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This study examined the effect of a harness resisting leg movement on sprinting and 
jumping performance. Split times for 10, 20, 36.58 and 50 meters, kinematics of hip and 
knee angles during sprinting, forces of maximum countermovement jumps and dual-
energy X-ray absorptiometry (DEXA) were measured prior and following five-weeks of
training with the resistance device. Results showed significant improvement in 10 m 
sprint times and knee extension during sprinting following five-weeks training (p<.05). No 
significant changes in jump or DEXA parameters were seen.  Findings of the current 
study indicate that the SpeedMaker device may improve the acceleration phase of 
sprinting and stimulate a larger range of motion at the knee joint. Future studies with the 
device should include longer training periods, greater sample sizes and a measurement 
of resistance. 
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INTRODUCTION: Mechanical resistive devices are used among athletes to improve muscle 
response and activation. The stretch-shortening cycle indicates that muscular force will be 
increased if the muscle is stretched immediately prior to contraction. This concept has been
demonstrated in both concentric and eccentric muscular contractions (Komi, 1984).  
Coaches often incorporate the stretch shortening cycle throughout an athlete’s training 
program.  Resistance bands are widely used as mechanical aids that amplify the effects of 
the stretch-shortening cycle. Acute effects of elastic-cord towing bands improved the 
acceleration phase up to 20 meter(m) sprints by increasing stride length and distance of 
center of mass from the foot and trunk in trained athletes (Clark et al., 2009; Corn & 
Knudson, 2003). Lockie et al. (2003) also found that resistance training increases flexion at 
the hip, inferring increased stride length and thereby improving sprinting performance and 
increased hip muscle activity.  
Improved speed of muscle contraction has been linked to hypertrophy when the muscle has 
been trained appropriately (Young & Bilby, 1993). Visser et al. (1985) validated Dual-energy 
X-ray absorptiometry (DEXA) as a non-invasive technique to determine muscle mass.
Although athletes may sprint up to 50 m in previous research incorporating resistance 
devices, positive training effects have only been consistent in the acceleration phase of 
sprinting, limiting improvements to distances less than 20 m (Harrison & Bourke, 2009).
Similar to resistance devices, countermovement jumps (CMJ) can elicit a stretch-shortening 
cycle stimulus prior to sprinting, improving maximum velocity during 100 m sprints in elite 
athletes (Kale et al., 2009). An improvement in initial sprint acceleration has also been found 
after performing CMJ (Hrysomallis, 2012). Therefore, coaches have been encouraged to 
integrate CMJ jumps in addition to resistance bands to improve sprinting performance 
through a stretch-shortening cycle stimulus. 
Research of resisted sprint lengths greater than 20 m have not shown consistent training 
effects in kinematics regarding range of motion and stride length (Harrison & Bourke, 2009);
and thus require further research. Although improvements in performance with resistance 
devices have been shown in the past, the source of these improvements is unclear. The 
researchers of the current study chose to assess improvements using multiple techniques-
sprint times, range of motion kinematics, and CMJ- to identify a primary source of 
improvement. The purpose of the current study was to examine the effect of five weeks of 
training with the SpeedMaker (Elite Athletic Products Inc.; San Diego, CA, USA) resistance 
device on hip and knee range of motion while sprinting. Furthermore, the researchers aimed 
to determine if athletes improved CMJ performance after training with the SpeedMaker 
device. Secondary purposes were to investigate improvements in sprint time and indicators 
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of hypertrophy in the gluteal region. The researchers hypothesized that training with the 
SpeedMaker resistance harness will show indications of hypertrophy as well as increase
range of motion in the hip and knee angles, thereby improving running and jumping 
performance.

METHODS: Six female college track & field athletes (Mean ± SD: age = 19.83 y ± 1.95; 
height = 169.33 cm ± 7.72; mass = 62.78 kg ± 6.32) were recruited and signed informed 
consent. Pre- and post- tests described below were performed by six female collegiate track 
& field athletes before and after five weeks of training. One athlete was unable to complete 
post-testing sprints and jumps due to an ankle injury but was included for all other post 
testing. Athletes served as their own control group and were instructed to wear the device 
during their training sessions on Mondays, Wednesdays and Fridays for five consecutive 
weeks.
For pre and post-tests, a generalized self-selected warm-up including sprints, plyometrics 
and dynamic stretching was performed for five minutes. Following the warm-up, participants 
sprinted three 45 m lengths at 80, 90, and 100% maximum respectively with two-minute rests 
between each sprint. 
Three minutes after completion of the sprints, athletes performed three maximum CMJ on a 
force platform (OR6-2000 Advanced Mechanical Technology, INC. [AMTI], Watertown, MA, 
USA) where data were collected at 1000 Hz. The athletes used bilateral arm swing during 
each jump and rested for one minute between jumps. Jump flight time (FT), peak vertical 
ground reaction force during take-off (VGRF); peak rate of force development (RFD) were 
measured and calculated according to Haff et al. . 
Reflective markers were then placed on the participant’s left shoulder, hip and knee joints 
and mid shank. Participants performed two 50 m sprints for time. Seven Cortex Motion 
Analysis Corporation (Santa Rosa, CA, USA) cameras were used to record the markers in 
the sagittal plane for one full stride at 36.58 m (40 yards) to analyze hip and knee angles at
maximum sprint stride (Corn & Knudson, 2003). Data from sprint trials were tracked and 
filtered using a low-pass 4th order Butterworth with a cutoff frequency of 6Hz using Cortex 
Motion Analysis software. Minimum and maximum hip and knee angles were used to 
calculate range of motion of hip and knee joints which were averaged across the two sprint 
trials per testing session. Microgate (Bolzano BZ, Italy) timing gates were placed at 10, 20, 
36.58 and 50 meters to measure sprint times. Athletes were measured by DEXA for 
indicators of hypertophy through lean tissue mass and body fat percentage in the gynoid 
region.
Peak values of FT, VGRFpeak, and RFDpeak were averaged across the three jump trials.
Pre and post- test data for DEXA, kinematics, sprint times and force plate data were 
analyzed through SPSS v.24 software using paired t-tests. Alpha level was set at p<0.05. 
Cohen's d effect sizes were also used to determine magnitude of differences. Interpretation 
of effect size was based on the scale for effect size classification of Hopkins (2000): < 0.04 = 
trivial, 0.041 to 0.249 = small, 0.25 to 0.549 = medium, 0.55 to 0.799 = large, and >0.8 = very 
large.

RESULTS: Sprint times for the 10 m split improved significantly after training (p = .043). All 
split times for 20, 36.58 and 50 m improved with large effect sizes (see Table 1). 

Table 1
Mean ± SD times, p-values and effect sizes for sprint distances before and after training (N=5).

Distance Pre Test (sec) Post Test (sec) P-Value Effect Sizes
10 Meter* 1.96 ± .08 1.77 ± .19 0.043 1.09
20 Meter 3.41 ± .15 3.15 ± .23 0.078 1.15
36.58 Meter 5.52 ± .13 5.29 ± .29 0.107 0.91
50 Meter 7.36 ± .21 6.96 ± .36 0.078 1.15
*=statistical significance.
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There were non-significant improvements in VGRF, and RFD  over the five-week training 
study (see Table 2). FT decreased non-significantly with a large degree of variance between 
subjects. 

Table 2
Mean ± SD, p-values and effect sizes for VGRFpeak, FT and RFDpeak from pre and post-testing 

(N=5).
Test Pre Test Post Test P-Value Effect Size
VGRFpeak (N) 822.2 ± 175.6 975.0 ± .352.4 0.13 0.83
RFDpeak 6347.6 ± 2001.3 8899.0 ± 4670.6 0.34 0.76
FT (ms) 500.3 ± 99.1 479.8 ± 86.5 0.78 0.22

Mean maximum knee extension angles decreased significantly after five weeks of training 
with the resistance harness (p = 0.025), suggesting an increased range of motion (ROM) of 
the knee, although ROM of the knee was not significant (p = 0.193). Similar to the sprint time 
comparison after training, ROM of the knee between pre and post-testing may have been 
significant if N>5 due to a large effect size. There were no statistically significant differences 
between flexion/extension angles or ROM of the hip between pre and post-test (see Table 3).

Table 3
Mean ± SD, p-values and effect sizes for joint angles and ROM of the knee and hip before and 

after training (N=5).
Test Joint Angle/Range of Motion (Deg)

Knee Exta Knee Flex Knee ROM Hip Extb Hip Flex Hip ROM
Pre-Test 23.4 ± 4.7 129.4 ± 6.7 106.0 ± 9.4 -12.5 ± 14.5 30.6 ± 9.4 43.1 ± 20.1 
Post-Test 18.0 ± 5.9 129.9 ± 7.3 112.0 ± 10.3 -15.9 ± 3.1 28.8 ± 3.6 44.7 ± 6.1
P-Value 0.025 0.902 0.193 0.563 0.701 0.834
Effect-Size 0.93 0.08 0.62 0.34 0.26 0.12

a=statistical significance
b=negative values in the hip joint refer to hyperextension past zero degrees.

DEXA scans measured whole body lean tissue mass in kilograms (kg) and percent body fat 
of the gynoid region. Lean tissue mass (p=0.30) and percent body fat in the gynoid region 
(p=0.21) decreased non-significantly between pre and post-tests. 

DISCUSSION:
The most significant finding of the present study was the improvement in 10 m sprint times, 
supporting past research that resistance devices incorporated with sprint training improve 
acceleration (Clark et al., 2009; Corn & Knudson, 2003; Lockie et al. 2003). Split times for 
greater sprint lengths decreased non-significantly with a large effect size (see Table 1). Non-
significant improvement of other sprint split times may be the result of a general training 
adaptation and should be controlled in future studies. However, the athlete’s training did not 
differ throughout the study and was consistent from conditioning that occurred prior to data
collection. Therefore, adaptations are not likely influential of increased 10 m acceleration.
Knee extension also improved significantly, although full range of motion at the knee joint did 
not improve. This extension increase with the absence of increased flexion may have been 
the result of increased hamstring activation, which would have limited knee ROM, supporting 
the present results. However, electromyography (EMG) was not used in the present study so 
the researchers cannot verify increased hamstring activation.
Hip angles did not differ between pre and post-tests, contradictory to past studies that hip 
angles cause increased stride length, improving sprinting performance (Lockie et al., 2003). 
DEXA served as a measurement to indicate signs of muscle hypertrophy due to increases in 
lean body mass. A decrease in gynoid regional body fat was also suspected because the 
SpeedMaker harness targets hip flexor and extensor muscles. However, results from the 
DEXA showed no significant changes, inferring improvements in sprinting performance were 
apparent despite anatomical change. Decreased sprint times were present without improved 
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kinematics or anatomical changes, suggesting another source of performance improvement 
by the resistant device.
A limitation of the current study is the variance in track and field events between participants. 
Athletes with jumping field events may have had greater improvements in CMJ if technique 
primarily focused on jumping, as is seen with the high variability in the jump data. However, 
VGRF, RFD, and FT did not change significantly, and a large degree of variance was seen 
for all. Participants served as their own control for this study and should not be considered a 
confounding variable. The results from CMJ data were not consistent with past research, 
although resisted CMJ were not analysed in the present study; a difference from past 
research (Harrison & Bourke., 2009; Kale et al., 2009).
A measurement of the level of resistance was not provided by the manufacturers and was 
thus not accounted for in the current study, which is in contrast to prior research (Clark et al., 
2009). This should be determined for future studies to maintain internal and external validity.

CONCLUSION: The minimal increase in knee ROM after the training study might occur with 
a larger sample size; and could be of interest to coaches seeking to improve sprint 
technique. The lack of change in CMJ parameters suggest that there is no advantage in 
training with the SpeedMaker device for jumping activities although horizontal jumping 
parameters could be measured for future studies. The SpeedMaker device did not improve 
lean tissue or regional fat concentrations following five weeks of training; therefore, the 
researchers of the present study do not recommended the use of the device to alter tissue 
makeup to that end. 

REFERENCES:
Clark, D.A., Sabick, M.B., Pfeiffer, R.P., Kuhlman, S.M., Knigge, N.A. & Shea, K.G. (2009). Influence 
of towing force magnitude on the kinematics of supramaximal sprinting. Journal of Strength and 
Conditioning Research, 23(4), 1162-8.

Corn, R.J. & Knudson, D. (2003). Effect of elastic-cord towing on the kinematics of the acceleration 
phase of sprinting. Journal of Strength and Conditioning Research, 17, 72-5.
Haff, G.G., Ruben, R.P., Lider, J., Twine, C., Cormie, P. (2015) A comparison of methods for 
determining the rate of force development during isometric midthigh clean pulls. Journal of Strength 
and Conditioning Research, 29(2), 386-95.

Harrison, A.J. & Bourke, G. (2009). The effect of resisted sprint training on speed and strength 
performance in male rugby players. Journal of Strength and Conditioning Research, 23, 275-83.

Hrysomallis, C. (2012). The effectiveness of resisted movement training on sprinting and jumping 
performance. Journal of Strength and Conditioning Research, 26, 299-306.

Kale, M., Asci, A., Bayrak, C., Acikada, C. (2009) Relationships among jumping performances and 
sprint parameters during maximum speed phase in sprinters. Journal of Strength and Conditioning 
Research, 23, 2272-9. 

Komi, PV. (1984). Physiological and biomechanical correlates of muscle function: effects of muscle 
structure and stretch-shortening cycle on force and speed. Exercise and Sport Science Review, 12, 
81-122.

Lockie, R.G., Murphy, A.J., Spinks, C.D. (2003). Effects of resisted sled towing on sprint kinematics in 
field-sport athletes. Journal of Strength and Conditioning Research, 17(4), 760-7.

Visser, M, Fuerst, T, Lang, T, Salamone, L, Harris, TB. (1999). Validity of fan-beam dual-energy X-ray 
absorptiometry for measuring fat-free mass and leg muscle mass. Journal of Applied Physiology. 87 
(4), 1513-1520.

Young, W.B.& Bilby, G. (1993). The effect of voluntary effort to influence speed of contraction on 
strength, muscular power, and hypertrophy development. The Journal of Strength and Conditioning 
Research.7(3), 172-8.

Acknowledgements: This research was funded in part by a Northern Michigan University Progressive 
Research and Innovative Mutual Exploration (PRIME) Fund grant and Elite Athletic Products. The 
researchers also thank Advanced Orthopedics in Marquette MI for allowing us to use their services. 

906

35th Conference of the International Society of Biomechanics in Sports, Cologne, Germany, June 14-18, 2017


	ISBS 2017 Proceedings_neu.pdf

