U87-MG cells were treated with cell 
culture media containing 10% FBS or culture media containing 10% FBS and 30µM RSV 
at room temperature. Following treatment, the cells were washed with cold PBS, lysed 
and immunoblotted with the anti-phosphoERK1/2 primary antibody (1:2000) or the anti-
totalERK1/2 primary antibody (1:1000). The blots were imaged using the Pico 
Chemiluminescent Substrate (ThermoFisher) and a Kodak X-Omat film processor.  
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Figure 19. Resveratrol treatment of U87MG cells reduces FBS-induced ERK1/2 
phosphorylation at body temperature (37°C). U87-MG cells were treated with cell 
culture media containing 10% FBS (top) or pre-treated with 30uM RSV for 2 hours and 
then and treated with culture media containing 10% FBS and 30µM RSV (bottom) at 
37°C. Following treatment, the cells were lysed and immunoblotted with the anti-
phosphoERK1/2 primary antibody (1:2000) or the anti-ERK1/2 primary antibody 
(1:1000). The blots were imaged using the Pico Chemiluminescent Substrate 
(ThermoFisher) and a Kodak X-Omat film processor. These blots revealed a peak 
phosphorylation event of ERK1/2 occurring at the 10min time interval. The resveratrol 
treatment reduces serum-stimulated ERK1/2 phosphorylation. 
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Figure 20. Resveratrol treatment of U87MG cells reduces peak FBS-induced 
ERK1/2 phosphorylation at body temperature (37oC). U87MG cells were treated with 
either media containing 10% FBS alone or 10% FBS+30µM RSV for the listed time 
periods prior to lysis. Lysates were probed for ERK1/2 activation to determine the degree 
of inhibition by RSV.  The values listed represent the amount of ERK1/2 phosphorylation 
seen in cells treated with RSV compared to cells given only FBS at the same time period. 
The peak phosphorylation event seen in FBS-only treated cells at 10mins is reduced by 
49.8%. After the 15min time point, the degree of RSV-mediated ERK1/2 inhibition 
decreases and ERK1/2 phosphorylation levels begin to closely resemble the FBS-only 
treated cells at the same time points  
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Figure 21. Initial immunoblot analysis of U87MG cells treated with rBsg or 
rBsg+30µM RSV. U87MG cells were treated with either rBsg protein only or 
rBsg+30µM RSV in serum-free EMEM media for the indicated time period at 37°C. 
Cells were then lysed and the protein fraction was collected and subjected to Western blot 
analysis. Immunoblotting was performed using the anti-phosphoERK1/2 primary 
antibody (1:2000) and the anti-ERK1/2 primary antibody (1:1000) and imaged using the 
Pico Chemiluminescent Substrate (ThermoFisher) and a Kodak X-Omat film processor. 
No increase in ERK1/2 phosphorylation was observed in response to rBsg treatment, 
even at the 5min and 10min time periods.  
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Figure 22. Revised immunoblot analysis of U87MG cells treated with rBsg or 
rBsg+30µM RSV. For this assay, the time course was modified to include longer 
treatment times at 37°C. U87MG human GBM cells were treated either 10µg/mL rBsg 
only or 10µg/mL rBsg+30µM RSV as a pre-treatment and a co-treatment in serum-free 
culture media for the indicated time period at 37°C. Cells were then lysed and the protein 
fraction was collected and subjected to Western blot analysis. Immunoblotting was 
performed using the anti-phosphoERK1/2 primary antibody (1:2000) and the anti-
ERK1/2 primary antibody (1:1000) and imaged using the Pico Chemiluminescent 
Substrate (ThermoFisher) and a Kodak X-Omat film processor. These images were taken 
after a 30sec exposure to the film. The blots revealed that rBsg stimulates a transient 
increase in ERK1/2 phosphorylation, peaking between 10min and 15min, and that the 
rBsg-mediated phosphorylation is reduced by the presence of Resveratrol. 
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Figure 23. Resveratrol treatment of U87MG cells reduces peak rBsg-induced 
ERK1/2 phosphorylation at body temperature (37

o
C). U87MG cells were treated with 

either media containing 30µg/mL rBsg alone or 30µg/mL rBsg+30µM RSV for the listed 
time periods prior to lysis. Lysates were probed for ERK1/2 activation to determine the 
degree of inhibition by RSV.  The values listed represent the amount of ERK1/2 
phosphorylation seen in cells treated with RSV and rBsg compared to cells given only 
rBsg at the same time period. The peak phosphorylation event seen in rBsg-only treated 
cells at 10mins is reduced by 24.7%. After the 15min time point, the degree of RSV-
mediated ERK1/2 inhibition decreases and ERK1/2 phosphorylation levels begin to 
closely resemble the rBsg-only treated cells at the same treatment time. These results 
indicate that the degree of ERK1/2 inhibition in response to rBsg is not as large as RSV 
inhibition of FBS serum-stimulated ERK1/2 activation. 
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Figure 24. NeutrAvidin-HRP Blot for Putative Receptors of rBsg-SBED Bait 
Protein. U87MG cells were serum starved before being treated with 30µg per milliliter 
of SBED-labeled rBsg protein in serum free media for the indicated time period at 37°C. 
The 10cm plates containing the treated cells were crosslinked with UV light in a 
Stratalinker (Stratagene) at a distance of 5cm for 5 minutes at maximum power. The 
media was removed and the cells lysed and processed for immunoblotting using 
NeutrAvidin-HRP (ThermoScientific) at two different dilutions: 1:20,000 (Left) and 
1:4,000 (Right). The 1:20,000 was the greatest dilution suggested by the Sulfo-SBED 
manufacturer (ThermoScientific). The 1:4,000 dilution revealed a single band at 
approximately the molecular weight of the rBSG protein, suggesting the lack of label 
transfer form the recombinant protein to potential cell surface receptor proteins. 
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Figure 25. Evidence for rBsg-ECD labeling of U87MG cells and the activation of the 
ERK1/2 signaling pathway. U87-MG cells were treated with 30µg/mL rBsg-SBED 
protein in serum free media for the indicated time period at 37°C before being 
crosslinked with a UV Stratalinker (Stratagene) at a distance of 5cm for 5mins at 
maximum power, making the total exposure times 10 and 15min, respectively. The cells 
were washed, lysed and the lysates were immunoblotted for human basigin and 
phosphorylated ERK1/2. A) Immunoblotting with the anti-human EMMPRIN-ECD 
monoclonal antibody (1:1000) and goat anti-mouse HRP-conjugated secondary antibody 
(1:25000). Top: A short exposure identified only the rBsg-SBED protein at ~25kDa. 
Bottom: A longer exposure revealed the at roughly 26kDa, as well as the endogenous 
Bsg-2 protein at ~50kDa This image was obtained after a 5min exposure to film before 
preocessing. B) Immunoblotting with the anti-phosphoERK1/2 primary antibody 
(1:2000) and goat anti-rabbit HRP-conjugated secondary antibody (1:25000). In this 
experiment, maximal ERK1/2 phosphorylation occurred after a 5 minute treatment with 
the rBsg-SBED protein at 37°C and 5 minutes of exposure to UV light at room 
temperature (10 minutes total time).  
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Figure 26. Second Attempt of NeutrAvidin-HRP Blots for Putative Receptors of 
rBsg-SBED bait protein. A) Four identical plates (P1-P4) of U87-MG cells were treated 
with 120µg/mL rBsg-SBED, 4x the original treatment of 30µg/mL rBsg-SBED, in serum-
free EMEM for 5mins at 37C before being exposed to UV light in a UV Stratalinker 
(Stratagene) at a distance of 5cm for 5mins at maximum power. Cells were lysed and the 
lysates were run onto gels under either denaturing (top) or non-denaturing conditions 
(bottom) and were probed for the presence of biotinylated proteins using NeutrAvidin-
HRP (ThermoScientific) (1:4000). Non-denatured samples moved farther down the gel 
than their denatured counterparts. Only rBsg-SBED was identified in the samples. B) 
Serial dilutions of stock rBsg-SBED were made and run out under denaturing (top) or 
non-denaturing conditions (bottom) to test for issues with biotin tag cleavage from the 
rBsg-SBED proteins. Presence of biotinylated proteins is expected in the non-denatured 
samples, whereas the presence of biotinylated rBsg-SBED in the 1/10 was not expected, 
given that the biotin tags should have been cleaved off when exposed to DTT in the SDS-
PAGE sample buffer. The images were obtained after a 30sec exposure to film. The blots 
were imaged using the West Pico chemiluminescent substrate (ThermoScientific) and a 
Kodak X-Omat film processor. 
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DISCUSSION 

 

 

 

 Glioblastoma multiforme (GBM) is the most common malignant form of human 

brain cancer. GBMs are comprised of supportive cells within the brain called glial cells 

that tend to be astrocytes. These tumors are characterized by the presence of necrotic 

tissue, a grim prognosis for patients, and their highly aggressive nature. Basigin-2 (Bsg-

2) is a transmembrane glycoprotein commonly found in healthy lymphocytes, endothelial 

cells, and retinal cells, and is implicated in spermatogenesis, tissue remodeling, and 

embryonic implantation. In cancerous cells, Bsg is highly upregulated at the cell surface 

where it is released by vesicular shedding into the ECM1, 14-18. In a cancerous 

environment, and normal tissues as well, Bsg-2 mediates the production of matrix 

metalloproteinases (MMPs) from stromal and cancer cells. These MMPs degrade the 

extracellular matrix, providing an environment favorable to metastasis and tumor growth. 

Bsg has been confirmed to bind to itself at the cell surface of normal human endothelial 

cells, given its nature of homodimerization, by the use of a recombinant form of Bsg-2 

(rBsg)1. Binding of rBsg was shown to induce the activation of the MAPK signaling 

pathway, observed through the activation of ERK1/2, a protein implemented in cell 

survival and cell cycle progression. This relationship has not been observed in a GBM 

model. This project sought to establish the presence of rBsg-Bsg-2 binding at the surface 
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of GBM cells that would contribute to the activation of the MAPK pathway and 

illuminate a pro-survival autocrine/juxtacrine signaling loop between GBM tumor cells.  

 In order to confirm the hypothesis of this project, rBsg had to be generated for use 

in experimentation. rBsg is a ~25kDa protein consisting of the extracellular domain of the 

human basigin-2 protein that mimics the biologically active, highly glycosylated form of 

Bsg1, 11, 12. Transformed E. coli bacteria needed to be grown and induced to express the 

rBsg in the periplasmic space, where the protein would retain the two disulfide bridges 

present between the Ig-folds of the protein. Once the bacteria were submitted to osmotic 

shock lysis, the protein could be purified through the use of cobalt beads that bound the 

histidine tag on the rBsg. SDS-PAGE and Western blot analysis revealed that rBsg had 

been successfully produced and purified. Although the banding on the Western blot is 

altered due to shifting of the gel just prior to the transfer to PVDF membrane. There were 

also issues in getting enough protein isolated for use in the experiment. In previous 

attempts by Belton et al. (2008), rBsg concentrations after purification reached into 

multiple milligrams levels, whereas isolations for this work totaled 0.6873mg. It has been 

theorized that the protein induction conditions weren’t correct. In future attempts, the 

induction should go longer in a 37oC environment to provide optimal time and functional 

conditions for the E. coli bacteria used.  

 Resveratrol was selected to serve as the inhibitor to ERK1/2 based on previous 

work by Huang et al. (2008)53. RSV is a phytoalexin plant polyphenol commonly found 

in grapes, berries, and the bark of some species of pine tree. It is unclear exactly how 

RSV inhibits ERK1/2 phosphorylation, but it is known that the molecule is an antagonist 

of EGFR-dependent ERK1/2 activation and that it is endocytosed at lipid rafts, where the 
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EGFR protein is located58, 59. Taken together, RSV may inhibit ERK1/2 by modulation of 

the EGFR-dependent MAPK signaling cascade at lipid rafts on cells, but that is only 

speculation. In order to determine what method of treatment should be employed when 

using the RSV, an assay was constructed to test the effects of pre-treatments of RSV in 

serum-free media prior to treatment of U87-MG cells with conditioned media and the 

effects of a co-treatment of conditioned media in the presence of RSV. Western blot 

analysis for phosphorylated ERK1/2 levels indicated that the most effective ERK1/2 

inhibition was observed when U87-MG cells were pre-treated with 30µM RSV and co-

treated with conditioned media in the presence of 30µM RSV. The purpose of having a 

pre-treatment of 2hrs in conjunction with the co-treatment was to ensure that any 

inhibitor effects weren’t interrupted. These cells were treated at room temperature, while 

later cell treatments were done at 37oC. Although the temperature difference may have 

had an effect on the treatment, it was deemed acceptable to use these results as evidence 

the selected method of RSV treatment of a pre- and co-treatment. High levels of ERK1/2 

phosphorylation seen in unstimulated cells is most likely due to the fact that the cells 

were washed with PBS prior to treatment and prior to lysis with 1% NP-40 buffer. The 

cold PBS used to wash the cells cold-shocked the cells, causing a change in the 

intracellular landscape. In later blots where washes were eliminated, unstimulated cells 

exhibited almost no levels of ERK1/2 phosphorylation. However, there is still expected to 

have some level of constitutively activated ERK1/2, given the transformed nature of 

cancer cells. This can be attributed, possibly, to the presence of EGFRvIII. This form of 

the EGFR receptor is truncated, missing the extracellular domain, and is constitutively 

activated.  
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 Early control cell Western blots exhibited numerous issues that shed light on 

errors in the protocol designed from them. Initial problems were speculated to be due to 

faulty antibodies. However, it was determined that smearing of bands and improper 

labeling were due to the use of improper antibody dilution buffers that inhibited proper 

binding of the antibodies to their target proteins. This was addressed by following 

manufacturer protocols and results improved. There were other factors that could have 

affected the quality of the images obtained, including improper handling of the PVDF 

membrane prior to the transfer step of the Western blot. Eventually, all mistakes were 

corrected, leading to clearer blot images. 

 Control U87-MG cells were needed in order to compare the phosphorylation of 

ERK1/2 induced by normal growth factors and nutrients to any that might be seen by the 

rBsg protein to be used later. U87-MG cells were treated with 1mL warmed 10% FBS in 

EMEM for two different time courses. The initial time course consisted of incubations 

with treatment media at room temperature, washes of cells with PBS, and time periods of 

0sec, 30sec, 1min, 2min, 5min, and 10min. The Western blots of these cell lysates did 

reveal that as time progressed, ERK1/2 phosphorylation increased up to the 10min time 

point. The high amount of phosphorylated ERK1/2 seen in the 0sec time point, which are 

cells that have gone unstimulated, can be most likely be attributed to the addition of cold 

PBS to wash the cells both before and after treatments. This caused the cells to be cold-

shocked, inducing changes in the cells that don’t accurately reflect what happens to the 

cells upon addition of the treatment media at any time point, let alone the 0sec time point. 

Due to this, PBS washes were eliminated from the protocol. In cells treated with serum-

containing media with RSV, a high amount of ERK1/2 inhibition can be observed. The 
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darker bands at the later time points could indicate that the RSV eventually wears off. 

However, because of the cold-shock of these cells, the images were deemed unreliable 

for determination of RSV’s effect on serum-stimulated ERK1/2 activation.  

 Initial rBsg treatments used the same time course as the initial control cells 

described earlier, albeit without PBS washes. The treatments still occurred for time 

periods of 0sec, 30sec, 1min, 2min, 5min, and 10min at room temperature. rBsg protein 

was given to cells in 1mL serum-free EMEM at a concentration of 10µg/mL with or 

without 30µM RSV pre- and co-treatment. The removal of PBS washes did, in fact, 

decrease the amount of phosphorylated ERK1/2 seen in the unstimulated cells. However, 

the blot showed consistent levels of ERK1/2 phosphorylation across all time points, 

indicating that the rBsg wasn’t having any effect on ERK1/2 activation. The same could 

be said about the cells treated with rBsg and RSV. While the baseline levels of pERK1/2 

were decreased in RSV-treated cells, there were no other trends observed. The lack of 

ERK1/2 activation is most likely due to the fact that the plates were incubated at room 

temperature. In order for Bsg, or rBsg, to have any effect, the protein needs to bind to the 

cell and be endocytosed. There should be a small degree of ERK1/2 activation under the 

right conditions at the 5min time point that was not seen, suggesting that endocytosis of 

rBsg did not occur. The shorter time periods used for these cell treatments also fail to 

give a clear picture of what happens after the 10min time point. Since it can take some 

amount of time for any affect to be observed, at a 10min cutoff would exclude any 

potential effects that occurs after that relatively short time point. This prompted a change 

to a longer time course, similar to the one used by Belton et al. (2008), that would be 
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incubated at 37oC1. This ensured that the plates of cells could be transferred to/from the  

37oC incubator, treated, aspirated, and lysed in a timely fashion. 

 New control cells needed to be grown, treated, and lysed under the same 

conditions as the next rBsg cells. U87-MG cells were treated with 2mL serum-containing 

media with or without a RSV pre- and co-treatment for time periods of 0min, 5min, 

10min, 15min, 20min, and 30min at 37oC. The addition of an extra milliliter of media 

was to ensure that the cells were completely covered by media. In the images obtained, 

pERK1/2 levels increased up until the 10min point where they peak, drop off slightly, 

and then hold steady, with almost no pERK1/2 present in the unstimulated 0min time 

point cells. This is in stark contrast to the initial control cells collected, providing a much 

clearer image of what happens when cells are given the growth factors and nutrients 

expected to induce cell cycle progression and growth. The RSV-treated control cells 

exhibited highly altered ERK1/2 phosphorylation when compared to the cells not treated 

with RSV. The peak phosphorylation event seen at the 10min time point seen in the non-

inhibited cells is decreased by 49.8% in the cells treated with RSV (Fig. 20). However, 

the effects of the RSV appear to wear off, evidenced by the dark band in the 30min time 

point cells. This could be due to endocytosis at lipid rafts, where the EGFR receptor is 

located, which would eventually deplete the amount of usable RSV, however this is just 

speculation. The phosphorylation seen in U87-MG cells when exposed to normal 

nutrients and growth factors establishes the control that will be used to compare to the 

effects of rBsg protein exposure.  

 U87-MG cells were ready to be treated with rBsg grown during the purification 

steps, this time, for the longer time course and incubation temperature of 37oC and with 
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2mL of conditioned media. Cells were given either serum-free EMEM with 10µg/mL 

rBsg or 10µg/mL rBsg+30µM RSV for the established time course. Western blot analysis 

revealed an increase in ERK1/2 phosphorylation in response to the treatment with rBsg. 

There was a peak phosphorylation event between the 10 and 15min time points that 

decreased at the later time points. This is in contrast to the constant plateau seen in the 

control cells stimulated with serum. Signaling activation is due to the endocytosis of the 

rBsg into the cells. This interaction indicates that uptake of Bsg proteins on vesicles will 

cause the activation of the MAPK pathway, even in the absence of growth factors and 

nutrients. This is reminiscent of the tumor microenvironment where an overabundance of 

cells growing and proliferating depletes the availability of the growth factors and 

nutrients necessary for signaling growth. The MAPK pathway activation, signaled by 

increased levels of phosphorylated ERK1/2 mediated by exposing the cells to rBsg, 

indicates that an autocrine/juxtacrine loop exists that allows cells to continue to grow in 

the absence of growth factors, proving half of the hypothesis correct. Interestingly, RSV 

inhibited the rBsg-mediated ERK1/2 phosphorylation by 23.7% (Fig. 23). There was no 

increase in phosphorylation at the later time periods. This inhibition indicates that the 

method of inhibition must be the same between cells given serum and cells given the 

rBsg protein. Fetal bovine serum used in cell culture media is known to act through the 

EGFR-Ras-MAPK pathway described earlier.  The EGFR receptor and Bsg-2 are located 

in close proximity to each other in lipid rafts. Since it’s been established that treatment of 

GBM cells with rBsg stimulates ERK1/2 phosphorylation, and that ERK1/2 

phosphorylation also occurs through EGFR signaling, it could be possible that both 

EGFR and Bsg-2 work in conjunction to transmit signals to the inside of the cells. This is 
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evidenced by the fact that RSV abrogated both serum-stimulated and rBsg-stimulated 

ERK1/2 phosphorylation. With that revelation, if rBsg is indeed acting through a Bsg-

2/EGFR cooperation, it opens the door for combination treatments that target both 

receptors rather than just one at a time, or drugs that act on more than one pro-cancerous 

pathway, meaning better outlooks for patients diagnosed with GBM. RSV could 

potentially be one of these treatment molecules. The inhibition of both EGFR signaling 

and Bsg-2 via RSV could have more potent effects than targeting one or the other. It is 

also possible that RSV acts on not just the EGFR and Bsg-2 receptors, but also on the 

downstream effectors as well. 

 In order to firmly establish a mechanism for rBsg stimulation of U87-MG cells, 

rBsg protein gifted to me by Dr. Robert Belton was labeled with the Sulfo-SBED 

heterotrifunctional UV light-activated cross-linker (ThermoFisher) with a biotin tag. 

When rBsg is attached to the Sulfo-SBED reagent, the rBsg should bind to a putative 

receptor. When activated with UV light, the SBED reagent attached to the rBsg should 

transfer the biotin tag to anything bound to the rBsg protein. The tag can then be cleaved 

from the rBsg via denaturation during SDS-PAGE analysis, leaving the tag on the 

putative receptor, and then imaged using NeutrAvidin-HRP protein after a Western blot. 

The results of the initial label transfer trial indicate that no label transfer occurred, 

evidenced by the presence of only biotinylated rBsg protein in lysate samples, most likely 

caused by dimerization of rBsg-SBED molecules in solution. It was initially believed that 

there wasn’t enough protein in solution to overcome any self-dimerization and have an 

appreciable label transfer occur, leading to the decision to try 120µg/mL rBsg-SBED 

treatments. The potential issue of inadequate denaturation and thus, cleavage of the biotin 
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from the rBsg, was addressed by running lysate samples under both denaturing and 

nondenaturing conditions along with serial dilutions of the rBsg-SBED. The results 

indicated no difference from the initial experiment, supported by the presence of only 

biotinylated rBsg in lysate samples. The serial dilutions indicated that in denaturing 

conditions, some biotinylated rBsg molecules exist in the 1/10 dilution only. The 

nondenatured serial dilution samples showed the presence of more biotinylated rBsg in 

the 1/10 and 1/100 dilutions, while none was observed in the 1/1000 dilution. This is 

most likely due to the limitations of the ECL detection system. Even though there wasn’t 

a label transfer, U87-MG cells treated with rBsg-SBED showed high increases in 

ERK1/2 phosphorylation after treatment. This indicates that the protein is indeed binding 

to the cell surface and causing a stimulus, supporting the initial experiments where cells 

were treated with pure rBsg protein. This activation was observed in a similar fashion, 

peaking at 10mins post-exposure. There is also phosphorylated ERK1/2 in the lysates not 

treated with rBsg-SBED. This can most likely be attributed to the 5min exposure to UV 

light that took place as the cells try to fight the effects of the UV radiation. Despite the 

lack of evidence supporting my hypothesis that rBsg stimulates ERK1/2 via Bsg-2, it is 

likely that this is only due to issues with the label transfer and not with the actual binding 

to the receptor. In the work by Belton et al. (2008), Bsg-2 will bind rBsg at the surface of 

human endometrial stromal cells. Based on this finding, rBsg should bind to Bsg-2 at the 

surface of GBM cells, given the fact that Bsg-2 is highly upregulated on their surfaces. 

This notion is supported by Bsg-2’s ability to homodimerize, a characteristic shared by 

rBsg. Given the presence of biotinylated rBsg proteins alone in the label transfer 

experiments, it’s likely that the rBsg proteins formed homodimers and transferred their 
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biotin tags to each other. Belton et al. (2008) also illustrated that rBsg also bound to other 

receptors that weren’t identified. As stated earlier, one of these receptors is most likely 

EGFR, given the fact that it was shown that RSV blocked ERK1/2 phosphorylation in 

response to treatment with only rBsg, proving at least half of the hypothesis correct. This 

points to a cooperation between EGFR and Bsg-2 and potentially other receptors found in 

the lipid rafts of cells, where these proteins are found. However, due to lack of evidence, 

this relationship will have to be investigated in future work. 
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CONCLUSION 

 

 

 

 Taken together, the results of this project highlight an existing means for the 

activation of the ERK1/2 pathway mediated by solubilized Bsg-2 proteins, mimicking 

those released by cancerous cells to affect the surrounding tumor environment. The 

activation of ERK1/2 caused by exposure of human GBM cells to rBsg protein, both 

attached to the SBED reagent and pure, indicate that somehow, the protein is being taken 

up by cells. The purpose of the SBED label transfer was to identify the potential receptors 

for the protein, but the experiment revealed inconclusive results. More likely than not, the 

rBsg is binding to Bsg-2 at the cell surface, as evidenced in the work by Belton et al. 

(2008) and the use of the rBsg protein, developed by their work, in this research. 

Resveratrol, when given to cells at the same time as the rBsg or FBS, caused an inhibition 

of ERK1/2 phosphorylation. This indicates that the two treatments, rBsg and FBS, 

operate under a similar mechanism. Given the fact that RSV affects EGFR-mediated 

ERK1/2 activation, this could mean that the ERK1/2 signaling activation is mediated by 

the rBsg at the EGFR in lipid rafts, where normal Bsg-2 is also located. Future 

experiments should aim to establish a connection between the rBsg protein, Bsg-2, and 

the EGFR receptor. 
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APPENDIX A 

 

 

 

License to use Figure 2 from “Integration of EGFR inhibitors with radiochemotherapy” 
by Nyati et al. received from Nature Publishing Group. 
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APPENDIX B 

 

 

 

License to use Figures 1 and 2 from “The microenvironment of the tumour-host 
interface” by Liotta and Kohn received from Nature Publishing Group. 
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