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ABSTRACT 

SUCCESSFUL SHOT LOCATIONS AND SHOT TYPES USED IN NCAA MEN’S DIVISION 

I BASKETBALL 

By 

Olivia D. Perrin 

The primary purpose of the current study was to investigate the effect of court location 

(distance and angle from basket) and shot types used on shot success in NCAA Men’s DI 

basketball during the 2017-18 season. A secondary purpose was to further expand the analysis 

based on two additional factors: player position (guard, forward, or center) and team ranking. All 

statistical analyses were completed in RStudio and three binomial logistic regression analyses 

were performed to evaluate factors that influence shot success; one for all two and three point 

shot attempts, one for only two point attempts, and one for only three point attempts. Results 

indicated that guards are most likely to score as distance increases, when compared to forwards 

and centers. In addition, jump shots are most likely to be utilized successfully for every one-

meter increase in distance, when compared to hook shots, tip shots, lay ups, and dunks. Results 

also indicated that, for further distances, the probability of shot success increases as angle 

decreases. The probability of shot success was also shown to be significantly influenced by team 

rank, with higher ranking teams having higher probabilities of shot success, although the 

magnitude of this effect was small and not practically relevant. 

KEYWORDS: logistic, field goal, regression, collegiate. 
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CHAPTER I: JOURNAL MANUSCRIPT 

Introduction 

Basketball is a court-based sport; characterized by intermittent high intensity efforts, 

during which players are required to repeatedly perform fast movements in association with 

unique technical actions according to specific tactics (Conte et al. 2018). The game is played as 

five versus five, where each player is categorized into one of the following five positions: point 

guard, shooting guard, small forward, power forward, and center. At the end of the game, the 

team that has scored the most points is declared the winner. Commonly known as a field goal, 

the non-free-throw shot is the primary way of scoring points in a game and is one of the most 

frequent and important technical elements in basketball (Erčulj and Štrumbelj 2015). The 

resulting points of a field goal are either two or three, depending on the location on the court 

where the shot was taken from. Players utilize different techniques when shooting; the choice of 

which depends on various factors such as distance away from the basket and player type (Erčulj 

and Štrumbelj 2015). 

In the United States, basketball is played at several levels including high school, college, 

semi-professional, and professional. The National Collegiate Athletic Association (NCAA) is the 

pinnacle of collegiate basketball in America and can further be categorized into three levels: 

Division I (DI), Division II, and Division III. A range of talent exists between the three divisions, 

where the DI level typically contains the most sought after recruits from high school who are 

expected to be the most talented players. Each collegiate team plays a number of conference and 

non-conference games throughout the regular season, vying for an opportunity to be one of sixty-
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eight teams selected to compete in their division’s NCAA tournament. The eventual winner of 

this tournament is crowned as the NCAA National Champion for their respective division. 

Recent growth in the application of data analytics to basketball settings has expanded the 

investigation of quantifying players’ tactical and technical in-game demands as well as game 

success in the men’s game at the NCAA level. Akers, Wolff, & Buttross (1992) investigated 

factors that are important for winning in Division I Men’s basketball, reporting that two point 

field goal percentage, turnovers, free throw percentage, steals, and rebounds were the most 

critical. Conte et al. (2018) agreed with these findings, but also reported defensive rebounds, free 

throws attempted, free throw rate, effective field goal percentage, and offensive rating as 

important factors in determining the outcome of a game. Many of these shooting-related, 

performance variables are known as key performance indicators (KPI) (Garcia et al. 2013; 

Gómez et al. 2008). Shot location and shot type impact shooting-related variables, which 

highlights the importance of shot location and type in regards to game outcome. However, the 

vast majority of published literature on shot location and shot type exists only at the professional 

level. 

At the professional level, guards tend to play farther from the basket and also shoot more 

often from distance, while centers tend to play closer to the basket and are more likely to perform 

a dunk or tip in shot (Erčulj and Štrumbelj 2015; Miller and Bartlett 1996). The work of Harmon, 

Lucey, and Klabjan (2016) built off the above statement, noting that National Basketball 

Association (NBA) centers tend to have the highest shooting percentage, given that many of their 

shot attempts are close to the basket. In regards specifically to shot location, Harmon, Lucey, and 

Klabjan (2016) determined that the probability of making a shot decreases as distance away from 

the basket increases. A second study reported that, across many competition levels, more 
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successful teams on average attempt fewer three point field goals (Erčulj and Štrumbelj 2015). 

With no research to date on shot location and shot type at collegiate level, little is known how the 

above findings translate to the college game. 

The primary purpose of the current study was to investigate the effect of court location 

and shot types used on made field goals in NCAA Men’s DI basketball during the 2017-2018 

season. A secondary purpose of the current study was to further expand the analysis based on 

two additional factors: player position (guard, forward, or center) and team ranking at the end of 

the regular season. The exploration of shot location and shot type allows for a deeper 

understanding of key performance variables and enhances the ability to explain the way in which 

they shape game outcomes at the collegiate level.  

Methods 

Data Acquisition 

Participants of the current study were basketball players who participated in NCAA 

Men’s DI basketball during the 2017-18 season. All data were publicly available online and were 

obtained from a dataset created by the NCAA on Google Cloud Platform 

(https://console.cloud.google.com/marketplace/details/ncaa-bb-public/ncaa-basketball?pli=1). 

Therefore, the current study was exempt from requiring consent of participants. Approval for this 

study was granted by the Human Subjects Institutional Review Board of Northern Michigan 

University, Marquette, Michigan, USA (HS19-1044). This free online dataset contains several 

tables of data about NCAA basketball players, games, and teams. The tables for games consist of 

play-by-play data, box score data, and final scores. Basketball shot data was extracted from the 

play-by-play table by selecting the following variables from the dataset: game id, team market, 

team basket, event coordinate x, event coordinate y, shot made, shot type, and position. Data 

https://console.cloud.google.com/marketplace/details/ncaa-bb-public/ncaa-basketball?pli=1
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from these variables were filtered to only reflect shots (made or missed) that were taken during 

the 2017-18 regular season in DI Men’s basketball. As a result, 218,696 basketball shots from 

the 2017-18 season representing 333 out of 351 DI Men’s basketball teams were extracted. 

Data Reduction and Preparation 

All data reduction and preparation was completed in RStudio (Version 1.2.1335, 

RStudio, Inc., Boston, MA, USA). A total of 927 shots were excluded from the dataset. Of these 

shots, eight hundred of them were excluded due to errors in shot classification where court 

location did not align with the classification of a two or three point shot attempt, respectively. 

Three shots were excluded due to missing values for multiple variables. Close examination of the 

data revealed a skewed frequency of games per team. Therefore, to avoid a biased model, only 

teams with ten or more reported games were included. The remaining 124 shots were excluded 

due to the shot attempts coming from beyond the half court line. After these changes, a total of 

185,253 shots from 131 teams remained. An illustration of the distribution of these shots across 

shot distance (Figure 1) and angle (Figure 2). Shot frequencies across position and shot type are 

shown in Table 1. 

Locations for each shot were extracted as x, y coordinates (event coordinate x, event 

coordinate y). The x coordinate was reported as the location of the play in number of inches from 

the “left” baseline, while the y coordinate was reported as the location of the play in number of 

inches from “top” sideline. For simplicity purposes, all coordinate data were converted from 

Cartesian coordinates to polar. The origin was transposed for each shot to its respective net using 

team basket and all values were converted from inches to meters. The polar location of each shot 

was reported in the form of two new variables: distance (meters) (Equation 1) and angle 
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(radians) (Equation 2). Finally, all angles were converted from radians to degrees to increase 

sensitivity in the model.  

Equation 1. Polar distance calculation 

Distance = �𝑥𝑥2 + 𝑦𝑦2 

Equation 2. Polar angle calculation 

Angle = tan−1 �𝑦𝑦
𝑥𝑥
� 

In addition to the variables above, another variable (team rank) was created, which 

contained the ranking of each team at the conclusion of the regular season (February 25th, 2018) 

according to the Rating Percentage Index (RPI). RPI was the official metric used for team 

ranking by the NCAA for the 2017-18 season. All team ranking data were publicly available 

online and obtained from: https://www.teamrankings.com/ncaa-basketball/rpi-ranking/rpi-rating-

by-team?date=2018-02-25. The variable shot made was left as is and used as the dependent 

variable in the analyses. The variable shot made contains two levels: “0” and “1” where “0” 

represents a missed shot and “1” represents a made shot. For this variable, level “0” (missed 

shot) was set as the reference category for each of the respective analyses. The reference level is 

the level to which every other level is compared against. Detailed explanations of the 

independent variables of interest and their associated levels are provided below. 

Independent Variables of Interest 

The current study focused on the following independent variables: 

• Shot type– divided into five levels (jump shot set as reference category): 

https://www.teamrankings.com/ncaa-basketball/rpi-ranking/rpi-rating-by-team?date=2018-02-25
https://www.teamrankings.com/ncaa-basketball/rpi-ranking/rpi-rating-by-team?date=2018-02-25
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o Jump shot: This occurs when a player jumps in the air and shoots the ball above 

their head. This is the most common type of shot used when shooting from 

distance, but can also be utilized when a player is near the basket.  

o Hook shot: This occurs when a player shoots the ball turned approximately 

perpendicular to the basket by bringing the arm farther away from the basket up 

overhead in a sweeping motion, extending the shoulder movement and flexing the 

wrist.  

o Layup: This is a one-handed shot that occurs when a player releases the ball after 

an upwards motion of the arm. This shot is typically executed close to the basket 

by jumping off one leg and bouncing the ball off the backboard.  

o Tip-shot: This occurs when a player leaps into mid-air and tips the ball into the 

basket on a rebound.  

o Dunk: This occurs when a player slams the ball down through the basket with 

their hands above the rim. Only players with sufficient height or vertical jump are 

able to execute this shot. 

The following two independent variables, which may influence shot type selection, were also of 

interest: 

• Location– With respect to the basket, the location on the court where the shot was taken. 

Location was split into the following two variables for the analyses: 

o Distance: The distance (in meters) away from the basket. 
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o Angle: The angle (degrees) away from the midline (the imaginary line that divides 

the court in half from rim to rim).  

• Position – Players of different positions have different roles in basketball (Dežman, 

Trninić, and Dizdar 2001), motor skills (Erčulj et al. 2009), and anthropometric 

dimensions (Erčulj and Štrumbelj 2015; Sampaio et al. 2006). Therefore, different 

shooting tendencies are expected among different player positions. Position was divided 

into three levels (Guard was set as the reference category): 

o Guard: This position generally facilitates scoring opportunities for other 

teammates, as well as for themselves. They primarily handle the ball on offense. 

o Forward: This position generally possesses quickness and strength, attacking the 

basket from the “wing” location (outside and near baseline). They are sometimes 

interchangeable with the guard position. 

o Center: This position generally operates inside of the three point line and close to 

the basket.  

Statistical Analysis 

All statistical analyses were completed in RStudio. All categorical variables were 

temporarily converted to numeric to assess multi-collinearity in a correlation matrix. All pairs 

yielded small correlation coefficients (less than 0.25), confirming the absence of multi-

collinearity. All categorical variables (position, team rank, shot type, and shot made) were then 

converted to factors for the analyses. Three independent binomial logistic regression analyses 

were performed, where shot made was used as the dependent variable in all models. The first 

binomial logistic regression evaluated factors influencing shot success across both two and three 
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point shot attempts, whereas the second and third models evaluated only two and only three point 

shot attempts, respectively. The variable three point shot was used to accurately identify 

instances of three point shot attempts. The variable shot type was excluded from the three point 

only model as jump shots were used exclusively in this model. An exploratory process was 

utilized where multiple combinations of variables and interactions were assessed. The most 

appropriate option for each respective model was selected based on model performance and 

parsimony. In regards to model performance, the selection process for each model was 

implemented through the completion of a likelihood ratio test and Wald test, as well as the 

assessment of values for the Akaike Information Criteria (AIC), log likelihood, and McFadden 

Pseudo R². Results for both the likelihood ratio test and Wald test are expressed as a Chi-Square 

statistic (χ²) with their associated degrees of freedom (df) and p-value. Odds ratios with 95% 

confidence intervals were also calculated and reported. Odds ratios and associated 95% 

confidence intervals for interaction terms were manually calculated (Equation 3, Equation 4) 

using an adjusted standard error (Equation 5). 

Equation 3. Odds Ratio calculation for interaction terms 

𝑂𝑂𝑂𝑂𝛽𝛽1+𝛽𝛽2 = 𝑒𝑒𝛽𝛽1+𝛽𝛽2 

Equation 4. 95% Confidence Interval calculation for interaction terms 

95% 𝐶𝐶𝐶𝐶 = 𝑒𝑒𝑂𝑂𝑂𝑂𝛽𝛽1+𝛽𝛽2±�1.96×𝑆𝑆𝑆𝑆𝛽𝛽1+𝛽𝛽2� 

Equation 5. Standard Error calculation for interaction terms 

𝑆𝑆𝑆𝑆𝛽𝛽1+𝛽𝛽2 = ��𝑆𝑆𝑆𝑆𝛽𝛽12 + 𝑆𝑆𝑆𝑆𝛽𝛽22 + 2 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶(𝛽𝛽1,𝛽𝛽2)�. 

The model equations for the selected binomial models are presented below in Equation 6, 

Equation 7, and Equation 8: 
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Equation 6. Binomial model 1 equation for all two and three point shots 

𝐿𝐿𝐿𝐿 �
𝑃𝑃𝑃𝑃

1 − 𝑃𝑃𝑃𝑃
� = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝛽𝛽2𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 + 𝛽𝛽3𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 + 𝛽𝛽4𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑖𝑖 + 𝛽𝛽5𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑖𝑖

+ 𝛽𝛽6𝐿𝐿𝐿𝐿𝐿𝐿 𝑢𝑢𝑢𝑢𝑖𝑖 + 𝛽𝛽7𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝛽𝛽8𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝛽𝛽9𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
+ 𝛽𝛽10(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖) + 𝛽𝛽11(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖)
+ 𝛽𝛽12(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑖𝑖) + 𝛽𝛽13(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 × 𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑖𝑖)
+ 𝛽𝛽14(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 × 𝐿𝐿𝐿𝐿𝐿𝐿 𝑢𝑢𝑢𝑢𝑖𝑖) + 𝛽𝛽15(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖)  
+ 𝛽𝛽16(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖) 

Equation 7. Binomial model 2 equation for all two point shots 

𝐿𝐿𝐿𝐿 �
𝑃𝑃𝑃𝑃

1 − 𝑃𝑃𝑃𝑃
� = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝛽𝛽2𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 + 𝛽𝛽3𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 + 𝛽𝛽4𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑖𝑖 + 𝛽𝛽5𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑖𝑖

+ 𝛽𝛽6𝐿𝐿𝐿𝐿𝐿𝐿 𝑢𝑢𝑢𝑢𝑖𝑖 + 𝛽𝛽7𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝛽𝛽8𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝛽𝛽9𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
+ 𝛽𝛽10(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖) + 𝛽𝛽11(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖)
+ 𝛽𝛽12(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑖𝑖) + 𝛽𝛽13(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 × 𝑇𝑇𝑖𝑖𝑖𝑖 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑖𝑖)
+ 𝛽𝛽14(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 × 𝐿𝐿𝐿𝐿𝐿𝐿 𝑢𝑢𝑢𝑢𝑖𝑖) + 𝛽𝛽15(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖) 

Equation 8. Binomial model 3 equation for all three point shots 

𝐿𝐿𝐿𝐿 �
𝑃𝑃𝑃𝑃

1 − 𝑃𝑃𝑃𝑃
� = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝛽𝛽2𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 + 𝛽𝛽3𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 + 𝛽𝛽4𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝛽𝛽5𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 

 

Results 

 As shown in Table 2, all variables and interaction terms were significant (p < 0.05) for 

the first model with all two and three point shot attempts. When interpreting the odds ratios of 

the interaction between distance and position, results indicated that forwards were 7.17% less 

likely to make a shot for every one-meter increase in distance when compared to the reference 

category of guard, adjusting for shot type, angle, and team rank. Centers were 8.68% less likely 

to make a shot for every one-meter increase in distance compared to the position of guard, when 

adjusting for shot type, angle, and team rank.  

In relation to the odds ratios for the interaction between distance and shot type, a player 

utilizing a hook shot was 30.58% less likely to make the shot for every one-meter increase in 

distance compared to a jump shot when adjusting for position, angle, and team rank. A player 
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utilizing a tip shot was 34.08% less likely to make the shot for every one-meter increase in 

distance compared to a jump shot when adjusting for position, angle, and team rank. Results also 

indicated that a player utilizing a layup was 54.18% less likely to make the shot for every one-

meter increase in distance compared to a jump shot when adjusting for position, angle, and team 

rank. A player utilizing a dunk was 53.59% less likely to make the shot for every one-meter 

increase in distance compared to a jump shot when adjusting for position, angle, and team rank 

Team rank was also statistically significant, although the magnitude of the effect was small. In 

relation to the interaction between distance and angle, results indicate that for further distances 

the probability of shot success increases as angle decreases. 

 As shown in Table 3, all variables and interactions were significant (p < 0.05) 

with the exception of the interaction between distance and the position of center (p > 0.05). 

When interpreting the odds ratios of the interaction between distance and position, results 

indicated that forwards were 5.49% less likely to make a two point shot for every one-meter 

increase in distance when compared to the reference category of guard, adjusting for shot type, 

angle, and team rank. In relation to the odds ratios for the interaction between distance and shot 

type, a player utilizing a hook shot was 28.99% less likely to make a two point shot for every 

one-meter increase in distance compared to a jump shot when adjusting for position, angle, and 

team rank. A player utilizing a tip shot was 32.84% less likely to make a two point shot for every 

one-meter increase in distance compared to a jump shot when adjusting for position, angle, and 

team rank. Results also indicated that a player utilizing a layup was 53.00% less likely to make a 

two point shot for every one-meter increase in distance compared to a jump shot when adjusting 

for position, angle, and team rank. A player utilizing a dunk was 52.74% less likely to make a 

two point shot for every one-meter increase in distance compared to a jump shot when adjusting 
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for position, angle, and team rank. Team rank and angle were also statistically significant, 

although the magnitude of these effects were small.  

As noted in Table 4, all variables were significant (p < 0.05) with the exception of the 

position of center (p > 0.05). When interpreting the odds ratio for distance, results indicated that 

a player is 12.34% less likely to make a three point shot for every one-meter increase in distance. 

In relation to the odds ratio for the position of forward, players in this position are 7.49% less 

likely to make a three point shot when compared to the reference category of guard, adjusting for 

distance, angle, and team rank. Angle and team rank were also statistically significant, although 

the magnitude of these effects were small.  

Discussion 

 The primary purpose of the current study was to investigate the effect of court location 

and shot types used on made field goals in NCAA Men’s DI basketball during the 2017-2018 

season. A secondary purpose of the current study was to further expand the analysis based on 

two additional factors: player position (guard, forward, or center) and team ranking at the end of 

the regular season. Court location, shot type, and player position were all shown to significantly 

influence the probability of shot success. In addition, team rank and angle were also shown to 

significantly influence the probability of shot success, although the tangible impact of these 

changes were minimal.  

As shown in Table 2, team rank was statistically significant at the p < 0.0001 level. For 

this variable, the odds ratio was reported as 0.9994. Results from Tables 2 and 3 show similar 

odds ratios for team rank; 0.9994 and 0.9992, respectively. Although the odds ratios for this 

variable are all very close to 1, they can still be interpreted as greater numbers for ranking 

decrease the probability of shot success (greater numbers for team rank indicate a lower ranking 
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team). However, this change is minimal given that for every one unit increase in team rank, the 

probability of shot success only decreased by approximately 0.06 – 0.08%. Although it generally 

could be expected that a lower ranking team may shoot at a lower percentage than a higher 

ranking team, the magnitude of this effect was very small and lacks practical significance. 

Mikołajec, Maszczyk, and Zając (2013) investigated factors influencing NBA team rank, 

concluding that shooting-related variables such as offensive efficiency and third quarter points 

per game were factors that significantly influenced team rank. Although the magnitude of the 

effect in the current study was small, the findings of Mikołajec, Maszczyk, and Zając (2013) 

provides some support for the significant relationship identified between team rank and 

probability of shot success. Additionally, it is possible that the dependent variable used in the 

current study was too broad to see meaningful changes for team rank. Given the results of 

Mikołajec, Maszczyk, and Zając (2013), it may be possible that team rank is more likely to 

influence only selective aspects of shooting performance as opposed to shot success. 

Furthermore, another consideration when interpreting this relationship is that the NCAA replaced 

the use of RPI as their metric for measuring team rank following the 2017-18 season. Future 

analyses utilizing the newly adopted ranking system may yield different results.  

 In the current study, location was comprised of distance and angle from the basket. When 

considering angle, past literature has reported no effect on the probability of basketball shot 

success (Erčulj and Štrumbelj 2015). However, as noted in Tables 2 and 3, the results of the 

current study identified that angle significantly influenced the probability of shot success. 

Interestingly, the results from each of the two models contradict each other. For the second 

model, when looking at only two point shots, results indicated that every one unit increase in 

angle decreases the probability of shot success by 0.11%. For the third model, when looking only 
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at three point shots, results indicated that every one unit increase in angle increases the 

probability of shot success by 0.13%. Although these results are conflicting, it is important to 

note that the magnitude of the effect of angle for both models is minimal. Therefore, from a 

practical standpoint, this information is not meaningful to players and coaches.  

 In the first model, which looked at all shots, a significant interaction between distance 

and angle was present. As seen in Figure 2, results of this interaction indicated that, at farther 

distances, the probability of shot success decreases as angle increases, adjusting for team rank, 

position, and shot type. Therefore, it may be suggested that, as distance increases, players 

experience higher probabilities of shot success if they take their shots closer to the midline and 

away from the baseline. However, it is important to note that the 95% confidence interval for this 

interaction crosses 1 (0.9319-1.0023), which means that this interaction should be interpreted 

with caution (Tan and Tan 2010) and may not be practically relevant for players and coaches.    

Previous literature focused on basketball has documented that court location, among 

several other factors, influences a player’s choice of shot type used (Erčulj and Štrumbelj 2015). 

Additionally, it has also been reported that the jump shot is the most common shot used when a 

player shoots from distance (Erčulj and Štrumbelj 2015). The results of the first and second 

model (shot type was excluded in the third model) in the current study support both of the above 

findings. For tip shots, dunks, hook shots, and lay ups, the probability of shot success decreased 

for every one-meter of increase in distance compared to a jump shot, adjusting for player 

position, angle, and team rank. This indicates that jump shots were utilized most successfully 

when players took shots from distance, which aligns with the findings of Erčulj and Štrumbelj 

(2015) that the jump shot is the most commo n shot used when a player shoots from distance. The 

increased difficulty of shot making from distance is emphasized by the results of the current 
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study given that the probability of shot success decreased with distance for all shot types when 

compared to a jump shot. These findings are in agreement with Harmon, Lucey, and Klabjan 

(2016), who reported that as distance away from the basket increases, the probability of making a 

shot decreases. Moreover, knowing that increased distance decreases the probability of shot 

success for some shot types more or less than others, the findings of the current study strengthens 

the account of Erčulj and Štrumbelj (2015), who noted that court location significantly influences 

a player’s choice of shot type used. In a practical sense, this aligns with what is commonly 

known about basketball since shot types such as dunks, layups, and tip-ins can only be utilized 

closer to the basket. In other words, the limits in regards to distance for these two shot types are 

restricted to a player’s physical capabilities including their ability to leap horizontally and 

vertically. For example, it would be common to see a jump shot attempted from the free throw 

line area, but not a layup, dunk, or tip in as the basket would be extremely difficult to reach when 

jumping from that far away.  

When looking more specifically at how each shot type interacts with distance, further 

discussion is warranted. As shown in Table 2, when considering all shots, results from the first 

model indicated that a player utilizing a layup was 54.18% less likely to make the shot for every 

one-meter increase in distance compared to a jump shot when adjusting for position, angle, and 

team rank. Furthermore, a player utilizing a dunk was 53.59% less likely to make the shot for 

every one-meter increase in distance compared to a jump shot when adjusting for position, angle, 

and team rank. Although both of these interactions were statistically significant, these results do 

not provide any additional information above what is already commonly understood within the 

game of basketball. As discussed above, for either a layup or a dunk it is required for players to 

be at or very near to the basket for the execution of the shot. Consequently, it is expected that the 
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probability of shot success for these shots would significantly decrease as distance increases. As 

a result, this information is not practically relevant to coaches or players. As shown in Table 3, 

odds ratios from the second model looking at only two point shots were similar in magnitude and 

direction for these two shot types and their respective interactions with distance. This comes as 

no surprise considering that, as discussed above, most all dunks and layups are executed close to 

the basket or relatively short distances. 

As shown in Table 2, results from the first model indicated that a player utilizing a hook 

shot was 30.58% less likely to make the shot for every one-meter increase in distance compared 

to a jump shot when adjusting for position, angle, and team rank. Results of the same interaction 

from the second model align closely with the first model at 28.99%. Although hook shots can be 

taken farther away from the basket, it is possible that in comparison to a jump shot, these results 

speak primarily to the difficulty of the hook shot, especially as distance increases. Erčulj and 

Štrumbelj (2015) noted that the technique of a hook shot is rarely practiced in the NBA like it 

used to be, which has resulted in a lower relative frequency of the shot over time. These findings 

may support the lack of popularity and overall use of the shot at the collegiate level, which may 

indicate that collegiate players don’t practice the technique of a hook shot often. If this was the 

case, players may have used inferior technique for the hook shot during a game, resulting in 

many missed shots, especially those with a higher difficulty at a greater distance.  

In regards to player position in basketball, it has been noted in past literature that players 

in the NBA, at the position of center, tend to play closer to the basket and attempt many of their 

shots close to the basket (Erčulj and Štrumbelj 2015; Harmon, Lucey, and Klabjan 2016). It has 

also been reported that guards at the professional level play farther from the basket and also 

shoot more often from distance (Erčulj and Štrumbelj 2015; Miller and Bartlett 1996). In an 
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analysis of basketball shots from players across different competition levels, Erčulj and 

Štrumbelj (2015) noted that guards were the most accurate shooting followed by forwards and 

finally centers, with respect to distance.  

The results of both the first and second models in the current study are in agreement with 

the findings of Erčulj and Štrumbelj (2015), demonstrating that guards had the highest 

probability of shot success as distance increases. As shown in Table 2, results from the first 

model including all shots indicated that forwards were 7.17% less likely to make a shot for every 

one-meter increase in distance when compared to guards, adjusting for shot type, angle, and team 

rank. Centers were 8.68% less likely to make a shot for every one-meter increase in distance 

compared to guards, when adjusting for shot type, angle, and team rank. Unlike the first model, 

only the interaction between distance and the position of forward was significant in the second 

model. However, the interaction between distance and the position of center in the second model 

was trending in the direction of statistical significance, which is similar to the findings for this 

interaction in the first model. This suggests that centers are less successful shooters as distance 

increases even when three point attempts are not taken into consideration. Interestingly, the 

results between the two models for the interaction between distance and the position of forward 

were only slightly different; as the results from the two point shot model indicated that forwards 

were 5.49% less likely to make the shot for every one-meter increase in distance when compared 

to guards, adjusting for shot type, angle, and team rank. This suggests that, at closer distances, 

forwards experience probabilities of shot success that are close to that which guards exhibit. 

As mentioned above, both the first and second model indicated that guards are the most 

likely to make shots as distance increases. A potential factor explaining the superior performance 

of guards’ shot success from distance may be linked with their ability to maintain consistent 
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shooting form as distance increases when compared to centers, as noted by Miller and Bartlett 

(1996). It is suggested that their ability to adapt to varying distances may be due to the increased 

frequency of shooting from distance for this position (Miller and Bartlett 1996). The findings of 

Miller and Bartlett (1996), when considered alongside the work of Harmon, Lucey, and Klabjan 

(2016) as well as Erčulj and Štrumbelj (2015), demonstrates that guards shoot more often from 

distance and therefore develop strategies to allow them to be consistently successful in these 

locations, when compared to other positions such as centers. 

 As mentioned previously, the third model examined all variables except shot type and the 

data for this model included three point shots only. The results for angle and team rank from this 

model were briefly discussed above in previous sections, leaving position and distance, which 

both warrant discussion. When looking at position, results indicated that forwards were 7.48% 

less likely to make a three point shot than guards. The center position was not significantly 

different from the guard position (p > 0.05). In regards to distance, results of this model indicated 

that for every one-meter increase in distance behind the three point line, a player is 12.34% less 

likely to make that three point shot. This result is especially interesting given that the NCAA 

recently approved a rule change which will move the NCAA three point line back from 6.32 

meters to 6.75 meters, effective immediately for the upcoming 2019-20 season (Johnson 2019). 

Based on the results of the third model, it may be suggested that players will make less three 

point shots than previous years. The results of this model also indicate that, when considering 

position, forwards may struggle in the upcoming year behind the arc more than guards. This is 

practically relevant information for players and coaches and may suggest that shooting a high 

percentage from behind the three point line in the coming years may require players to regularly 

practice this shot to get used to shooting from farther distances. 
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A limitation of the current study was the uneven distribution of shot data between teams 

in DI Men’s basketball. For this reason, only teams with shot data for ten or more games were 

included in the analysis. As a result, many teams from Men’s DI were not represented in the data 

and even some entire conferences were excluded. Therefore, the results may not be applicable 

for all teams in the division. Another limitation of the current study was that, although the 

sample size was large (n = 185,377), all shot data used in the analysis were only from one season 

(2017-18). Each year in NCAA basketball, the landscape of players change considerably as 

many new players arrive as freshmen and other players graduate or may even leave to play in the 

NBA. As a result, it may be possible to see varied results when analyzing data from different 

seasons.   

One other limitation of the current study was that temporal aspects of the game were not 

analyzed. It has been documented in previous literature that temporal aspects of the game such as 

pace or time left on the shot clock influence shot location and shot type selection (Erčulj and 

Štrumbelj 2015; Skinner 2012). Given this information, it is possible that if some of these 

temporal aspects were analyzed, these variables could have helped provide greater explanatory 

power in regards to the probability of shot success. The dataset used for the current study also 

did not include tactical factors such as defensive pressure on the ball or defensive strategies used 

against offensive players. These factors have been shown to influence court locations used to 

take shots as well as shot success (Csapo and Raab 2014; Gomez, Gasperi, and Lupo 2016). As 

mentioned above, the inclusion of factors such as these may have strengthened the model, 

providing another layer of understanding of shot success when considering the locations and shot 

types used at the collegiate level.  
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Conclusion 

 In conclusion, the current study demonstrates that the probability of shot success in 

NCAA Men’s DI basketball was significantly influenced by shot type, court location (distance, 

and angle), position, and team rank. Although these variables were statistically significant, they 

may not be practically significant to implement in a real-world team sports environment, as the 

magnitude of the effect observed in some variables (team rank, angle) were minimal. Overall, the 

results of the current study indicated that guards were the most successful shooters from 

distance, most often utilizing a jump shot, which had the highest probability of shot success from 

distance when compared to all other shot types. These findings align with previous literature at 

the professional level. This suggests that shooting characteristics of collegiate players are similar 

to that of professional players, which may indicate that appropriate offensive strategies are 

utilized at the collegiate level, with respect to developing players for the professional level. 

Future research investigating factors that influence the probability of shot success should 

incorporate temporal and tactical aspects of the game, which may have the potential to further 

enhance the understanding of successful shooting at the collegiate level.   
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Tables and Figures 

Table 1. Shot frequencies according to shot type and position. 

 Total Jump shot Hook shot Tip shot Lay up Dunk 
Total 185,253 113,578 4,054 2,272 56,717 8,632 
Guard 113,538 78,788 245 634 31,532 2,339 
Forward 63,091 31,871 2,860 1,365 21,860 5,135 
Center 8,624 2,919 949 273 3325 1,158 
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Table 2. Results relating to the binomial logistic regression model 1 for all two and three point 
shot attempts (dependent variable = shot made [0=missed, 1=made]) 

Independent Variables β (SE) χ2 p OR (95% CI) 
(Intercept) -0.3623 (0.0247) 214.5053 <0.0001 0.6961 (0.6631-0.7306) 
Distance -0.0348 (0.0042) 67.3384 <0.0001 0.9658 (0.9579-0.9739) 
Forward 0.2149 (0.0186) 134.0038 <0.0001 1.2398 (1.1955-1.2857) 
Center 0.3316 (0.0390) 72.2840 <0.0001 1.3932 (1.2908-1.5041) 
Hook shot 0.9636 (0.1043) 85.3776 <0.0001 2.6210 (2.1378-3.2176) 
Tip shot 1.1390 (0.1025) 123.4099 <0.0001 3.1243 (2.5588-3.8254) 
Lay up 1.5450 (0.0274) 3176.7878 <0.0001 4.6890 (4.4439-4.9480) 
Dunk 3.1490 (0.0764) 1699.8304 <0.0001 23.3165 (20.0955-27.114) 
Angle -0.0024 (0.0004) 42.3150 <0.0001 0.9976 (0.9969-0.9983) 
Team Rank -0.0006 (0.0001) 90.0221 <0.0001 0.9994 (0.9992-0.9995) 
Distance*Forward -0.0396 (0.0040) 96.8256 <0.0001 0.9283 (0.8951-0.9627) 
Distance*Center -0.056 (0.0124) 20.2860 <0.0001 0.9132 (0.8806-0.9471) 
Distance*Hook shot -0.3303 (0.0473) 48.8601 <0.0001 0.6942 (0.6693-0.7199) 
Distance*Tip shot -0.3819 (0.0969) 15.5472 <0.0001 0.6592 (0.6354-0.6840) 
Distance*Lay up -0.7457 (0.0161) 2139.6175 <0.0001 0.4582 (0.4418-0.4752) 
Distance*Dunk -0.733 (0.0668) 120.5384 <0.0001 0.4641 (0.4475-0.4813) 
Distance*Angle 0.0006 (0.0001) 74.8052 <0.0001 0.9664 (0.9319-1.0023) 
Model Performance  χ2 p df 
Likelihood ratio test - 17,313.0000 <0.0001 16 
Wald Test - 13,342.2400 <0.0001 16 
Log Likelihood -118,950.3000 - - - 
McFadden Pseudo R2 0.0678 - - - 
Akaike Information 
Criterion 

237,935.000 - - - 

Note: R Programming code: [glm(formula = Shot made ~ Distance*Shot Type + Distance*Position + 
Distance*Angle + Team Rank, family = binomial(link = logit)]. 95% CI is 95% confidence interval, β is the 
unstandardized beta coefficient, OR is the odds ratio, SE is the standard error, χ 2 is the Wald’s Chi-Square. 
Statistical significance accepted at <0.05. All statistics reported herein use 4 decimal places in order to maintain 
statistical precision. 
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Table 3. Results relating to the binomial logistic regression model 2 for all two point shot 
attempts (dependent variable = shot made [0=missed, 1=made]) 

Independent Variables β (SE) χ2 p OR (95% CI) 
(Intercept) -0.4072 (0.0304) 178.8906 <0.0001 0.6655 (0.6269-0.7064) 
Distance -0.0179 (0.0076) 5.5272 0.0187 0.9822 (0.9677-0.997) 
Forward 0.2179 (0.0227) 92.4098 <0.0001 1.2434 (1.1894-1.2999) 
Center 0.3085 (0.0464) 44.1560 <0.0001 1.3615 (1.2433-1.4915) 
Hook shot 0.9517 (0.1062) 80.3712 <0.0001 2.5901 (2.1048-3.1912) 
Tip shot 1.1376 (0.1043) 118.9626 <0.0001 3.1192 (2.5458-3.8322) 
Lay up 1.53 (0.0333) 2113.5167 <0.0001 4.6181 (4.3267-4.9296) 
Dunk 3.1482 (0.0787) 1599.5200 <0.0001 23.2952 (19.9842-27.2119) 
Angle -0.0011 (0.0003) 20.5028 <0.0001 0.9989 (0.9984-0.9993) 
Team Rank -0.0006 (0.0001) 43.5336 <0.0001 0.9994 (0.9993-0.9996) 
Distance*Forward -0.0386 (0.0088) 19.0707 <0.0001 0.9451 (0.931-0.9593) 
Distance*Center -0.0383 (0.0203) 3.5495 0.0596 0.9454 (0.8816-1.0137) 
Distance* Hook shot -0.3245 (0.0479) 45.8600 <0.0001 0.7101 (0.6995-0.7208) 
Distance* Tip shot -0.3801 (0.0971) 15.3194 <0.0001 0.6716 (0.6609-0.6825) 
Distance* Lay up -0.7371 (0.0173) 1815.6121 <0.0001 0.47 (0.463-0.4771) 
Distance* Dunk -0.7315 (0.0671) 118.8100 <0.0001 0.4726 (0.4656-0.4797) 
Model Performance  χ 2 p df 
Likelihood ratio test - 13,086.0000 <0.0001 15 
Wald Test - 10,053.3000 <0.0001 15 
Log Likelihood -74,1999.4300 - - - 
McFadden Pseudo R2 0.0810 - - - 
Akaike Information Criterion 148,431.0000 - - - 
Note: R Programming code: [glm(formula = Shot made ~ Distance * Shot Type + Distance * Position + Angle + 

Team Rank, family = binomial(link=logit))]. 95% CI is 95% confidence interval, β is the unstandardized beta 
coefficient, OR is the odds ratio, SE is the standard error, χ 2 is the Wald’s Chi-Square. Statistical significance 
accepted at <0.05. All statistics reported herein use 4 decimal places in order to maintain statistical precision. 
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Table 4. Results relating to the binomial logistic regression model 3 for all three point shot 
attempts (dependent variable = shot made [0=missed, 1=made]) 

Independent Variables β (SE) χ2 p OR (95% CI) 
(Intercept) 0.3905 (0.1416) 7.6066 0.0058 1.4777 (1.1201-1.9514) 
Distance -0.1317 (0.0185) 50.4100 <0.0001 0.8766 (0.8453-0.9090) 
Forward -0.0778 (0.0191) 16.5893 <0.0001 0.9252 (0.8911-0.9604) 
Center -0.1167 (0.0798) 2.1374 0.1438 0.8899 (0.7599-1.0393) 
Angle 0.0013 (0.0003) 16.3458 <0.0001 1.0013 (1.0007-1.0020) 
Team Rank -0.0008 (0.0001) 48.9580 <0.0001 0.9992 (0.999-0.9994) 
Model Performance  χ 2 p df 
Likelihood ratio test - 180.1400 <0.0001 5 
Wald Test - 178.4100 <0.0001 5 
Log Likelihood -44,725.7400 - - - 
McFadden Pseudo R2 0.0020 - - - 
Akaike Information Criterion 89,463.0000 - - - 
Note: R Programming code: [glm(formula = Shot made ~ Distance + Angle + Position + Team Rank, family = 

binomial(link=logit))]. 95% CI is 95% confidence interval, β is the unstandardized beta coefficient, OR is the 
odds ratio, SE is the standard error, χ 2 is the Wald’s Chi-Square. Statistical significance accepted at <0.05. All 
statistics reported herein use 4 decimal places in order to maintain statistical precision. 
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Figure 1. Distribution of shots across varying distances. Red vertical lines indicate the location 
of the free-throw line (A) and three point line (B). 
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Figure 2. Distribution of shots across varying angles. A shot from zero degrees is at the midline 
and a shot from ninety degrees is near the baseline. 
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Figure 3. Distribution of shot probabilities corresponding to various shot distances (0-15 meters) 
across a range of shot angles. The figure above represents a guard utilizing a jump shot. 
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CHAPTER II: LITERATURE REVIEW 

Basketball  

General Background 

The game of basketball was invented by James Naismith at Springfield College in 

Massachusetts in 1891 (Rains 2011). Naismith wrote down thirteen rules, hammered two peach 

baskets to the gymnasium balcony, and instructed his class to play nine versus nine with a soccer 

ball (Horger 2001; Naismith 1996). The object of the game was to throw the soccer style ball 

overhead and land it in the basket. Less than a year later in 1892, the bottoms of the peach 

baskets were removed to allow the ball to fall through the basket and the first public basketball 

game was played in Springfield, Massachusetts (Naismith 1996). In 1906, metal hoops, nets, and 

backboards were introduced along with the first version of a basketball (Rains 2011). Over the 

next four decades, the game rapidly increased in popularity and the game’s rules were slowly 

adapting toward many of the modern rules in the game today. A series of small-scale 

professional and college leagues were formed early on, but basketball became firmly established 

at the collegiate level when the National Collegiate Athletic Association (NCAA) officially 

formed in 1939 as well as at the professional level when the National Basketball Association 

(NBA) took shape in 1946 (Horger 2001).  A well-established women’s professional league 

known as the Women’s National Basketball Association (WNBA) was later founded in 1996 

(Horger 2001). During these critical years of growth for the sport, the game was also growing at 

the international level, which eventually led to the first international organization known as the 

International Basketball Federation (FIBA) (Naismith 1996). The formation of FIBA allowed the 

game of basketball to officially be introduced to the Olympics in 1936, where the USA took the 

Gold medal in Berlin (Rains 2011).  



28 
 

Today, the game is played as five versus five where each of the five players are listed as 

one of three commonly known positions: guard, forward, or center (Erčulj and Štrumbelj 2015). 

However, these general positional categories can be 

broken down into five specific positions: point guard, 

shooting guard, small forward, power forward, and 

center (see Figure 4) (Naismith 1996). The game is 

played on a rectangular court and the winner is the team 

that scores the most points in their respective baskets. 

The court size for NBA, Women’s National Basketball 

Association (WNBA), and NCAA is 28.65 meters in 

length and 15.24 meters in width, while FIBA is 28 

meters and 15 meters, respectively. Two points are scored when a player shoots and makes a 

basket anywhere inside the three point line and three points are scored when a player shoots and 

makes a basket anywhere beyond the three point line. Either of these types of made baskets are 

known as a successful field goal (FG). The three point line for NCAA is on a radius of 6.32 

meters from the basket as opposed to 6.75 meters (6.60 meters in the corners) for WNBA and 

FIBA. The three point line is farthest from the basket in the NBA at 7.24 meters (6.70 meters in 

the corners). Single points can also be scored as a result of a made free throw, which occurs after 

a player is fouled by an opposing player while attempting to shoot the ball. The number of free 

throws granted are determined by the location of the shot attempt and each free throw shot is 

taken at the free throw line, which is centered and fifteen feet from the basket at all levels.  Free 

throws may also be granted after a non-shooting foul; this occurs when the fouling team has 

committed their seventh foul of the half and for each subsequent foul within the half. The ball is 

Figure 4. Basketball Player 
Positions. Image licensed by CC 
BY-SA 3.0 available from 
Wikimedia Commons 
(https://creativecommons.org/lice
nses/by-sa/3.0/),  

https://upload.wikimedia.org/wikipedia/en/3/36/Diagram_of_Basketball_Player_Positions.png
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/


29 
 

advanced up and around the court by either dribbling or passing. Games are played in the format 

of four, twelve minute quarters in the NBA and four, ten minute quarters in the WNBA. At the 

college level, NCAA Men’s games are played in the format of two, twenty minute halves and in 

the format of four, ten minute quarters for NCAA Women’s games.  

NCAA Basketball 

The NCAA is the pinnacle of collegiate basketball in America and can further be 

categorized into three levels: Division I (DI), Division II, and Division III. The three divisions 

boast a range of talent, in which the DI level typically contains the most sought after recruits 

from high school who are expected to be the most talented players. At the DI level, every team 

belongs to a conference, which is not the case in Divisions II and III where some independent 

institutions exist. An NCAA basketball season usually begins with preseason games in October 

with the regular season starting soon after in November. The regular season generally runs from 

November to early March. At this point in time, teams that performed well enough to make their 

conference tournament will face off for their respective conference championships. After all 

conference championships are decided, a committee from the NCAA selects sixty-eight teams 

for each Division to compete in the NCAA Tournament. The eventual winner of this tournament 

is crowned as the NCAA National Champion for their respective Division.  

Measurement of Basketball Performance 

Key Performance Indicators (KPI) are defined as a selection or combination of action 

variables that aim to define specific aspects of performance, which most closely relate to a 

successful outcome (Hughes and Bartlett 2002; Ortega, Villarejo, and Palao 2009). KPI’s are 

most commonly used to assess the performance of a team or an individual within that team, but 

they can also be used from a comparative perspective with opponents or other athletes and teams 

(Hughes and Bartlett 2002). Presenting KPI’s in isolation can be deceiving and result in a 
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misleading, distorted perception of a team or individual’s performance (Hughes and Bartlett 

2002; Mikolajec, Maszczyk, and Zając 2013). However, even when presented in combination, it 

is difficult to identify precisely why a team did or did not produce a successful outcome (García 

et al. 2013; Hughes and Bartlett 2002; Mikolajec, Maszczyk, and Zając 2013).  

Reported across men’s and women’s continental championships (Madarame 2018a, 

2018b), NBA (Mikolajec, Maszczyk, and Zając 2013; Pai, ChangLiao, and Lin 2017; 

Zimmermann 2016), NCAA (Zimmermann 2016), Olympic level (Leicht, Gomez, and Woods 

2017), and the Spanish Basketball League (García et al. 2013), the most common basketball 

KPIs contribute to numerous aspects of performance such as scoring, offense, and defense. 

However, in the early years of the sport, the most straightforward way to describe a team in 

regards to their success was scoring (Zimmermann 2016). As a result, the first measurable 

variables noted as KPI’s mainly revolved around scoring points; either scoring points on offense 

or preventing the opponent from scoring (Zimmermann 2016). These KPI’s are still a part of 

what are largely accepted today and include: field goals made, three-point field goals made, free 

throws made, offensive rebounds, turnovers, defensive rebounds, steals, blocks, points scored per 

game, and points allowed per game (García et al. 2013; Leicht, Gomez, and Woods 2017; 

Madarame 2018a, 2018b; Mikolajec, Maszczyk, and Zając 2013; Pai, ChangLiao, and Lin 2017; 

Zimmermann 2016). 

The previously mentioned variables remain as valuable KPI’s, but there are limits to their 

expressiveness since they are raw numbers (Zimmermann 2016). For example, knowing that a 

team collected twenty rebounds in a game makes it difficult to consider the value for this 

variable, good or poor, considering that we do not know how many total rebounds there were to 

be had. As a result of this limited knowledge, many of today’s most common basketball KPI’s 
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are presented in the form of either “rate”, “percentage”, or “efficiency” (Mikolajec, Maszczyk, 

and Zając 2013; Zimmermann 2016). Rate is considered to be a fixed ratio between two things, 

while percentage is a part of a whole expressed in hundredths, and efficiency refers to producing 

desired results with little or no waste. 

The combination of widely accepted basketball KPI’s today influence major aspects of 

today’s game such as the scoring aspect and technical aspect. The KPI’s can be broken down 

into two categories: offensive and defensive. The KPI’s that belong to the offensive category 

primarily revolve around the team’s shot locations, shot types, and their ability to score points. A 

list of these KPI’s and their abbreviations are shown below in Table 5. 
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Table 5. A summary table of the most commonly used offensive basketball key performance 
indicators 

Key Performance Indicator (KPI) Abbreviation 
Field Goals Attempted  FGA 
Field Goals Made FGM 
Field Goal Percentage FG% 
Two point Field Goals Attempted 2PA 
Two point Field Goals Made 2FGM 
Two point Field Goal Percentage 2P% 
Two point Field Goal Attempt Rate 2PA Rate 
Three point Field Goals Attempted 3PA 
Three point Field Goals Made 3FGM 
Three point Field Goal Percentage 3P% 
Three point Field Goal Attempt Rate 3PA Rate 
Free Throws Attempted FTA 
Free Throws Made FTM 
Free Throw Percentage FT% 
Free Throw Rate FT Rate 
Point Difference* PD 
Points Scored PTS 
Effective Field Goal Percentage eFG% 
Offensive Efficiency OE 
Adjusted Offensive Efficiency AdjOE 
Turnovers TO 
Turnover Rate TO Rate 
Turnover Percentage TO% 
Offensive Rating ORtg 
Team Ball Possessions TBP 
Assist Percentage AST% 
Assist Turnover Ratio AST/TO 
Assists AST 
Offensive Rebounds OR 
Offensive Rebounding Rate ORR 
Offensive Rebounding Percentage OR% 
Total Rebounds* REB 
*KPI relevant to both offensive and defensive categories 

The KPI’s that belong to the defensive category primarily reflect to the team’s ability to thwart 

scoring chances. These KPI’s are shown below in Table 6.  
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Table 6. A summary table of the most commonly used defensive basketball key performance 
indicators 

Key Performance Indicator (KPI) Abbreviation 
Defensive Efficiency DE 
Adjusted Defensive Efficiency AdjDE 
Defensive Rating DRtg 
Fouls Committed Fouls 
Points allowed PTSA 
Point Difference* PD 
Steals STL 
Blocks BLK 
Defensive Rebounds DR 
Defensive Rebounding Percentage DR% 
Defensive Rebounding Rate DRR 
Total Rebounds* REB 
*KPI relevant to both offensive and defensive categories 

 

Shot Location and Type 

Among the most fundamental decisions to make in a basketball game are where and how 

to take a shot. These decisions impact a myriad of offensive KPIs listed in Table 5, most notably 

field goals made, field goal percentage, and points scored. Shooting locations and shot types are 

chosen in a fast-paced manner by players during each team’s offensive possessions during the 

game. There are several different locations to shoot from and types of shots to utilize; the choice 

of which is influenced by several factors such as distance from the basket, player type, and 

player skills (Erčulj and Štrumbelj 2015). 

Types of shots can be separated into five common categories: jump shot, layup, tip in, 

dunk, and hook shot (Erčulj and Štrumbelj 2015). Additional details about shot type known as 

the subtype of a shot exist; common shot subtypes are fade away, floating, pull up, turn around, 

alley-oop, driving, finger roll, put back, and reverse. Jump shots followed by lay ups are known 

to be the most common types of shots seen across different levels of competitive basketball 

(Erčulj and Štrumbelj 2015). Given that player types have different roles in basketball (Dežman, 
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Trninić, and Dizdar 2001), motor skills (Erčulj et al. 2009), and anthropometric dimensions 

(Erčulj and Štrumbelj 2015; Sampaio et al. 2006), differences in basketball shooting tendencies 

are expected.  

Analytics in Sport 

Notational analysis is a technique used to produce a permanent record of events, which 

can later be analyzed and used to provide feedback (Carling, Reilly, and Williams 2008). The use 

of notational analysis to examine performance in team sports is well-established in previous 

literature (Franks and Hughes 2004; O’Donoghue 2009; Ortega, Villarejo, and Palao 2009) and 

is utilized to inform the training process (Hughes and Bartlett 2002; Ortega, Villarejo, and Palao 

2009). Early forms of notational analysis were done by hand, usually by an assistant coach, and 

was shown to be an easy, adaptable method (Carling, Reilly, and Williams 2008; Franks and 

Hughes 2004). However, this method is extremely time consuming and requires constant 

attention from organization staff. In an effort to reduce time spent recording events during games 

as well as human error, the utilization of video footage became a staple for notational analysis 

(Carling, Reilly, and Williams 2008). While this allows the viewing of important in-game events 

after the fact, it still requires a person to physically tally the instances of these events making 

human error remain an inevitable factor (Carling, Reilly, and Williams 2008; Franks and Hughes 

2004). Computerized notational analysis was next to emerge, which raised the bar from the 

rudimentary use of video footage (Carling, Reilly, and Williams 2008). This type of notational 

analysis allows the user to simply click a button on a computer or tablet to identify the 

occurrence of an event, simultaneously updating event totals, and continuously building the 

game’s timeline of events in real time (Carling, Reilly, and Williams 2008; Hughes and Bartlett 

2002). This method requires costly equipment and software, but the ability to view the timeline 
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of events as they happen in real time gives coaches an opportunity to quickly adjust strategy and 

feedback (Franks and Hughes 2004). 

Outside of a few examples of collecting statistics to advise baseball strategies in the 

1960’s and 70’s (Lindsey 1963; Rees, Rakes, and Deane 2015), notational analysis has been 

historically undervalued. Most early sport analysis and game predictions were qualitative; based 

on sports commentators, former players, or coaches using instinct, past experience, or gut-

feelings (Cao 2012; Gerrard 2016; Leung and Joseph 2014; Mondello and Kamke 2014; Rees, 

Rakes, and Deane 2015). These analyses were often delivered and heavily discussed before 

televised sporting events and were considered “expert predictions” (Cao 2012; Leung and Joseph 

2014). However, built on a foundation of anecdotal evidence, bias, and subjectivity, the accuracy 

of these claims were highly variable (Cao 2012; Leung and Joseph 2014; Mondello and Kamke 

2014; Rees, Rakes, and Deane 2015). The use of quantitative methods to inform sport strategies, 

decision-making, and make game predictions was long an unimagined thought from the general 

population until the release of the best-selling book (2003) and popular movie (2011), Moneyball 

(Lewis 2004). While it is not the earliest account of applying analytics to sport, it is largely 

credited as the catalyst for introducing every day sports fans and the broader sports community 

to the array of potential benefits of the use of quantitative methods (Cao 2012; Fry and Ohlmann 

2012). 

With advancements in notational analysis and a peaking interest in using quantitative 

methods to improve team success, considerable amounts of data have become available to 

sporting organizations in the professional and college ranks, subsequently triggering explosive 

growth in the field of sports analytics. (Cao 2012; Gerrard 2016; Leung and Joseph 2014; 

McCullagh 2010). Consequently, this access to large amounts of data at a rapid rate has 
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highlighted our ability to suddenly collect and maintain data as well as our inability to quickly 

turn it into useful information (Haghighat, Rastegari, and Nourafza 2013; Padhy, Mishra, and 

Panigrahi 2012). Thus, a multitude of advanced methods utilizing quantitative analysis to advise 

in game strategies, inform personnel needs, or make predictions now exist. 

Advanced Quantitative Methods 

Machine learning (ML) is an application of Artificial Intelligence that provides systems 

the ability to learn from data, identify patterns, and make decisions with minimal human 

intervention (Bunker and Thabtah 2017; Freitag 2000). It has shown promise in the domains of 

classification and prediction, particularly in sport (Bunker and Thabtah 2017). This is highlighted 

in previous literature for an array of sports including weight training/lifting (Novatchkov and 

Baca 2013), running (Kugler et al. 2011), golf (Eskofier et al. 2011), soccer (Buursma 2011; 

Faria et al. 2010; Hucaljuk and Rakipović 2011; Min et al. 2008), basketball (Ángel Gómez et al. 

2008; Mikolajec, Maszczyk, and Zając 2013; Parejo et al. 2013; Zimmermann, Moorthy, and Shi 

2013), and baseball (Smith, Lipscomb, and Simkins 2007). Machine learning methods are either 

supervised or unsupervised (see Figure 5).  
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Figure 5. Methods Used for Result Prediction in Sport. 

 

In supervised learning, a predictive model is developed based on both input and output data 

whereas in unsupervised learning, data are grouped and based only on input data (Bunker and 

Thabtah 2017). 

Supervised Learning Methods 

Supervised learning methods fall under the general umbrella of classification, using 

training data and test data to predict a target variable (Bunker and Thabtah 2017). Common 

methods that fall under this classification include decision trees, neural networks, support vector 

machines, fuzzy systems, the Bayesian method, and logistic regressions (see Figure 5 above).  

Neural networks consist of a number of interconnected neurons within specific layers that 

constantly adjust weights, that contribute to the final prediction, and are one of the most 

commonly used ML approaches to sport prediction problems (Bunker and Thabtah 2017; 

Haghighat, Rastegari, and Nourafza 2013). The weights associated with the interconnected 
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neurons constantly change to accomplish higher levels of predictive accuracy, which can 

sometimes lead to overfitting or wasting of computing resources (Bunker and Thabtah 2017; 

Mohammad, Thabtah, and McCluskey 2014). However, neural networks are appealing due to 

their flexibility when defining classification variables (Bunker and Thabtah 2017). Neural 

networks were used for the prediction of results from the National Football League in the late 

1990’s and early 2000’s (Kahn 2003; Purucker 1996), which are examples of very early ML 

techniques used in professional football.  

While the path to final predictions are hidden in neural networks, decision trees result in a 

set of rules which clarify the final result (Mariscal, Marbán, and Fernández 2010). A decision 

tree first poses questions about certain features of the data and then classifies it appropriately. 

Each of these questions asked are subsets of a node; and each of the interior nodes then direct to 

a child node, which is simply a possible answer to the posed question (Haghighat, Rastegari, and 

Nourafza 2013). This creates a “tree” shape from the top node down to each leaf, which is 

considered any node that is childless; i.e. has no further connections (Haghighat, Rastegari, and 

Nourafza 2013). The main advantages of decision trees are that they are computationally fast, 

can handle large amounts of data on different measurement scales, and they make no statistical 

assumptions (Pal and Mather 2003). Other advantages of decision trees are that software to 

develop them is readily available over the internet; and they are generally considered to be easier 

to interpret than some other ML algorithms (Friedl and Brodley 1997; Pal and Mather 2003). 

However, disadvantages of decision trees are overfitting and sampling errors (Rokach and 

Maimon 2005; Srivastava et al. 2002), which can lead to less than satisfactory results. Decision 

trees have previously been used to inform optimal end-game strategies in basketball (Annis 
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2006) and one-on-one attacking and defender interactions in hockey (Morgan, Williams, and 

Barnes 2013). 

Another well-established supervised learning method is a support vector machine. A 

support vector machine can be used for both classification and regression purposes and is 

formally defined by a separating hyperplane (Haghighat, Rastegari, and Nourafza 2013). A 

hyperplane separates two groups of points and is at equal distance from the two. The algorithm 

searches for the optimal separating hyperplane, which then acts as a decision boundary between 

the two classes that are being examined (Haghighat, Rastegari, and Nourafza 2013). The main 

advantages of using support vector machines, are that they are not prone to overfitting, as well as 

their impressive capability to produce a complex, non-linear decision boundary (Guyon et al. 

2002; Haghighat, Rastegari, and Nourafza 2013). They are considered advantageous to neural 

networks due to the absence of spurious local minima within the optimization procedure as well 

as the fact that there are very few parameters to tune/adjust (Hearst et al. 1998). Major 

disadvantages of support vector machines include lengthy training time for large-scale problems 

and the difficulty of implementation (Haghighat, Rastegari, and Nourafza 2013; Platt 1999). 

Support vector machines have previously aided in basketball outcome prediction (Cao 2012).  

Fuzzy system, or fuzzy logic, was developed for systems and problems that require 

complicated mathematical analyses (Haghighat, Rastegari, and Nourafza 2013). While variables 

from traditional binary sets either have a value of zero or one, fuzzy logic can find truth values 

between zero and one as well as accurately describe complex, irrational phenomena (Tavana et 

al. 2013). Its ability to aid in identifying indefinite and complex phenomena is a massive upside, 

but training complexity and the need to finely tune a large number of parameters are major 

drawbacks (Liang and Mendel 2000). Recently, fuzzy logic has been heavily used in the 
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examination of cricket player performance (Curtis, Kelly, and Craven 2009; Curtis 2010; Singh, 

Bhatia, and Singh 2011) 

The Bayesian Method is one of the most famous supervised ML classification techniques 

(Haghighat, Rastegari, and Nourafza 2013). Major advantages of the Bayesian Method are that it 

is relatively simple and works well on data with high levels of noise or various unrelated features 

(Haghighat, Rastegari, and Nourafza 2013). This is because it is a probabilistic prediction model, 

which assumes that all features are conditionally independent of the target variable (Haghighat, 

Rastegari, and Nourafza 2013). However, the Bayesian method does have significant drawbacks: 

many of the current approaches are needlessly data-inefficient and they do not take advantage of 

small-scale properties of differentiable functions near local optima (Lizotte 2008). Nevertheless, 

this method has been previously implemented to predict future winners in NBA games 

(Miljković et al. 2010).  

Another very well-known tool for classification problems is Logistic Regression. It is 

similar to linear regression in that it depends on a linear combination of features, which are 

eventually mapped to a certain value between zero and one (Ye 2003). First, the odds of 

characteristics of each group are estimated and then cut-off points are determined, which results 

in the appropriate categorization of certain features (Haghighat, Rastegari, and Nourafza 2013). 

Logistic regressions are advantageous due to the nature of their simple calculations and 

interpretations, which generally produce reliable results (Kantardzic 2011). However, 

overestimation and difficulty in predictor selection for the model present as drawbacks 

(Steyerberg et al. 2000; Van Houwelingen and Le Cessie 1990). Logistic regressions have been 

used widely to aid in the answering of questions in the realm of sport, especially in the prediction 

of soccer matches (Buursma 2011). 
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Unsupervised Learning Methods 

Unsupervised learning methods fall under the general category of clustering (see Figure 5 

above). The aim of clustering is to quickly pass through (i.e. assess) data and gain first order 

knowledge by partitioning data points into like groups, or clusters (Ding and He 2004). Although 

there are an abundance of methods used in cluster analysis, a few common methods are K-

means, Principal component analysis (PCA), and Factor Analysis.  

K-means is one of the most common methods used in clustering, and is appreciated for its 

simplicity and relative efficiency (Ding and He 2004). In this method, centroids are used to 

represent clusters through the optimization of the squared error function (Ding and He 2004). 

The number of clusters (K) must be known beforehand and supplied as a parameter, which is 

seen as a disadvantage for this method (Pena, Lozano, and Larranaga 1999; Ray and Turi 1999). 

K-means cluster analysis has previously been used to classify game pace in Olympic level 

basketball (Sampaio, Lago, and Drinkwater 2010).  

Although there are distinct differences, PCA and Factor Analysis are often discussed in 

the same breath. This is because they are mainly used as dimension-reduction procedures, which 

means that they can identify a small group of variables (often called factors) that explain most of 

the total (PCA) or common (Factor Analysis) variation from the full set of original variables 

(Bryant and Yarnold 1995). However, despite this similarity, there is a fundamental difference 

between these two methods of data-reduction: Factor analysis is a measurement model of a 

latent, or inferred variable, while PCA is instead, a linear combination of variables (Anderson 

1962; Bryant and Yarnold 1995). Talent identification in sport has been previously studied using 

PCA (Douda et al. 2008) and Factor Analysis (Morris 2000; Verma 2016) methods. 
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Spatial Analysis 

In broad terms, spatial analysis refers to the quantitative study of phenomena that are 

located in space (Bailey and Gatrell 1995). In the context of sports analytics, space typically 

refers to the playing area, i.e. a basketball court or playing field. Spatial analysis techniques 

provide a layer of depth to conventional sport evaluation methods by revealing key space-based 

variations in player and team performances. A wide range of techniques exist; some of which 

utilize spatial coordinates to determine locations or the use of Voronoi diagrams to allow for 

spatial partitioning of an area into cells with specific associations (Fonseca et al. 2012). Spatial 

analysis has been used in basketball to determine players with the best shooting range 

(Goldsberry 2012) and in soccer to analyze the location and outcomes of direct free kicks at the 

World Cup level (Alcock 2010). This type of analysis has also been used to explore serving 

locations in tennis (Hizan, Whipp, and Reid 2015) as well as shooting performance in futsal 

(Vilar et al. 2013).  

Basketball-Specific Methods  

Examinations of KPI’s and game success in the NBA is well-established in previous 

literature (Mikolajec, Maszczyk, and Zając 2013; Miljković et al. 2010; Teramoto and Cross 

2010; Zimmermann 2016). Teramoto et al. (2010) used logistic regression analysis to determine 

that effective field goal percentage and turnovers were most critical for NBA game success. 

Miljković et al. (2010) examined chances of winning in the NBA, as the home or away team, by 

way of the Bayesian Method and noted that the model predicted 67% of 778 games correctly. 

Mikołajec, Maszczyk, & Zając (2013) employed the Factor Analysis method and reported that 

fouls committed, steals, and offensive efficiency are most critical to the final result and the 

team’s rank. Parejo et al. (2013) used K-means cluster analysis to determine that assists, steals, 

total rebounds, blocks, and fouls received are the most significant contributors to the final score 
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for amateur teams in a Spanish league. However, Garcia et al. (2013) found conflicting results 

for professional teams in the Spanish league using the same cluster analysis, noting that 

defensive rebounds, two point field goals made, and three point field goals made were most 

critical to the final score. Gomez et al. (2008) also examined the Spanish league using K-means 

and were in agreement with Garcia et al. (2013), reporting two and three point field goals made 

were critical factors. However, Gomez et al. (2008) also noted that assists, steals, and turnovers 

as important factors, which is in agreement with Parejo et al. (2013), on amateur teams in Spain. 

Trawinski (2010) used fuzzy logic in an attempt to predict basketball game outcomes in the 

Spanish league, but were unable to predict game outcomes with high accuracy. Ivanković et al. 

(2010) used a neural network to examine factors associated with winning in the First B 

basketball league for men in Serbia, reporting defensive rebounds and two point field goals made 

were the most influential.  

NCAA Men’s basketball has been studied (Akers, Wolff, and Buttross 1992; Conte et al. 

2018), but less so than at the professional level. Akers, Wolff, & Buttross (1992) investigated 

factors that are important for winning in DI Men’s basketball by way of regression analyses, 

reporting that two point field goal percentage, turnovers, free throw percentage, steals, and 

rebounds were the most critical. Conte et al. (2018) is in agreement, but also reported defensive 

rebounds, free throws attempted, free throw rate, effective field goal percentage, and offensive 

rating as important factors. 

The previous literature highlights many shooting-related variables as key performance 

indicators in basketball, indicating the importance of shot type and shot location in game 

outcome. While the literature based around shot location and type in basketball is not overly 

abundant, most of which is established already, revolves around the professional level.  
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In regards to shot location at the professional level, Harmon, Lucey, and Klabjan (2016) 

determined that the probability of making a shot decreases as distance away from the basket 

increases. A second study reported that, across many competition levels, more successful teams 

on average attempt fewer three point field goals (Erčulj and Štrumbelj 2015). With consideration 

to position, guards tend to play farther from the basket and also shoot more often from distance, 

while centers tend to play closer to the basket and are more likely to perform a dunk or tip in shot 

(Harmon, Lucey, and Klabjan 2016; Miller and Bartlett 1996). The work of Harmon, Lucey, & 

Klabjan (2016) built off the above statement, noting that NBA centers tend to have the highest 

shooting percentage, given that many of their shot attempts are close to the basket.  

Conclusion 

With an explosion in the field of sports analytics, advanced quantitative methods have 

been utilized to analyze basketball performance. As a result, key performance indicators across 

competition levels are well-established. Many of the key performance indicators are shooting-

related, highlighting the importance of shot location and type in regards to game outcome. 

Limited research has been published on basketball shot location and type; much of which exists 

at the professional level. Further exploration of shot location and shot types would allow for a 

deeper understanding of key performance variables and the ability to communicate the way in 

which they shape game outcomes. 
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CHAPTER III: SUMMARY AND CONCLUSIONS 

 

 The primary purpose of the current study was to investigate the effect of court location 

and shot types used on made field goals in NCAA Men’s DI basketball during the 2017-2018 

season. A secondary purpose of the current study was to further expand the analysis based on 

two additional factors: player position (guard, forward, or center) and team ranking at the end of 

the regular season. The results of the current study demonstrate that the probability of shot 

success in NCAA Men’s DI basketball was significantly influenced by shot type, court location 

(distance and angle), position, and team rank. Although these variables were statistically 

significant, they may not be practically significant to implement in a real-world team sports 

environment, as the magnitude of the effect observed in some variables (i.e. team rank and angle) 

were minimal.  

Overall, the results of the current study indicated that guards were the most successful 

shooters from distance, most often utilizing a jump shot, which had the highest probability of 

shot success from distance when compared to all other shot types. When looking at both two and 

three point shot attempts, the results of the current study indicated that the probability of shot 

success decreased with distance for all shot types when compared to a jump shot. This 

emphasizes the increased difficulty of shot making as players move farther away from the 

basket. 

When looking only at three point shots, results of this model indicated that for every one-

meter increase in distance behind the three point line, a player is 12.34% less likely to make that 

three point shot. Given that the NCAA three point line will be moving back from 6.32 meters to 

6.75 meters in the upcoming season, the previous result suggests that a decrease in shot success 
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from behind the three point line may be seen in the upcoming season. The results of this model 

also indicate that, when considering position, forwards may struggle in the upcoming year 

behind the arc more than guards. From a practical standpoint, this information is valuable as it 

may suggest that shooting a high percentage from behind the three point line in the coming years 

may require players to regularly practice this shot to get used to shooting from farther distances. 

The scope of the current study provides meaningful knowledge to coaches, enabling them 

to gain a better understanding of which shot types and locations are utilized successfully in 

competition. As a result, this allows them to optimize the basketball training process by focusing 

on selected techniques in their limited time at practice. Future research investigating factors that 

influence the probability of shot success should incorporate temporal and tactical aspects of the 

game such as time left on the shot clock and defensive ball pressure, which may have the 

potential to further enhance the understanding of successful shooting at the collegiate level. 
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