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The purpose of this study was to determine inter-individual variance in the energetic cost 
of running (Ec) using dynamic stability measures derived from a single tri-axial trunk 
accelerometer. These measures were extracted from fifteen male recreational runners at 
their fastest steady-state treadmill running speed. A select group of dynamic stability 
measures were entered in a hierarchical regression to explain Ec (kcal.km-1) after
reducing dimensionality with factor analysis. Two dynamic stability parameters could 
explain an additional 9.9% of inter-individual variance in Ec over and above body mass, 
attributed to anteroposterior (AP) stride regularity (6.5%) and mediolateral (ML) sample 
entropy (3.4%). Our results suggest that recreational male runners with better stability in 
terms of greater AP stride consistency and greater ML trunk movement complexity have 
an energetic advantage at running speeds approximating race pace.
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INTRODUCTION: Establishing a biomechanical basis to the energetic cost (Ec) of running 
has long been of interest to researchers and coaches. Recently, the 2016 ISBS congress 
devoted an applied session to this topic, titled “Economy of running: Biomechanical research 
for running economy” (Enomoto, Kyrolainen, Arellano, & Heise, 2016). The session 
concluded that more research is needed to clarify key biomechanical determinants of running 
Ec. Some of the current limitations identified in the literature were: the ability to evaluate 
mechanical parameters over significantly more strides as well as the ability to transfer 
biomechanical analysis to in situ training environments. The advent of wearable inertial 
measurement sensors (IMU’s) offers a novel approach to potentially overcome these 
limitations and determine a “real-world” biomechanical basis for the Ec of running.  
Tri-axial accelerations extracted from trunk IMU’s have become a popular approach to 
approximate center of mass (CoM) motions with the potential to assess running gait from 
both a stability and loading perspective. Evolutionary theory suggests that structural 
adaptations have allowed human running to be more dynamically stable and energy sparing
(Bramble & Lieberman, 2004), with most (~80%) energy being used for body weight support 
and forward propulsion (Arellano & Kram, 2014).  Although, it has also been suggested that 
surplus accelerations and dynamic instabilities of the CoM during human locomotion can be
energetically “wasteful” and thus performance hampering (LeBris et al., 2006; Schütte, Maas, 
Exadaktylos, Berckmans, & Vanwanseele, 2015). However, to the best of our knowledge this 
link remains untested. 
In this study, we test a cost of stability hypothesis that proposes a link between a runner’s 
stability and running Ec, and that this link can be assessed using wearable trunk 
accelerometry. Specifically, we hypothesize that runners running with less deviations in CoM 
motion such as 1) less variability; 2) more consistency; and 3) more regularity have a running 
gait that is energetically advantageous. To evaluate these hypotheses, we used simple and 
non-linear metrics including 1) the root mean square (RMS) of each acceleration axis 
(vertical, ML, AP); 2) inter-step and inter-stride regularity, and 3) the sample entropy of 
waveforms, each of which express unique aspects of dynamic stability during running.
METHODS: Fifteen male recreational runners were recruited for this study, with a mean (SD)
age (21±1.88 years); height (1.78±0.08 m); weight 74.11 kg (10.43) and VO2 max (52.77±5.2 
ml.kg-1.min-1). To be included in the study runners had to be running recreationally (> 10 km 
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per week) and have prior experience with treadmill running. All participants were screened to 
have no history of lower extremity injury within the past three months and no known 
metabolic, neurological, or cardiovascular disease. Written informed consent was received 
from all runners prior to participation in accordance with the Declaration of Helsinki. The local 
ethics committee approved the study (# SU-HSD-002032).
After a warm-up of ~ 4 minutes starting at 9 km•hr-1 on a motorized treadmill (Saturn 
h/p/cosmos, Nussdorf-Traunstein, Germany), speed was increased discontinuously in 
increments of 1.5 km•hr-1 every four minutes interspersed by a one minute rest until onset of 
blood lactate (OBLA), defined as > 4mmol.L-1 using a portable lactate analyzer (Lactate Pro 2 
LT-1730, Japan). Treadmill gradient was maintained at 1% throughout to reflect the energetic 
cost of outdoor running (Jones & Doust, 1996). All tests were performed under similar 
laboratory conditions (20 – 25 ° C, 50 – 60% relative humidity at 130m of altitude). 
Pulmonary gas exchange was recorded through-out the test using a breath-by-breath 
metabolic analyser (Cosmed Quark CPET, Rome, Italy). Gas analysers were calibrated 
before each session to 16% O2, 4% CO2 balance N2 and the turbine flow meter is calibrated 
with a 3L calibration syringe before each test. VO2 data collected from the last two minutes of 
each speed stage were checked for steady-state i.e. no additional rise in the slow component 
of VO2 was to be detected. Updated nonprotein respiratory equations were used to estimate 
substrate use (g.min-1) and the relative energy derived from fat and carbohydrate was 
calculated by multiplying by 9.75 and 4.07 respectively (Jeukendrup & Wallis, 2005). Ec was 
defined as gross absolute (expressed as kilocalories per kilometre), quantified as the sum of 
these values to reflect the mean energy content of the metabolized substrates during 
moderate to high-intensity exercise (Jeukendrup & Wallis, 2005).
Tri-axial trunk accelerometry (Shimmer3 wireless accelerometer, ±16 g range, 1024 Hz, 16-
bit resolution, 23.6 g weight, Shimmer Sensing, Dublin, Ireland) was acquired during the 
entire running test. The accelerometer was securely positioned over L3 spinous process of 
the trunk and directly mounted to the skin using double sided tape, with additional self-
adhesive bandage wrapped around the waist to individual comfort. All signal processing of 
acceleration curves expressed as g’s was performed using customized software in MATLAB 
version 8.3 (The Mathworks Inc., Natick, MA, USA). Dynamic 3D trunk accelerations were 
trigonometrically tilt-corrected (Moe-Nilssen & Helbostad, 2004) and filtered using a zero-lag 
4th order low-pass Butterworth filter (cut-off frequency 50 Hz) prior to parameter extraction. 
Accelerometry parameters were computed from the final twenty consecutive steps of 
acceleration signals at each runner’s highest speed prior to OBLA which allowed cross-study 
comparison.
A total of 15 dynamic stability parameters were extracted using each acceleration axis 
(vertical, ML, AP) and were quantified: firstly using of each linear acceleration axis root mean 
square (RMS) absolute and ratio relative to the resultant vector RMS to capture movement
loading variability; secondly using step regularity and stride regularity (unbiased 
autocorrelation procedure) to capture consistency of motions; and thirdly using the sample 
entropy statistic to capture complexity of unfiltered waveforms, with higher values indicating 
less periodicity. Detailed procedures and algorithm inputs for the computation and extraction 
of these dynamic stability parameters are the same as previously explained (Schütte et al., 
2015). 
All statistical analyses were performed using SPSS (version 20.0; SPSS Inc, Chicago, IL). A 
factor analysis was performed to reduce the dimensionality of the 15 respective 
accelerometry outcome measures and to prevent overfitting of subsequent regression 
analysis. A scree-plot determined the number of extracted factors (eigenvalues > 1.0) with 
VariMax rotation to optimize loadings of variables onto factors. The most representative 
(highest loading) accelerometry measures were entered in an a priori hierarchical multiple 
regression analysis (MRA) to explain inter-individual variance in Ec. Specifically, body mass
was entered first as block 1 into the MRA model. Thereafter, block 2 was entered containing 
the most representative accelerometry measures, assessing the adjusted R2 change to 
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determine the proportion of additional variance explained and significance from 0. This 
sequential order was based on an a priori hypothesis that additional variance in Ec could be 
explained by dynamic parameters, after accounting for body mass that is a well-known 
primary determinant of running Ec (Bergh, Sjödin, Forsberg, & Svedenhag, 1991). 
RESULTS: All runners successfully completed the treadmill running test, with a mean (SD) 
highest steady-state running speed in absolute (11.19±1.12 km/h) and relative (79.85±5.15 
%VO2 max); respiratory quotient (0.95±0.02 au); and Ec (81.69±12.61 kcal.km-1).  
Factor analysis showed four components that could explain 88.4% of total variance in 
accelerometry measures (eigen values > 1). The variables with the highest loading on each 
factor were AP stride regularity (factor one loading = 0.96), ML RMS (factor two loading = 
0.92), AP RMS (factor three loading = 0.79), and ML sample entropy (factor four loading = 
0.63). Therefore, only these four accelerometry measures were entered in a stepwise fashion 
to the regression model after body mass to the regression model.
Regression results revealed two accelerometry measures that could explain an additional 
9.9% inter-individual variance in Ec after controlling for body mass as shown in Table 1.
Partial regression plots of the final regression model for the independent contribution of each 
significant predictor of Ec are shown in Figure 1.  

Table 1 
Hierarchical multiple regression results of final model explaining inter-individual variance in 

running Ec
Descriptives
(mean±SD)

Unique contribution
Independent variables B SE B R2 change

Body mass (kg) 74.72±11.24 0.828 0.10 0.74** 0.817
AP stride regularity (au) 0.75±0.13 -22.59 8.41 -0.24* 0.065
ML sample entropy (au) 0.295 ±0.095 -33.14 14.13 -0.21* 0.034

= standardized coefficients; */** p < 0.05 / p < 0.001; constant for multiple regression equation = 45.96. 

Figure 1. Partial regression plots (n = 15) of three independent variables showing unique 
contributions to running Ec, scaled by adding regression-residuals to group mean values to
enhance interpretation (Moya-Laraño & Corcobado, 2008). Each plot represents the true 
correlation coefficient for the specific predictor on Ec, while controlling for the other two 
predictors e.g. in panel B the relationship of AP stride regularity to Ec is shown while 
controlling for body mass (panel A) and ML sample entropy (panel C).

DISCUSSION: The current study tested a cost of stability hypothesis that proposed a link 
between running stability and running Ec using wearable trunk accelerometry. Our results 
partially support our hypothesis with two accelerometry stability measures that explained an 
additional 9.9% variance in running Ec over and above body mass in male recreational 
runners. The first measure (AP stride regularity) explained 6.5% in running Ec. The direction
of the slope in Figure 1 B was as expected, indicating that runners with poor consistency 
from stride to stride have a more energetically costly gait. From a coaching perspective, this 
may suggest that for economical purposes runners should give priority to maintaining 
consistency of their strides in the AP direction of running, aiming for values closer to one 
(perfect consistency). 
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A second accelerometry measure (ML sample entropy) explained an additional 3.5% in 
running Ec. Recently, this non-linear measure (indicating trunk movement complexity) has 
shown to correlate with blood lactate readings during treadmill running (Murray et al., 2011),
showing potential to track endurance markers of running performance non-invasively. 
Interestingly, the direction of the slope of the regression as seen in Figure 1 C contrasts with 
what was expected. Based on previous work showing that sample entropy values increase 
(become more irregular) when runner’s become fatigued (Schütte et al., 2015), we 
hypothesized that higher values would also be associated with higher Ec. The current results 
suggest otherwise, and we speculate that more degrees of freedom i.e. greater complexity 
used to regulate mediolateral trunk control is a mechanism used by more economical 
runners. 
Wireless trunk accelerometer could offer some potential for runners to gauge how 
economical their running stride is relative to other recreational runners, without requiring 
sophisticated motion analyses equipment or being restricted to indoor environments. Future 
work is encouraged to evaluate whether this relationship holds for more elite runners and 
within individuals over a training season.   
CONCLUSION: Higher AP stride regularity and ML sample entropy of trunk acceleration 
waveform signals were found to be energetically advantageous to endurance running 
performance. A simple non-invasive assessment of dynamic stability using trunk 
accelerometry could provide additional value to coaches and/or athletes if performed 
routinely and outside of the laboratory.
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