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The purpose of this study was to clarify the dynamics of the pelvis axis rotation during the 
golf swing. Sixteen skilled golfers performed swings with the driver. The 3D kinematic 
data and ground reaction forces were collected using an optical motion analysis system
and two force platforms. The dynamic components of the pelvis angular acceleration
were calculated as a function of 1) joint torque, 2) gravity, 3) motion-dependent forces, 
and 4) inertia force parameters. The present study found that the joint torque was the 
largest component of the pelvis axis rotation. In the torque component, both hip joint 
torques about its extension/flexion and adduction/abduction axes most affect the pelvis 
axis rotation, but the role of the torques differs between the rear and target legs. The 
control strategy of the pelvis axis rotation during the golf swing was discussed.
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INTRODUCTION: The torso rotation about its longitudinal axis (torso axis rotation) is the 
fundamental of the golf swing (Horan & Kavanagh, 2012; Hume et al., 2005; Joyce et al., 
2013). Golfers generate large power from the torso rotation and translate it to the upper limbs
(Hume et al., 2005). The direction of the torso rotation, or the trunk lateral bending also 
relates to the direction of the swing, resulting in the launch angle of the ball (Joyce et al., 
2016). Therefore, the torso axis rotation relates to the clubhead speed and the swing 
direction. Torso rotational motion differs between the skill levels and genders (Tinmark et al.,
2010), indicating that learning the ‘good’ torso rotation or proper training for the torso rotation 
are essential for the performance enhancement. Understanding of mechanics of the torso 
rotation during the golf swing is required to assess the torso rotation and the proper training.
In the golf swing, pelvis rotates first, then the thorax rotates about its longitudinal axis (Horan
& Kavanagh, 2012). During this sequence, torso twist motion is observed generating the 
large power (Hume et al., 2005). Therefore, the pelvis axis rotation might be the key motion 
as a starting point for generating large power. Large number of the researches have 
investigated the pelvis axis rotation during the golf swing (Horan & Kavanagh, 2012; Tinmark 
et al., 2010). Unfortunately, comparing to the kinematics, few studies have been investigated 
about the kinetics. So far, regurations of the ground reaction forces (McNitt-Gray et al., 2013),
the angular impalse of the body (Peterson et al., 2016), and the spinal load of the lumbar 
(Lim, et al., 2012) have been investigated. However, in our knowledge, none of the 
researches reveal the kinetic mechanisms of how the pelvis rotate during the golf swing.
Understanding of the dyanmics of the pelvis rotaion would be crucial for the training and 
coaching. The purpose of this study was to clarify the dynamic components of the pelvis axis 
rotation and investigate the kinetic mechanisms of the pelvis axis rotation during the golf 
swing.

METHODS: Sixteen right-handed golfers (eight men and eight women; handicap, 
2.9 ± 1.8; age, 17.4 ± 2.6 years; height, 164.2 ± 8.0 cm; mass, 61.4 ± 7.2 kg) 
participated in the experiment. the participants hit four to seven shots into a net 
(placed approximately 7 m away) with their own driver. The marker trajectories 
were collected using a three-dimensional motion capture system (VICON MX; 
Vicon Motion Systems Ltd., Oxford, UK) consisting of 17 cameras operated at 
500 Hz. The ground reaction forces on the both feet were measured using two 
force platforms (Kistler) operated at 1000 Hz. The shot where the participant felt 
best was analysed in each participant. The three-dimensional coordinate data of 
the club and the body markers from the start of the 

Figure 1: Attached marker-set 
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backswing to just before impact were smoothed using a zero-lag fourth-order low-pass 
Butterworth digital filter. The coordinate data were smoothed after padding processing 
(Derrick, 2004). The cut-off frequencies were determined through residual analysis (Winter, 
1990). Torso and lower limbs model consisting of the seven segments (i.e., both thighs, 
shanks, feet, and pelvis) were used (Figure 1). The local coordinate systems of the segments 
were defined based on the ISB recommendation (Wu, et al., 2002). All segments were 
assumed to be the rigid body. The ankle and knee joints were assumed to be the hinge joints 
(i.e., the range of the motion was about the extension/flexion axis only). The dynamic 
components (c.f., torque, gravity, motion-dependent forces, and ground reaction forces) of 
each segment accelerations and angular accelerations were calculated by satisfying the 
following three equations simultaneously (Koike & Harada, 2014; Takagi, 2016); (1) Newton–
Euler equations of the motion, (2) the kinematic constraint equation of the segments, which 
express the relationship between acceleration vectors of neighboring centers of mass (Fujii & 
Hubbard, 2002), and (3) the equation of the constraint axes of the joints (Fujii & Hubbard, 
2002). Additionally, the the ground reaction forces were distributed to the other dynamic 
components such as torque (Koike et al., 2007). Finally, the accelerations and angular 
accelerations of the segments were described as a function of the 1) torque, 2) gravity, 3) 
motion dependent force, 4) inertia forces due to the accelerations of the lumbar joint and 
COPs, and 5) the error terms caused from the present assumptions (c.f., change of the
segment lengh). The dynamic components of the pelvis angular acceleration were extracted,
and projected to the pelvis longitudinal axis.

RESULTS: The torque component was the largest especially in the phase from the 
beginning of the pelvis axis rotation (ROT) to the time of the maximum pelvis angular velocity 
(MAX) (Figure 2). After MAX, the torque component affects negatively. The hip joint torque 
about its extension/flexion and adduction/abduction axes were the largest positive 
components to the pelvis axis rotation after ROT (Figure 3). The hip joint torque about its 
extension/flexion and adduction/abduction axes in the target leg increased simultaneously 
between ROT and MAX (Figure 3b). The rear hip joint torque increased from the time of the 
minimum pelvis angular velocity (MIN). In contrast to the target leg, sequencing pattern was 
observed in the rear hip joint torques, in other words, the hip joint torque about its 
adduction/abduction and extension/flexion axes reached its peak in order (Figure 3a). In the 
phase between ROT to MAX, the hip extension and abduction torques were generated in the 
rear leg while the hip flexion and adduction torques were generated in the target leg (no 
Figure), indicating that these torques affects positively to the pelvis axis rotation. In the phase 
from ROT to MAX when the torso twist motion was observed, the large negative torque was 
affected from the lumbar joints to the pelvis about its longitudinal axis (Figure 4). 

Figure 2: Dynamic components of the pelvis angular acceleration about its longitudinal axis. 
The thick and thin lines exhibit the means and standard deviations of the dynamic 
components between the participants, respectively. The inertia forces on the end points 
exhibit the forces due to the accelerations of the lumbar joint and COPs. The illustrations of 
the time events of the motion are defined in the right side.

Start of the backswing (BS)

Minimum pelvis angular velocity (MIN)

Beginning of the pelvis axis rotation (ROT)

Maximum pelvis axis angular velocity (MAX)

Impact (IMP)
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Figure 4: Lumbar joint torque 
component of the pelvis 
angular acceleration about its 
longitudinal axis.

Figure 3: Lower limbs joint torque components of the pelvis angular acceleration about its 
longitudinal axis. The thick and thin lines exhibit the means and standard deviations of each 
torque between the participants, respectively.

DISCUSSION: The present results indicate that both hip 
joint torques are the primary positive components of the 
pelvis axis rotation especially between ROT and MAX. 
On the other hand, the lumbar joint torque affects 
negatively to reduce the pelvis axis rotation after ROT
through the torso twist motion. The difference of the 
patterns in the hip joint torque components between the 
rear and target legs indicate that the role of the hip joint 
torques for the pelvis axis rotation differs between the 
both legs. In the target leg, the hip joint flexion and 
adduction torques increased simultaneously accelerating 
the pelvis axis rotation between ROT and MAX phase.
Golfers increase the angular impulse of the body and club
system and shot distance by increasing the target leg 
angular impulse and the target leg peak resultant 
horizontal reaction force (Peterson et al., 2016; McNitt-
Gray et al., 2013). Therefore, the hip flexion and adduction torques in the target leg rather 
than the rear leg may relate to the control of the pelvis axis angular speed. In the rear leg, 
the hip joint torques increased as early as MIN, remained to be positive even after MAX 
when the pelvis angular velocity began to decrease (Figure 3a). Not only increasing the 
pelvis axis angular velocity but also inhibiting the rapid reduction of the pelvis axis angular 
velocity after MAX would be important. The lumbar joint torque negatively affected to the 
pelvis axis rotation from ROT to the impact (Figure 4). Resisting the negative torque 
component is required for maintaining or increasing the thorax axis angular velocity
(Otherwise, the pelvis axis rotation would decelerate rapidly, which results in the reduction of 
the thorax axis angular velocity). Therefore, the hip extension torque in the rear leg after 
MAX might have an important role for cancelling the negative torque component of the 

L li b j i t t t f th l i l l ti b t
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lumbar joint. Based on the above, following could be suggested; (1) The training of the hip 
flexion and adduction torque in the target leg especially between ROT and MAX phase may
be required to golfers who cannot increase the pelvis axis angular velocity sufficiently, (2) 
golfers, whose pelvis axis rotation decelerated excessively before impact, should learn the 
skill to keep the rear hip extension torque until the impact. 

CONCLUSION: This study identified the dynamic components of the pelvis axis rotation 
during the golf swing. The torque component was the largest among the dynamic 
components of the pelvis axis rotation. The both hip joint torques most affect the pelvis axis 
rotation, but the role of the torques differs between the rear and target legs. The practical 
applications were suggested from the perspectives of the regulations of the joint torque 
patterns and activation timing.
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