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The aim of this study was to investigate the relationships of anthropometry and body 
composition with running economy within a large heterogeneous cohort of runners.  
Locomotory energy cost was determined in ninety-four healthy male and female 
endurance runners across a range of performance standards.  Various anthropometric 
and body composition measurements were taken manually and via DXA scans.  The 
relationships between anthropometry and running economy were assessed using 
independent Pearson’s correlation and stepwise multiple linear regression. Three 
parameters, normalised neck and calf perimeters and normalised whole body bone mass 
explained 30% of the variance in locomotory energy cost.  Low locomotory energy cost 
was related solely to parameters indicating relative slenderness of the body.
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INTRODUCTION: Running economy is defined as the efficiency with which metabolic energy 
turnover can be translated into forward movement of the centre of mass (di Prampero,
Atchou, & Brückner, 1986) and has been identified as a key determinant of endurance 
running performance (Costill & Winrow, 1970).  Many factors are thought to influence running 
economy, broadly, these factors can be categorised as being physiological, anthropometric, 
environmental, or biomechanical (Anderson, 1996).  There is a great deal of overlap between 
these factors, with anthropometry (i.e. joint moment arms) greatly influencing running 
biomechanics and thus running economy (Scholz, Bobbert, & van Soest, 2008). However, the 
influence of anthropometry and body composition on running economy has received little 
attention when compared to biomechanics and physiology, and what attention it has received 
has typically been in groups of homogeneous male East African distance runners (Scholz et 
al., 2008; Mooses et al., 2014).  Therefore, the aim of this study was to investigate the 
relationships of anthropometry and body composition with running economy within a large 
heterogeneous cohort of male and female runners. 

METHODS: Ninety-four healthy male and female endurance runners with a wide range of
performance standards were recruited (Table 1).  Participants visited the lab twice: during the 
first session width, depth, length and perimeter measurements were taken, enabling
segmental moments of inertia about a transverse axis through their mass centre to be 
calculated (Yeadon, 1990), photographs of the foot were taken allowing Achilles tendon 
moment arm to be estimated using the method of Scholz et al., (2008), and participants 
subsequently performed a treadmill familiarisation run; during the second session dual-
energy x-ray absorptiometry (DXA) scans were taken allowing total and regional body 
composition and limb and segment lengths to be determined, and an incremental treadmill 
running test was performed.  The running test started at 7 km.h-1 for females, and 8 km.h-1 for 
males, and consisted of 4 min stages of running at each speed, interspersed by 30-s rest 
periods during which a blood sample was obtained for analysis of blood lactate. Increments
(+1 km.h-1) were continued until blood lactate (BLa) had risen >2 mmol.L-1 from the previous 
stage, at which point the participant started a maximal running assessment and the treadmill 
speed was increased by 1 km.h-1 every 2 min until volitional exhaustion.  Breath-by-breath 
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pulmonary gas exchange data were measured continuously throughout the running 
assessment and the 60- 2 2 data collected during the final minute of 
each submaximal stage were used to calculate the energy cost of running. Absolute energy 
expenditure was calculated as the sum of the energy derived from fat and carbohydrate at 
rest and during each running velocity below lactate turn point and with a respiratory 
exchange ratio value of <1.00, to ensure an insignificant anaerobic contribution to energy 
expenditure. Energy expenditure at rest during quiet standing was subtracted from running 
measurements to calculate the locomotory energy cost (LEc). Subsequently LEc was 
expressed in kcal.kg-1.km-1. Since there was no difference in LEc between males and 
females (0.79 ± 0.10 kcal.kg-1.km-1 vs 0.79 ± 0.09 kcal.kg-1.km-1) they were considered 
together in all analyses. To reduce measurement noise LEc was averaged over the three
highest speeds at which all subjects remained below their lactate turn point (10-12 km.h-1).
As well as being considered in absolute terms, lengths were normalised to standing height, 
masses to body mass, and moments of inertia to body mass*height2. Overall, 79 parameters 
were included in the analysis. Pearson’s correlation was used to identify relationships 
between individual variables and LEc, the false discovery rate was controlled at 5% 
(Benjamini & Hochberg, 1995) and significance was set at 0.05. Subsequently, stepwise
multiple linear regression was used to build a predictive equation of LEc using those 
variables which were found to be significantly related to LEc individually.

Table 1
Descriptive characteristics of the participants

Males
(n=49)

Females
(n=45)

Anthropometric
Age (y)
Height (m)
Body mass (kg)

29 ± 7 (19 – 40) 28 ± 7 (18 – 40)
1.79 ± 0.06 (1.68 – 1.93) 1.66 ± 0.07 (1.46 – 1.80)
69.1 ± 6.3 (58.0 – 83.4) 55.8 ± 6.3 (43.6 – 74.6)

Performance
% 10 km road world record time 142 ± 24 (110 – 202) 145 ± 23 (110 – 187)
Training
Frequency (session.wk-1)
Volume (km.wk-1)

5 ± 3 (2 – 12) 4 ± 2 (2 – 10)
69 ± 40 (8 – 177) 50 ± 27 (8 – 105)

RESULTS: 17 variables were significantly related to LEc (Table 2). Stepwise multiple linear 
regression resulted in three normalised parameters - neck and calf perimeters and whole 
body bone mass - predicting LEc with an adjusted r2 of 0.304 (Figure 1). 

Figure 1: Observed vs predicted LEc from stepwise multiple linear regression.
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Table 2
Results of Pearson’s correlations between anthropometric parameters and LEc

Parameter r p (adjusted)
BMI (kg.m-2) 0.332 0.009
Normalised perimeters
Neck (-) 0.396 0.002
Mid-upper arm (-) 0.386 0.002
Maximum forearm (-) 0.329 0.009
Waist (-) 0.327 0.009
Hip (-) 0.297 0.021
Mid-thigh (-) 0.347 0.008
Maximum calf (-) 0.392 0.002
Minimum calf (-) 0.388 0.002
Normalised moments of inertia
Shank (-) 0.342 0.008
Normalised masses
Whole body bone (-) -0.345 0.009
Arm bone (-) -0.285 0.036
Thigh bone (-) -0.367 0.007
Shank bone (-) -0.279 0.040
Foot bone (-) -0.334 0.010
Foot lean (-) -0.288 0.035
Foot total (-) -0.290 0.035

DISCUSSION: All measurements that were significantly related to LEc individually were of 
relative slenderness. Neither body height, body mass, nor limb lengths were correlated with
LEc, nor was any other non-normalised length, mass, or moment of inertia, indicating that 
absolute body size has no relationship with running economy. Locomotory energy cost is a 
normalised measure, expressed as a proportion of body mass (kcal.kg-1.km-1), therefore it 
was no surprise that measures normalised to body size were related to LEc.  Body mass 
index was positively related to LEc, indicating athletes who are proportionally slim in relation 
to their height are more economical. Various normalised perimeters showed the same 
relationship; having relatively slender body segments (both trunk and limbs) was correlated
with better running economy. A low moment of inertia of the shank was also related to better 
running economy, which is perhaps unsurprising given that this parameter was calculated 
partly from segment perimeters.  Relative bone masses were also negatively related to LEc, 
indicating that the greater the proportion of the body that is made up of bone, the lower the 
LEc. Since skeleton mass is low and unlikely to vary substantially due to training status, a
high proportion of bone mass is likely to indicate low non-bone mass, rather than 
exceptionally high bone mass.  Aside from those of the foot, whole body and segmental
overall, fat, and lean masses were not related to LEc, indicating that it does not seem to 
matter what the composition of the body is, so long as non-bone mass is low and it is slim 
relative to its length. Since it is well known that the addition of mass to the feet increases the
energy cost of running (Frederick, Daniels, & Hayes, 1984) the finding that normalised foot 
masses were negatively related to LEc may indicate that they are simply acting as a proxy 
for general slenderness; since the non-bone mass of the foot is less variable than many 
other body segments, a proportionally high foot mass may simply indicate low non-bone 
mass elsewhere in the body.  Achilles tendon moment arm was not related to LEc in this 
cohort, contrary to previous findings in homogeneous groups of male East African distance 
runners (Scholz et al., 2008; Mooses et al., 2014). This finding may to be due to the 
heterogeneous nature of our cohort, and that the proposed mechanism by which a shorter 
Achilles tendon moment arm benefits economy is due to higher energy storage and return; 
this is likely to apply more to forefoot than rearfoot strikers (of which there were a number in 
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our cohort), since the Achilles tendon of rearfoot strikers is likely to become slack upon 
impact, inhibiting energy storage.
The stepwise multiple linear regression procedure chose three parameters which explained 
30% of the variance in running economy: two normalised perimeters - neck and calf - and 
normalised whole body bone mass. It is intuitive that a low moment of inertia of the shank 
(represented by a low normalised calf perimeter) relates to running economy, since it is more 
energetically costly to swing a limb with a higher moment of inertia, and indeed this has been 
shown previously to relate to better running economy (Scholz et al., 2008; Mooses et al., 
2014).  That calf perimeter and not shank moment of inertia was chosen may be because 
calf perimeter captures both the effects of the moment of inertia of the segment about its 
mass centre, and the relative segment mass which determines the more energetically costly 
aspect of rotating the limb centre of mass about the knee and hip joints.  It is not immediately 
obvious why neck perimeter would relate to LEc, other than as an indicator of general 
slenderness of other body segments for which low moments of inertia could reduce the 
energy cost of running. Equally a high proportion of whole body bone mass is also likely to
be an indicator of slender body segments and hence relatively low moments of inertia.
Since it has been shown that aspects of running technique also relate to running economy 
(Williams & Cavanagh, 1987) it is possible that some anthropometric and body composition 
parameters co-vary with kinematics, and therefore it is difficult to attribute direct causality to 
the parameters in this study, however there is a plausible mechanistic rationale by which 
body segments with relatively low inertia could reduce the relative energy cost of locomotion.

CONCLUSION: Relative slenderness of the body and its constituent segments was
associated with lower energy cost of locomotion across a large heterogeneous cohort of 
male and female distance runners.  Contrary to previous studies in more homogeneous 
cohorts, Achilles tendon moment arm did not relate to energy cost of locomotion.  Future 
studies could investigate whether the parameters identified in this study can also be used to 
predict performance outcomes.
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