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Abstract 
 The atypical antipsychotic drug clozapine remains one of most effective 
treatments for schizophrenia, given a lack of extrapyramidal side effects, 
improvements in negative symptoms, cognitive impairment, and in symptoms in 
treatment-resistant schizophrenia. The adverse effects of clozapine, including 
agranulocytosis, make finding a safe clozapine-like a drug a goal for drug 
developers. The drug discrimination paradigm is a model of interoceptive stimulus 
that has been used in an effort to screen experimental drugs for clozapine-like 
atypical antipsychotic effects. The present study was conducted to elucidate the 
receptor-mediated stimulus properties that form this clozapine discriminative cue 
by testing selective receptor ligands in rats trained to discriminate a 1.25 mg/kg 
dose of clozapine from vehicle in a two choice drug discrimination task. Full 
substitution occurred with the 5-HT2A inverse agonist M100907 and the two 
preferential D4/ 5-HT2/ 1 receptor antagonists Lu 37-114 ((S)-1-(3-(2-(4-(1H-
indol-5-yl)piperazin-1-yl)ethyl)indolin-1-yl)ethan-1-one) and Lu 37-254 (1-(3-(4-
(1H-indol-5-yl)piperazin-1-yl)propyl)-3,4-dihydroquinolin-2(1H)-one). Partial 
substitution occurred with the D4 receptor antagonist Lu 38-012 and the 1 
adrenoceptor antagonist prazosin. Drugs selective for 5-HT2C, 5-HT6 muscarinic, 
histamine H1, and benzodiazepine receptors did not substitute for clozapine. The 
present findings suggest that 5-HT2A inverse agonism and D4 receptor antagonism 
mediate the discriminative stimulus properties of 1.25 mg/kg clozapine in rats, and 
further confirm that clozapine produces a complex compound discriminative 
stimulus.  
 
Keywords: drug discrimination; antipsychotic; serotonin; dopamine; D4 receptor; 
5-HT2 receptor 
  



1. Introduction 

Clozapine (CLZ) is the prototype for atypical antipsychotic drugs (APDs) 

(also referred to as second generation APDs) based upon a  negligible risk for 

extrapyramidal side effects [Matz et al. 1974], a lack of hyperprolactinemia [Meltzer 

and Fang 1976; Meltzer et al. 1989a], an efficacy for negative symptoms [Molina et 

al. 2005], improvements in cognitive functioning [Meltzer and McGurk 1999; Potkin 

et al. 2001], an ability to treat suicidality in schizophrenic patients [Meltzer 1999], 

and an improvement in positive symptoms in treatment-resistant schizophrenia 

[Kane et al. 1988]. Unfortunately, CLZ produces agranulocytosis in approximately 

1% of patients [De Fazio et al. 2015; Idanpaan-Heikkila et al. 1977], and while these 

effects are considered uncommon [De Fazio et al. 2015], the severity of this 

condition has limited CLZ to an APD of last resort. Yet, due to the therapeutic 

efficacy and lack of extrapyramidal side effects by CLZ, drug development efforts 

continue with the goal of developing a safe CLZ-like atypical APD. 

 One method used to understand the behavioral stimulus properties of drugs 

is the drug discriminative paradigm. Drug discrimination allows researchers to 

identify the receptor-mediated stimulus properties of psychoactive drugs. The 

paradigm informs researchers about behaviorally relevant receptor actions and can 

be used as a screening tool for identifying compounds with similar neuro-behavioral 

pharmacological actions. The effects of a drug that subjects have been trained to 

discriminate from noticeably different effects, normally the drug’s physiologically 

inert vehicle, serves as a discriminative stimulus, or cue, that can be evaluated by 

tests to determine if substitution for the cue occurs with other compounds.  



The discriminative stimulus properties of CLZ have been established using 

this paradigm, with substitution for CLZ occurring with many other atypical APDs 

[Porter and Prus 2009]. Traditionally, drug discrimination studies with CLZ have 

used a training dose of 5.0 mg/kg. This dose produces in vivo D2 receptor occupancy 

equivalent to that found by clinically-effective doses in humans, suggesting that this 

dose has clinical relevance [Kapur et al. 2003]. In rats using a 5.0 mg/kg training 

dose of CLZ, full substitution (i.e., ≥ 80% CLZ-appropriate responding) has occurred 

with the atypical APDs olanzapine [Millan et al. 1999; Moore et al. 1992; Philibin et 

al. 2005; Prus et al. 2005a], quetiapine [Millan et al. 1999; Prus et al. 2005b] and 

melperone [Prus et al. 2004]. Typical APDs (e.g., haloperidol, chlorpromazine; also 

known as first generation APDs) do not substitute for a 5.0 mg/kg CLZ training dose 

[Prus et al. 2004; Prus et al. 2005b]. Full generalization does not occur from a 5.0 

mg/kg CLZ training dose to all atypical APDs, however, including sertindole [Prus et 

al. 2005b], risperidone [Prus et al. 2005b], ziprasidone [Millan et al. 1999; although 

see Prus et al. 2005b], and zotepine [Goudie et al. 2004]. Thus, less than half of 

atypical APDs tested in rats have produced full substitution for the traditional 5.0 

mg/kg CLZ training dose in rats.  

As is well known in the drug discrimination literature, the training dose of 

the training drug is an important variable and sensitivity to the discriminative 

stimulus properties of the training drug is usually increased as the dose of the 

training drug is reduced, which is indicated by leftward shifts in the generalization 

curve and a lower ED50 value [Stolerman et al. 2011]. Consistent with these general 

findings, studies using lower training doses of CLZ in rats have found that the 



discriminative cue generalizes to more atypical antipsychotic drugs than higher 

training doses. Porter et al. [2000] found full substitution for a 1.25 mg/kg training 

dose of CLZ with the atypical APDs risperidone and sertindole. Full substitution also 

occurred to olanzapine, although partial substitution (i.e., ≥ 60% CLZ-appropriate 

responding) occurred with quetiapine. In other low dose CLZ studies, full 

substitution also occurred with atypical APDs melperone [Prus et al. 2004] and 

zotepine [Goudie et al. 2004]. To further study differences between these training 

doses in this paradigm, Prus et al. [2005a] trained rats to discriminate a 1.25 mg/kg 

dose versus a 5.0 mg/kg dose versus vehicle in a three choice drug discrimination 

task. In this study too, both quetiapine and sertindole induced full substitution for 

the 1.25 mg/kg CLZ discriminative stimulus, while risperidone partial substitution 

for this dose. 

 The pharmacological mechanisms that differentially mediate 1.25 mg/kg and 

5.0 mg/kg CLZ training doses in rats are poorly understood. Most generalization 

testing with selective receptor ligands have been primarily conducted in 5.0 mg/kg 

CLZ-trained rats. The results from these investigations suggest that the 5.0 mg/kg 

CLZ training dose is mediated primarily by muscarinic receptor antagonism, based 

on full stimulus generalization occurring to muscarinic receptor antagonists [Goudie 

et al. 1998; Kelley and Porter 1997]. Thus, muscarinic receptor antagonism may 

explain the full stimulus generalization that has occurred from the 5.0 mg/kg CLZ 

training dose to atypical APDs with moderate to high affinities for muscarinic 

receptors, such as olanzapine and quetiapine [Schotte et al. 1996], while full 

stimulus generalization has not occurred to atypical APDs with a weak affinity for 



muscarinic receptors, such as melperone and ziprasidone [Bolden et al. 1992; 

Schotte et al. 1996]. 

The present study was conducted to characterize the receptor-mediated 

stimulus properties of a 1.25 mg/kg CLZ discriminative stimulus in rats. Ligands 

selective for dopamine, 5-HT, muscarinic, noradrenergic, and histaminergic 

receptors were tested for stimulus generalization in these animals given that CLZ 

binds with an appreciable affinity for these receptors [Arnt and Skarsfeldt 1998; 

Schotte et al. 1996]. In addition, three putative new antipsychotics were included in 

the study and two of those compounds were multitarget compounds interacting 

with D4/ 5-HT2 /1 receptors that have been speculated to support the clinical 

efficacy of CLZ [Brunello et al. 1995; Meltzer 2007]. 

2. Results 

2.1 Binding affinities 

The binding affinities for Lu 37-254 , Lu 37-114, and Lu 35-138 for selected 

receptors with potential relevance to clozapine’s mechanism of action are listed in 

Table 1 and are expressed as Ki or IC50. In general, these compounds had relatively 

similar binding affinities at the receptors investigated, although there are some 

notable differences. Each compound had low nanomolar affinities at the dopamine 

D4 receptor, and somewhat lower affinities at the dopamine D2 receptor, ranging 

from 75 (Lu-35-138) to 228 nM (Lu 37-254). Lu 37-254 and Lu 37-114 had low 

nanomolar affinity for the 5-HT2 receptor, while Lu 35-138 had lower affinity for 

this target in the range of 260 nM. Lu 35-138 and Lu 37-254 had low affinity for the 

5-HT2C receptor at 520, and 1200 nM respectively, while Lu 37-114’s affinity for this 



target was approximately 90 nM. Each of these three compounds has moderately 

strong affinities at the α1 adrenergic receptor, ranging from 6.3 nM in the case of Lu 

37-114 to 45 nM for Lu 35-138.  Finally, Lu 37-254 and Lu 37-114 have low (1900 

nM) to moderate (75 nM) affinities for the 5-HT transporter, respectively, while Lu 

35-138 has low nanomolar affinity for this target. In summary, the rank order (from 

highest affinity to lowest affinity) for these compounds is as follows: Lu 37-254, D4 > 

5-HT2 > α1 > D2 >> 5-HT2C; Lu 37-114, D4 > 5-HT2 > α1 > 5-HT2C > D2; Lu 35-138, D4 > 

α1 > D2 > 5-HT2 > 5-HT2C. For the 5-HT transporter, Lu-35-138 had the highest 

affinity followed by Lu-37-114, which had a moderate affinity; Lu-37-254 had a low 

affinity for the transporter. 

2.2 Drugs that produced full substitution for clozapine 

2.2.1 Clozapine  

The results of substitution testing with the atypical APD CLZ are shown in 

figure 1 (left panels). CLZ produced fully generalized for itself at the training dose 

(99.0% ± SEM = 0.37; ED50 = 0.20 mg/kg, 95% confidence interval [C.I.] = 0.16 - 0.26 

mg/kg), 2.5 mg/kg (98.3% ± SEM = 0.62) and at a 5.0 mg/kg dose (93.0% ± 2.98).  A 

significant decrease in response rates was observed at the 5.0 mg/kg dose (F(6, 

186)=19.93, P< 0.0001). 

2.2.2 Clozapine time course 

Substitution testing and response rate results for the CLZ training dose (1.25 

mg/kg) across different time points are shown in figure 1 (right panels). Again the 

pretreatment time used for CLZ training sessions was 60 min. The 1.25 mg/kg CLZ 

training dose administered 30 min (81.6% ± SEM = 11.8) and 60 min (99.0% ± SEM 



=  0.3) prior to testing produced full generalization from the CLZ training dose.  

However, the 0 min, 120 min, and 240 min pre-session response rates did not differ 

significantly across the different time points (P > 0.05). 

2.2.3 M100907  

The 5-HT2A receptor inverse agonist M100907 (figure 2, left panels) 

produced full substitution for CLZ at the 1.0 mg/kg dose (85.6% ± SEM = 10.95; ED50 

= 0.04 mg/kg, 95% C.I. = 0.01 - 0.14 mg/kg). Response rates did not differ 

significantly across the doses tested. 

2.2.4 Lu-37-114.   

The D4/5-HT2/1 receptor antagonist Lu-37-114 (figure 2, middle panels) 

also produced full substitution, for the 10.0 mg/kg dose (98.1%) (± SEM = 0.95; ED50 

= 0.24 mg/kg, 95% C.I. = 0.004 – 13.031). A small, but significant decrease in 

response rates was observed (F(7,70)=3.60, P<0.01) at the 5.0 mg/kg dose but not 

at the 10.0 mg/kg dose. 

2.2.5 Lu 37-254 

 The D4/5-HT2/1 receptor antagonist Lu 37-254 (figure 2, right panels) 

produced full substitution at the 2.5 mg/kg dose (81.3% ± SEM = 11.56; ED50 = 0.92 

mg/kg, 95% C.I. = 0.37 – 2.27 mg/kg) and partial substitution at the  1.25 mg/kg 

(61.6% ± SEM = 18.01) and 5.0 mg/kg dose (69.3% ± SEM = 15.15). The 5.0 mg/kg 

dose also produced a significant decrease in response rates (F(5,35)=5.11, P<0.01). 

2.3 Drugs that did not produce full stimulus generalization 

The results of substitution testing with all other compounds are shown in 

Table 2. All compounds were tested up to doses that produced a significant decrease 



in response rates relative to vehicle control (P < 0.05), except for ORG 38457, 

chlordiazepoxide, Lu 38-012, Lu 35-138, SB-271046, and RO 8554. Doses that 

produced significant differences in response rates relative to vehicle also are 

indicated in Table 2. The 1 adrenoceptor antagonist prazosin produced partial 

substitution for CLZ at the 2.0 mg/kg dose (68.8% ± SEM = 17.3), and the D4 

receptor antagonist Lu 38-012 also produced partial substitution at the 5.0 mg/kg 

dose (60.9% ± SEM = 12.9). No other compounds listed in this table produced 

partial substitution for clozapine. 

3. Discussion 

 The present study evaluated a series of selective receptor ligands as well as 

ligands with multiple actions for the purpose of elucidating the discriminative 

stimulus properties of a 1.25 mg/kg CLZ training dose in rats. As noted in the 

introduction, the 1.25 mg/kg training dose screens atypical and from typical APDs 

more effectively. CLZ produced full stimulus generalization to itself up to a 5.0 

mg/kg training dose, and the discriminative stimulus effects of the training dose are 

evident from 30 to 60 min post injection. Full stimulus generalization occurred from 

CLZ to only a limited number of ligands, including th selective 5-HT2A receptor 

inverse agonist M100907 and the D4/5-HT2/1 preferring receptor antagonists Lu 

37-114 and Lu 37-254. Beyond this, partial stimulus generalization occurred to the 

D4 receptor antagonist Lu 38-012 and 1 adrenoceptor antagonist prazosin. 

 As noted earlier, CLZ binds to a multitude of receptors, each of which has at 

one time or another been investigated as a potential mediator of atypical 

antipsychotic actions [Meltzer 2002]. Among these receptor actions, antagonism of 



5-HT2 receptors appears to be an important component that is shared by nearly 

every atypical antipsychotic drug on the market. A receptor binding profile that 

includes preferential antagonism of 5-HT2A receptors over D2 receptor remains the 

most consistent and reliable profile for developing an atypical antipsychotic drug 

[Meltzer and Massey 2011; Meltzer et al. 1989b; Schotte et al. 1996]. Amisulpride 

remains one of the only atypical APDs lacking an affinity for 5-HT2A receptors 

[Abbas et al. 2009]. 

 The present study found full substitution by a 1.0 mg/kg dose of M100907, 

which is supportive of 5-HT2A receptor inverse agonism mediating these stimulus 

effects. The current study did not find, however, partial or full substitution by the 5-

HT2A/2B/2C receptor antagonist ritanserin. In other studies, the M100907 was found 

to produce full substitution for a 1.25 mg/kg CLZ dose in individual rats [Prus et al. 

2004], and full substitution for a M100907 discriminative stimulus occurred with 

CLZ in rats [Dekeyne et al. 2003]. The dose of M100907 that produced full 

substitution for CLZ in the present study was higher than a dose of M100907 (0.01 

mg/kg) found sufficient to completely block the discriminative stimulus effects of 

the 5-HT2A/2C receptor agonist (2,5-dimethoxy-4-iodohenyl)-2-aminopropan (DOI) 

[Schreiber et al. 1994]. These past findings suggest that the receptor mechanisms 

mediating the stimulus effects of M100907 for the doses used in the present study 

may involve more than 5-HT2A receptors, since M100907 exhibits a moderate 

affinity for 5-HT2C receptors and 1 adrenoceptors [Pehek et al. 2006]. Coinciding 

with this, Philibin et al. [2009] reported that both M100907 and 1 adrenoceptor 

antagonist prazosin substituted for a CLZ discriminative cue in male C57BL/6 mice. 



 Full substitution occurred with the D4/5-HT2/1 receptor antagonists Lu 37-

114 and Lu 37-254 in the present study. As noted earlier partial substitution 

occurred with the selective D4 receptor antagonist Lu 38-012 and the 1 

adrenoceptor antagonist prazosin.  Substitution did not occur to the 5-HT2C receptor 

antagonist ORG38457. Taking these findings together, D4 receptor antagonism may 

represent part of the clozapine discriminative cue, which has long been considered a 

compound stimulus [Goudie et al. 1998]. Given that Lu 37-114 and Lu 37-254 also 

bind to 5-HT2 and 1 receptors, the additional antagonism of these receptors may 

have established stimulus properties more similar to those produced by CLZ than 

established by either action alone. No substitution occurred for Lu 35-138, which 

also is an antagonist for D4 receptors and 1 adrenoceptors, but this compound also 

inhibits 5-HT reuptake [Hertel et al. 2007]. Enhanced 5-HT concentrations produced 

by Lu 35-138 may run counter to clozapine’s pharmacological profile by activating, 

rather than blocking, 5-HT2 receptors.  

Clozapine exhibits a high affinity for D4 receptors, as do many other APDs 

including olanzapine, risperidone and haloperidol [Bymaster et al. 1996; Roth et al. 

1995]. As noted previously, the 1.25 mg/kg dose of clozapine fully generalizes to all 

atypical APDs tested so far, with the exception of quetiapine [Porter et al. 2000]. 

Quetiapine lacks an appreciable affinity for D4 receptors, perhaps accounting for 

partial substitution for clozapine in this previous study.  Yet, many typical APDs 

exhibit a high affinity for D4 receptors, but do not include full or partial substitution. 

A potential difference between atypical and typical APDs regarding D4 receptor 

binding is that many atypical APDs exhibit a greater affinity for D4 receptors over D2 



receptors, whereas the vast majority of typical APDs have a greater affinity for D2 

receptors than D4 receptors [Roth et al. 1995]. This might explain a lack of full 

stimulus generalization from a 1.25 mg/kg dose of clozapine to quetiapine, but not 

account for full substitution for risperidone, which engenders a greater affinity for 

D2 receptors than for D4 receptors [Porter et al. 2000]. Neither does a high affinity 

for D4 and 5-HT2A receptors appear to only explain substitution for clozapine by 

atypical, but not typical, APDs [Porter et al. 2000], as many typical APDs also exhibit 

a high to moderate affinity for 5-HT2A receptors (although typical APDs have a 

stronger affinity for D2 receptors compared to 5-HT2A receptors) [Roth et al. 1995]. 

It may instead be the case that antagonism of both D4 and 5-HT2A receptors 

produces clozapine-like discriminative stimulus effects, but that additional 

antagonism of D2 receptors with an affinity greater than 5-HT2A receptors, makes 

these stimulus effects unlike clozapine. Thus, drugs that also have a strong affinity 

for D2 receptors do not produce full stimulus generalization from clozapine. 

Stimulus effects of higher training doses of CLZ in rats are clearly mediated 

by muscarinic receptor antagonism, based on substitution by muscarinic receptor 

antagonists atropine [Nielsen 1988], scopolamine [Goudie et al. 1998; Kelley and 

Porter 1997; Nielsen 1988] and trihexyphenidyl [Kelley and Porter 1997; Prus et al. 

2004]. The present study did not find partial or full substitution by either 

scopolamine or trihexyphenidyl. Prus et al. [2006] also did not find substitution for 

a 1.25 mg/kg training dose of CLZ by scopolamine, while Prus et al. [2004] did find 

full substitution for this training dose by trihexyphenidyl. Overall, a key distinction 



between the discriminative stimulus effects of these two training doses appears to 

be the prominence of muscarinic antagonism with the higher training dose.  

Stimulus properties elicited by muscarinic receptor antagonism for the 

higher training dose of CLZ in rats, in turn, may overshadow the stimulus properties 

elicited by 5-HT2A or D4 receptors found in the 1.25 mg/kg CLZ training dose. In rats 

trained to discriminate a 1.25 mg/kg dose of CLZ versus a 5.0 mg/kg dose of CLZ 

versus vehicle, the primary difference between these stimuli consisted of partial 

substitution for a 5.0 mg/kg dose, but not a 1.25 mg/kg dose, with scopolamine 

[Prus et al. 2006]. Further, in this same study, partial substitution occurred for the 

1.25 mg/kg CLZ dose, but not the 5.0 mg/kg dose, with ritanserin. Comparatively, 5-

HT2A receptor inverse agonism may elicit weaker stimulus effects than muscarinic 

receptor antagonism. For example, Dekeyne et al. [2002] reported that training 

M100907 (0.16 mg/kg) as a discriminative stimulus required approximately 70 

sessions, whereas Kelley and Porter [1997] reported that training scopolamine 

(0.125 mg/kg) as a discriminative stimulus required approximately 50 sessions. 

 While full stimulus generalization did not occur from CLZ to the 1 

adrenoceptor antagonist prazosin, the level of CLZ-appropriate responding was over 

60% (i.e., partial substitution), beyond “chance level choice” in a two lever task. 

Goudie et al [1998] also reported a maximum of 67% substitution for a 5.0 mg/kg 

CLZ training dose with prazosin in rats. 1 adrenoceptor antagonism is another 

receptor mechanism shared by many, but not all, atypical APDs as well as typical 

APDs [Schotte et al. 1996]. In a study that trained rats to discriminate the typical 

APD chlorpromazine from 5.0 mg/kg CLZ from vehicle in a three-choice drug 



discrimination procedure in rats, prazosin produced full substitution for 

chlorpromazine, but not CLZ [Porter et al. 2005]. Given these findings, it does not 

appear that 1 adrenoceptor antagonism is unique to the stimulus properties of 

either dose of CLZ in rats, nor does it appear to generate stimulus effects unique to 

atypical APDs. 

 Beyond the data discussed so far, the remaining receptor ligands explored do 

not appear relevant to the stimulus properties of a 1.25 mg/kg CLZ training dose in 

rats. Based on the present findings, receptors lacking a role in this cue include D2 

receptors, H1 histamine receptors, benzodiazepine sites on GABAA receptors (i.e., 

chlordiazepoxide), and 5-HT6 receptors. It is worth noting that not all compounds 

failing to produce at least partial substitution were tested up to rate-suppressant 

doses, although a wide range of doses was tested for each compound. Differences in 

the mediation of the discriminative stimulus properties of CLZ do occur between 

species, however. In male C57/BL mice, full substitution for CLZ with ritanserin 

[Philibin et al. 2005] and M100907 [Philibin et al. 2009] has been reported, and the 

discriminative stimulus effects of CLZ have been blocked by pretreatment with the 

5-HT agonist quipazine [Philibin et al. 2005]. These data suggest that 5-HT2A 

receptor antagonism mediates the discriminative stimulus properties of CLZ in 

mice. In pigeons, 5-HT2 receptors also exhibit CLZ-like stimulus effects [Hoenicke et 

al. 1992]. Despite the apparent greater prominence of 5-HT mediated stimulus 

effects for CLZ in mice or pigeons, which would be more representative of what is 

thought to be highly important for atypicality, the CLZ discriminative stimulus in 



mice does not adequately screen atypical from typical APDs [Philibin et al. 2009] 

and most atypical APDs have yet to be tested in pigeons [Hoenicke et al. 1992]. 

 The present study explored the discriminative stimulus properties of the 

prototypical atypical APD CLZ in rats, using a 1.25 mg/kg training dose of clozapine 

with has effectively screened typical from atypical APDs in past studies. Thus, this 

training dose in the drug discrimination paradigm appears to have utility as a 

screening model in APD development. There appears to be a basis for 5-HT2A 

receptors, which would fit with currently established models for atypicality. 

Moreover, D4 receptor antagonism also appears to mediate the discriminative 

stimulus properties of CLZ, especially when antagonism of both 5-HT2A and D4 

receptors occur. Such models would be important as CLZ, despite being discovered 

well over half a century ago, remains one of the most, if not the most, effective 

atypical APDs available for clinical use. 

4. Experimental Procedure 

4.1 Subjects 

Experiments were conducted in 56 male Sprague Dawley rats (Harlan, 

Indianapolis, IN) with new cohorts of rats added over time. All rats were 

individually housed under constant temperature and humidity conditions and a 12 

hr light/dark cycle. Rats all weighed over 300 g prior to any experimental 

procedures taking place. The rats were food restricted to maintain 85% of free-

feeding weights, but free-access to water was provided in the home cages.  All 

procedures were approved by the Institutional Animal Care and Use Committee at 

Virginia Commonwealth University and followed the Guide for the Care and Use of 



Laboratory Animals [National Research Council Committee for the Update of the 

Guide for the Care and Use of Laboratory Animals et al. 2011]. 

4.2 Apparatus 

All drug discrimination sessions were conducted in four standard computer-

operated two lever (retractable) rat operant chambers equipped with food pellet 

delivery and housed in sound-attenuating cubicles with fans installed for ventilation 

and masking noise (Med Associates, St. Albans, VT). Experimental events were 

controlled by and data were collected using Med-PC version 3.0 (Med-Associates). A 

light near the top of each chamber provided illumination during all experimental 

sessions. Food reinforcers consisted of 45-mg powderless food pellets (Noyes 

Precision Pellets, Formula P, Research Diets, Inc., New Brunswick, NJ). 

4.3 Drugs 

 The following drugs were administered:  the atypical APD CLZ (gift from 

Novartis Pharmaceutical Corporation, East Hanover, NJ), the typical APD 

haloperidol (Sigma Chemical Company, St. Louis, MO), the psychostimulant d-

amphetamine (Sigma-Aldrich, St. Louis, MO), the anxiolytic chlordiazepoxide 

(Sigma-Aldrich), the dopamine D4 receptor antagonist Lu 38-012 [Hertel et al. 2007] 

(Lundbeck, Copenhagen-Valby, Denmark), the muscarinic receptor antagonist 

scopolamine (Sigma-Aldrich), the M1 receptor preferring antagonist trihexyphenidyl 

(Sigma-Aldrich), the serotonin (5-HT)2A/2B/2C receptor antagonist ritanserin 

(Research Biochemical International, Natick, MA), the 5-HT2A receptor inverse 

agonist M100907 (Sigma-Aldrich), the 5-HT2C receptor antagonist ORG 38457 

(Tocris), the 5-HT6 receptor antagonist RO-8554 (gift from Roche Pharmaceuticals, 



Palo Alto, CA), the 5-HT6 receptor antagonist SB 271046 (Tocris), the 5-HT7 receptor 

partial inverse agonist SB 258741 (Tocris), the 1 adrenoceptor antagonist prazosin 

(Research Biochemical International), the histamine H1 receptor antagonist 

pyrilamine (Research Biochemical International), the D4 receptor antagonist and 5-

HT reuptake inhibitor Lu 35-138 [Bang-Andersen et al. 2007; Hertel et al. 2007] 

(Lundbeck), the preferential D4/5-HT2/1 receptor antagonists 1-(3-(4-(1H-indol-5-

yl)piperazin-1-yl)propyl)-3,4-dihydroquinolin-2(1H)-one [Bang-Andersen et al. 

2002] (Lu 37-254) (Lundbeck) and (S)-1-(3-(2-(4-(1H-indol-5-yl)piperazin-1-

yl)ethyl)indolin-1-yl)ethan-1-one (Lu 37-114 [Bang-Andersen et al. 2007] 

(Lundbeck). All drugs were dissolved in CLZ vehicle (de-ionized H2O with 1 to 2 

drops of lactic acid), except for the Lundbeck compounds, which were dissolved in a 

10% 2-hydroxypropyl-β-cyclodextrin solution.  All drugs were administered 

intraperitoneally at a volume 1 ml/kg body weight.  Doses of scopolamine (HCl), SB 

271046 (HCl), prazosin (HCl), pyrilamine (maleate), Lu 37-114 (HCl), Lu 35-138 

(HCl) and Lu 37-254 (HCl) doses were in the salt form, and doses for all other 

compounds refer to the base form. CLZ and RO-8554 were administered one hour 

prior to session and all other drugs were administered 30 minutes prior to session. 

Injection routes, pre-injection times, and doses for these drugs were based on 

previous studies in this laboratory and at Lundbeck. 

4.4 Binding and functional assays 

 Binding assays at the dopamine D2 and D4.2 receptors, the 5-HT2 and 5-HT2C 

receptors, and α1 adrenergic receptors for Lu 37-254 and Lu 37-114 were 



performed as described previously [Balle et al. 2003]. Additionally, the 5-HT uptake 

functional assay was performed as described in Hertel et al. [2007]. 

4.5 Behavioral Procedures 

 Drug discrimination training and generalization testing procedures were 

identical to those reported previously [Porter et al. 2000]. Briefly, a fixed ratio 30 

schedule was used for pellet delivery. Rats were injected with either vehicle or a 

1.25 mg/kg dose of CLZ 60 minutes prior to a 15 minute training session.  CLZ and 

vehicle training sessions were administered according to a double-alternation 

sequence (i.e., DDVVDD, etc).  Every incorrect response reset the fixed ratio 30 

counter.  Drug discrimination training criteria consisted 5 out of 6 consecutive 

sessions with the following: 1) first fixed ratio 30 emitted on the condition-

appropriate lever, 2) at least 80% or greater condition-appropriate responding, and 

3) response rates of at least 30 responses per minute. Rats were required to meet 

these criteria prior to substitution testing. Before a substitution test, a rat had to 

have both a CLZ and a vehicle training session since the previous test and have the 

session immediately prior to a test meet the three training criteria listed above. A 

test session was identical to a training sessions except that a fixed ratio 30 

completed on either lever produced a reinforcer. Doses for each drug tested were 

administered in ascending order, and only one dose was administered per day. 

Three cohorts of rats were used for testing the compounds in this study. All rats 

were tested with CLZ first (although only 32 rats were rested across a range of 

doses to provide a dose response curve), but to minimize the influence of drug 

history, different subsets of animals from each new group of rats were tested with 



different drugs and the sequence of drug testing varied randomly for each animal. 

Further, some drugs were tested in rats from multiple groups. Rats from first cohort 

were included in the CLZ time course and in tests for ritanserin, M100907, ORG 

38457, scopolamine, trihexyphenidyl, prazosin, pyrilamine, amphetamine, RO-8554, 

and Lu 35-138. Rats from the second cohort were included in tests for Lu 37-114, Lu 

38-012, Lu 37-254, SB 258741, chlordiazepoxide, and SB 271046. Rats from the 

third cohort of rats were included in tests for haloperidol, ziprasidone, ritanserin, 

scopolamine, pyrilamine, and d-amphetamine. The number of subjects tested with 

each drug are indicated in the figures and in table 2. 

4.6 Data analysis  

Percent CLZ-appropriate responding and responses per minute were 

reported as means (± the standard error of the mean [SEM]) in dose-effect curves. 

Full substitution for the CLZ discriminative cue was defined as 80% or greater CLZ-

appropriate responding, and partial substitution was defined as 60% or greater and 

less than 80% CLZ-appropriate responding. For drugs that produced full 

substitution for CLZ, ED50 values were obtained for the dose-effect curves (with 

95% confidence levels) using a least squares linear regression analysis [Goldstein 

1964]. If an animal’s response rates fell below 5 responses per minute, the percent 

lever responding data for that particular dose were not included in the dose-effect 

curve or the ED50 calculations. A one factor repeated measures analysis of variance 

(ANOVA) was conducted to assess differences in response rates for a drug across 

doses, and for statistically significant F values, Newman-Keuls post hoc multiple 



comparison tests were conducted to identify rate-suppressant doses relative to 

vehicle control. 
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Figure captions 

 

Figure 1. Left: Substitution testing with the atypical APD CLZ. The top panel shows 

percent CLZ-lever responding and the bottom panel shows response per minute for 

each dose tested in male Sprague Dawley rats (N = 32) trained to discriminate a 1.25 

mg/kg dose of CLZ (60 min prior to session) from vehicle in a two-choice drug 

discrimination task. Right: The training dose of CLZ was tested at different 

pretreatment times prior to a test session and assessed for percent CLZ-lever 

responding (top panel) and responses per minute (bottom panel) (N=8). The figures 

include a test with the CLZ training dose (noted as CLZ on the left of the abscissa) 

and vehicle (noted as VEH on the abscissa) Data are displayed as means (+/- SEM).  

Rats not meeting the response rate minimum were excluded from calculation for 

percent drug lever responding but were included in the response rate calculation. N 

refers to the number of rats tested and included in the analysis unless noted 

otherwise in parentheses. **P < 0.01 compared to VEH. 

 

 

Figure 2. Substitution testing with the 5-HT2A receptor inverse agonist M100907 

(left), the D4/5-HT2/ 1 receptor antagonist Lu 37-114 (middle), and  the D4/5-

HT2/1 receptor antagonist  Lu 37-254. See Fig. 1 for other details. **P < 0.01 

compared to VEH. 
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Table 1. Pharmacological profile of Lu 37-254, Lu 37-114, and Lu 35-138 at selected 
dopaminergic, serotonergic, and adrenergic receptor targets. Affinity data are presented 
as Ki, except where noted otherwise. 

1
 Data presented in this cell is an IC50 value. 

2
 

Data originally published in Hertel et al. [2007]. 
3 
Data originally published in Bang-

Andersen et al. [2002]. 

Compound 
Target (Ki; nM) IC50 (nM) 

D2 D4.2 5-HT2 5-HT2C α1 5-HT uptake 

Lu 37-254 2281 2.61 131 12001 291 1900 

Lu 37-114 120 2.5 4.0 91 6.3 75 

Lu 35-138 753 5.02 2602 5202 452 3.22 

	
 



	
Table	2.	Drugs	that	did	not	produce	full	substitution	for	CLZ	

Drug (type) Dose Number of 
Subjects tested 

(no. responding) 

Percent clozapine 
lever responding 

(SEM) 

Responses per 
minute (SEM) 

Dopamine Compounds 

Haloperidol 

(typical 
antipsychotic 

drug and D2-
receptor 

preferring 
antagonist) 

Vehicle 

0.05 
0.1 

0.2 

14 

14 
14 

14  
 

 

 
 

(12) 

0.7 

4.1 
16.6 

24.4 

(0.2) 

(1.1) 
(5.0) 

(5.8) 

93.6 

86.7 
61.5 

7.9 

(8.4) 

(10.3) 
(7.4)** 

(1.2)** 

Lu 38-012 (D4 

antagonist) 

Vehicle 

0.3125 
0.625 

1.25 
2.5 

5.0 
10.0 

9 

12 
12 

12 
12 

12 
11 

 9.1 

20.6 
23.9 

20.1 
24.8 

60.9 
23.4 

(8.5) 

(11.0) 
(12.5) 

(10.9) 
(12.5) 

(12.9) 
(12.0) 

77.6 

89.9 
86.5 

77.5 
74.2 

75.4 
77.3 

(11.4) 

(7.4) 
(11.7) 

(10.0) 
(7.9) 

(8.7) 
(10.6) 

Lu 35-138 (D4 

/a1 antagonist 
and 5-HT 

reuptake 
inhibitor) 

Vehicle 

5.0 
10.0 

20.0 

5 

5 
5 

4 

 0.5 

5.0 
6.2 

5.3 

(0.2) 

(3.9) 
(4.5) 

(4.4) 

65.4 

59.1 
53.9 

49.9 

(9.3) 

(14.6) 
(6.0) 

(12.7) 

d-Amphetamine 

(D2 agonist) 

Vehicle 

0.25 
0.5 

1.0 
2.0 

17 

17 
16 

14 
9 

 

 
(14) 

(9) 
(1) 

0.7 

3.0 
14.5 

11.1 
1.0 

 

(0.4) 

(2.7) 
(8.7) 

(8.1) 
 

71.6 

68.1 
61.6 

38.0 
1.9 

 

(6.6) 

(7.1) 
(10.1) 

(11.6) 
(1.1)** 

 

Serotonin compounds 

Ritanserin (5-

HT2A/2B/2C 
antagonist) 

Vehicle 

0.5 
1.0 

2.0 
4.0 

8.0 
16.0 

20 

7 
20 

20 
20 

6 
3 

 0.6 

27.6 
8.8 

29.8 
44.1 

49.9 
0.0 

(0.7) 

(12.1) 
(12.6) 

(11.1) 
(16.4) 

(17.2) 
(0.0) 

97.0 

62.1 
88.8 

93.2 
88.7 

66.5 
18.2 

(10.7) 

(10.8) 
(10.5) 

(10.1) 
(11.4) 

(14.4)* 
(8.9)** 

ORG 38457 (5-

HT2C antagonist) 

Vehicle 

1.25 
2.5 

5.0 
10.0 

7 

7 
7 

6 
6 

 0.0 

0.5 
28.1 

0.1 
16.4 

(0.0) 

(0.5) 
(18.1) 

(0.0) 
(15.1) 

91.9 

85.4 
78.8 

93.9 
80.2 

(12.1) 

(10.9) 
(15.9) 

(9.5) 
(14.5) 

SB-271046 (5-

HT6 antagonist) 

Vehicle 

1.25 
2.5 

5 
10 

12 

12 
12 

12 
11 

 8.5 

18.1 
30.3 

9.1 
9.6 

(7.1) 

(10.9) 
(12.5) 

(6.5) 
(8.7) 

85.6 

90.2 
82.2 

74.8 
67.5 

(11.8) 

(9.2) 
(10.5) 

(10.7) 
(9.7) 

RO 8554 (5-HT6 

antagonist) 

Vehicle 

1.0 
3.0 

10.0 

7 

7 
7 

7 

 0.3 

28.8 
1.6 

6.3 

(0.1) 

(18.3) 
(0.7) 

(6.1) 

65.7 

67.9 
60.4 

53.2 

(11.4) 

(7.3) 
(9.6) 

(9.0) 
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