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In ergonomics, lifting tasks can be categorized according to their risk level of suffering 
work-related low back disorders (WRLBD). The aim of this study was to investigate
whether trunk muscles form synergies that stabilize the time profile of selected 
performance variables that have been used previously to characterize the risk level for
developing WRLBD. At the neuromuscular level, the spatiotemporal pattern of 
motoneuronal activity was quantified by applying matrix factorization algorithm with 
Varimax rotation. With this procedure, synergies were quantified using the framework of 
the UCM hypothesis. The results supported the hypothesis that trunk muscles form 
synergies to stabilize the time profile of variables that are being also used to characterize 
the risk of injury. 
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INTRODUCTION: Manual material lifting and lowering tasks are the primarily risk factors for
developing WRLBD (Op de Beek & Hermans, 2000). WRLBD causation is mainly based on 
the mechanical disruption of spinal support structures, where the integrity of the connective 
tissue is violated and its mechanical order perturbed due to spine loading (Marras, 2008). 
Spine loading is imposed by trunk muscles (co)activity in response to external loading.
Therefore, the magnitude of the myoelectric (co)activity of trunk muscles during lifting and 
lowering tasks has been investigated extensively using Kinesiological Electromyography. On 
the other hand, trunk muscles stabilize the spine regarding buckling and control its 
movement and posture during lifting or lowering tasks. However, physical demand 
ergonomics assessment tools (e.g. revised lifting NIOSH equation) that are used to 
categorize lifting tasks according to the risk level of suffering WRLBD are built upon
biomechanical, physiological, and psychological criteria. According to the US National 
Institute for Occupational Safety and Health (NIOSH), workers during lifting and lowering 
tasks have difficulties not only to control dynamic actions that result in high inertial forces but
also with fast motions that limited their ability to coordinate the many trunk muscles 
necessary to control and stabilize the spinal column (NIOSH, 1981).  
Physical demand ergonomics assessment tools take into consideration worker’s 
biomechanics but not motor control although the common characteristics of all risk factors 
are their influence on trunk muscles activation patterns. Biomechanics alone cannot explain 
whether the natural limits of worker’s motor and sense system capabilities are being reached
during lifting tasks. Motor control approaches built upon systems theory of Bernstein 
(1967), provide quantitative tools for studying trunk muscles coordination. Thus, the notion of 
task-specific stability of movement and the concept of the uncontrolled manifold (UCM) 
(Scholz & Schöner, 1999) was applied to investigate whether trunk muscles forms synergies
by reducing the variance of selected performance variables (PVs). These PVs have been 
used previously to characterize the risk level for the development of WRLBD (box’s 
transversal ( ), vertical (z), and radial ( ) displacement in cylindrical coordinates 
following Waters et al., 1993). According to the UCM, the CNS facilitates covariation in a 
multi-dimensional space of elemental variables (i.e., muscles) that keeps inter-trial variance 
primarily limited to the UCM, calculated for potentially significant performance variables. The 
UCM theory uses the nullspace formalism to analyze coordination strategies (Latash &
Zatsiorsky, 2016). 

METHODS: A 42 factorial experimental design was used to compare the synergy index in 
different work-design risk levels during lifting/lowering tasks (factors are, load: liquid vs. solid; 
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vertical distance: knee vs. hip; horizontal distance: near vs. far; asymmetry: 0º vs. 45º). The 
experiment was performed by randomly selecting a treatment combination, and then 14
subjects completed the box motion (weight = 67 N), which resulted in four lifting and three 
lowering trials for every treatment, interspersed with 5 min rest breaks between each 
treatment. Each trial duration was constrained at 2 sec (pace: 30 lifts per min) independently 
of the treatment, which was ensured by an electronic metronome. Each participant was 
considered a block and repeated measurements made on each block under factorial 
treatment structure. In total, 16 treatment combinations per block were run in a random order 
with 112 trials in every block (16 treatments x 7 trials per treatment). The box was defined by 
four markers in each corner of the frontal plane. 3D kinematics data recorded at 60 Hz 
(MaxPRO, Innovision Systems, Inc.) Position-time “data smoothing,” derivation, and 
interpolation at 1 KHz was carried out by quintic splines according to the “True Predicted 
Mean-squared Error” criterion given the known precision of the spatial coordinates previously 
estimated by an uncertainty analysis (Woltring, 1986). Box’s center of gravity acceleration 
time profile was used to define the temporal phases of the lifting and lowering tasks. 
M-modes were extracted from surface EMG data from 10 trunk muscles (left and right: 
erector spinae, rectus abdominis, external and internal oblique and latissimus dorsi). The 
myoelectric signals were registered using the active sEMG sensors DE-2.3 (Delsys Inc., 
Boston MA) and digitized at a rate of 1 KHz using the Myomonitor IV (Delsys Inc., Boston, 
MA) portable EMG 16-Ch system (16 bits, range ± 5 V). Once ECG artifacts removed, the 
EMG signal was filtered (4th - order Butterworth, 20 - 450 Hz), demeaned and stored in ASCII 
files. The RMS of the EMG amplitude was computed over bins of 1% of task cycle and
normalized to max RMSEMG for every subject and muscle and standardized to have unit 
variance and submitted to exploratory factor analysis with Varimax rotation where three PCs 
(M-modes) were retained from the correlation matrix by using principal components analysis. 
Linear relationships were assumed between small changes in the three M-modes and the 

Except for the time profile of PVs that have been 
associated with the development of WRLBD, the stabilization of the COP was also 
investigated. The coefficients of the regression equation were arranged in a matrix that is a 
Jacobian matrix (J).  
The UCM hypothesis describes a manifold in the three M-modes (PCs) subspace on which 
PV is reproducible from cycle to cycle. The M-modes variance that lies within the UCM 
subspace represents the combinations of M-modes gains that stabilize the selected PV— 
i.e., the stability of the performance variable. The M-modes variance that lies within an 
orthogonal to the UCM subspace represents the combinations of the M-modes gains that 
destabilize the selected PV  (Latash et al., 2007). However, the same set of M-modes gains
(factor scores F) may be used to form different covariation patterns for various PV—i.e., the
flexibility of trunk muscle activations patterns. Therefore, the synergy index for each of the 
PVs was computed as follows to verify whether the system comprises all the three features 
(sharing pattern, stability, and flexibility). 

1. Computation of the UCM. The null space of the J matrix was computed to provide 
the basis vectors spanning the linearized UCM. The null space of the J matrix
consists of all vectors x such that Jx = 0. Within the 3D space of all possible vectors 
x, the solutions to Jx = 0 form a two-dimensional subspace. The two basis vectors 1
and 2 defining the null space were computed with the nullspace() function of the 
package pracma in R environment. As the M-mode space is three-dimensional (n = 
3), and for the 1D performance variable d = 1 the null space is 2D 
system is redundant on the task of stabilizing the performance variable.

2. Computation of deviation matrix. The difference of factor score  was averaged 
across the trials in every time bin and the averaged vector was then subtracted 
from the vectors of the individual changes in the M-mode magnitudes=

3. Decomposition of variability. The component of the deviation matrix , which is 
parallel to the UCM, represents how much deviation occurs without altering the value 
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of the performance variable and was obtained by its orthogonal projection onto the 
null space. To compute the projection of the onto the UCM ( ) and the 
orthogonal subspace ( ) the projection matrix Q for the 2D null space of 
R3 spanned by the vectors and was computed.=  
Where = [ , ]. Therefore,  =  = ( )

4. Computation of variance. The total trial-to-trial variance VTOT, as well as the 
variance in each of the two subspaces (VUCM and VORT) normalized by the number of 
DOF, were calculated as = = 13 X N= = 12 X N= = 1N

5. Computation of the synergy index. A performance variable is controlled in the UCM 
sense when VUCM is statistically higher than VORT (Latash et al., 2007). The following
index was computed  =
to compare synergy across subjects and treatments, which ranges between 1.5 (all 
variance is within UCM - a synergy) and -3 (all variance is within the orthogonal 
subspace - not a synergy with the current PV but probably a reflection of another 
synergy). A zero index means that there is not a synergy (Latash et al., 2007). For
statistical -scores using Fisher’s z-

(Verrel, 2010):= 12 log 3 + V1.5 V
To quantify if a muscle synergy is stabilizing the selected performance variables one sample 
student’s t-tests were run on the transformed data to check whether synergy indices were 
significantly different from zero (0.5 × log(2)).

RESULTS AND DISCUSSION: Four temporal phases of lifting and lowering tasks were 
identified based on the 3D kinematics of the center of gravity of the box (lift, pull, push, 
deposit). Trunk M-modes stabilize the time profile of PVs that are being also used to 
characterize the risk level for the development of WRLBD. In particular, we have viewed M-
modes as elemental variables, hypothesized that the “neural controller” acts on the M-mode 
subspace to formulate multi-M-mode synergies by their combination and to modulate the 
gain of each M-mode for stabilizing the time profile of important PVs for lifting and lowering 
tasks. The results revealed muscle synergies for some of the PVs that were significantly 
higher from zero for all phases. However, lifting and lowering tasks not presents the same 
synergies (Fig. 1). Temporal phases influence the synergy index, but not similar between 
lifting and lowering tasks. For the lifting tasks, the degree of the synergy indices decreased 
from lift-to-deposit phases, while for the lowering tasks there was, like in the lifting task, a 
decline of the level of the synergy but only from lift-to-pull or lift-to-push phases, followed by 
an increment of the synergy indices. Although our study does not provide specific evidence 
of an underlying injury mechanism related to the motor control of specific PVs, it provides 
support for a high injury likelihood during the lifting or lowering phases when the underlying 
control mechanism associated with the trunk muscle activation patterns prioritize the control 
of different behaviors simultaneously. For example, during the lift phase of the lifting cycle 
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where the COPAP, the , and the z are stabilized by trunk multi-M-mode synergies, indicating 
that a muscle or muscle group may acts simultaneously to accomplish different tasks. If 
muscle activations patterns that are underlying the switching from one task demand to the 
other are different, this could create a disruption of the ongoing task, and such conflict may 
lead to motor errors, increasing postural instability and subsequent risk for development of 
low back disorders (Ebenbichler et al., 2001). 

Figure 1. Synergy indices across subjects for each of the four phases within the lifting and 
lowering cycle. Mean values with 95% CI are shown. 

CONCLUSION: Temporal phases influence the synergy index, but not similar between lifting 
and lowering tasks. These findings have implications for the risk assessment evaluation with 
multiplicative NIOSH based ergonomics tools. UCM hypothesis can provide results for 
inspiring new man-task-environment system interaction designs, as well as more targeted 
ergonomics evaluations. 
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