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This study examined the relationship between risk of head injury and energy loading across 
hockey helmet impact locations as another measure to assess helmet performance in 
reducing the risk of head injuries. A medium size NOCSAE headform instrumented with 
linear accelerometers was used to simulate dynamic impacts to the head during a free fall. 
The measured impact force was then used to determine energy loading and severity index. 
The results indicated that the energy loading on the helmet material accounts for 11.56% 
of the variance in predicting the risk of head injury across hockey helmet impact locations. 
This information becomes useful for researchers, coaches and helmet designers to better 
understand the material properties of helmets in energy loading and the role that the 
geometry of the helmet plays in minimizing the risk of traumatic brain injuries due to impact.  
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INTRODUCTION: Concussions or mild traumatic brain injuries occur due to biomechanical 
forces impacting the head causing an alteration in brain function (Menon, Schwab, Wright, & 
Maas, 2010). In the sport of ice hockey, helmets represent the best form of head protection 
against concussions (Post, Oeur, Hoshizaki, & Gilchrist, 2011). The capability of hockey 
helmets to mitigate the risk of concussions during an impact can be assessed, for example, 
using a pass or fail criterion with a threshold peak linear acceleration value ranging from 275 
to 300 g’s during a free-fall protocol (Post, Oeur, Hoshizaki, & Gilchrist, 2011).  The pass-or-
fail criterion is simple to apply but does not take into account factors such as rotational 
accelerations, shear forces, energy unloading and energy dissipation. This creates the need 
to explore other measurement techniques to better understand the material properties of 
hockey helmets to load and unload the energy generated due to a head impact. This energy 
represents the work performed to deform the helmet lining material and to restore it to its 
original shape when a head collision occurs. According to the law of conservation of energy, 
the absorbed mechanical energy does not remain in the helmet, but converts into another form 
of energy such as heat, and dissipates overtime (Zumdahl & Zumdahl, 2010). Researchers 
examined this type of energy analysis technique on bicycle helmets and soccer headgear 
(Marsh, McPherson, & Zerpa, 2008; Monthatipkul, Iovenitti, & Sbarski, 2012). Current hockey 
helmet testing standards, however, do not include analyses or protocols focusing on the energy 
loaded onto the head, which primarily gets absorbed through the attenuation liner or foam layer 
(Cui, Kiernan, & Gilchrist, 2009). In addition, current helmet testing protocols do not examine 
the extent to which energy measures predict the risk of head injury due to a head impact. 
Therefore, the purpose of this study was to examine the relationship between the risk of head 
injury and energy loading due to a head impact across helmet locations.  
 
METHODS: A medium size National Operating Committee on Standards for Athletic 
Equipment (NOCSAE) headform instrumented with linear accelerometers was used to 
simulate dynamic impacts to the head during a free fall. The NOCSAE headform was attached 
to a mechanical neckform made out of neoprene rubber with steel end plates to emulate a 
human neck. The researchers set the strength of the neck by adjusting the stiffness of the 
mechanical neck with a torque of 1.35 N-m. The mechanical neckform, together with a drop 
carriage, was let fall freely in a dual rail drop system. The masses of the headform, neckform, 
helmet and drop carriage added up to 10 kg and remained the same for the entire data 
collection process. A 110-volt AC winch with a wire connected to a magnetic plate elevated the 
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drop assembly (of headform, neckform, helmet and drop carriage) to the correct height prior to 
each impact. When the magnetic plate was energized, it grabbed the assembly. With the press 
of a release switch on the electronic controller, the magnets were de-energized and the 
assembly fell freely on the impact anvil surface. The anvil impact surface was mounted on a 
rubber matting bolted into the floor to minimize noise and vibration caused during impact. The 
helmet was tested by dropping it across five (5) helmet locations including the front, front boss, 
rear, rear boss and side. To minimize wear and tear of the helmet material, identical helmets 
were alternately used after each impact to allow ample time for the impacted helmet to rebound 
to its resting state. Each location got impacted 18 times with impact velocities ranging from 2.6 
to 4.5 m/s. For each impact, the accelerometer sensors captured the linear acceleration data 
(x, y, and z directions) and an AMTI force platform captured the impact forces (x, y and z 
directions). The accelerometer and force signals were fed into an analog to digital amplifier 
unit and the information was processed via a PowerLab AD Instruments software to compute 
the resultant acceleration and force. A data sampling frequency of 20,000 Hz was set for each 
acceleration or force input channel. A low pass SAE j211 filter with a cut-off frequency of 1000 
Hz eliminated the noise generated due to vibrations induced to the headform during the free 
falls. Impact locations were tested in a sequential order, ensuring that all impacts to helmets 
at a given location were completed before moving to the next location. A total of 270 impacts 
were conducted (3 identical helmets × 18 speeds × 5 impact locations). Next, energy loading 
was computed using the force platform measures and Equation 1. The NOCSAE Severity 
Index (SI) was computed using Equation 2 to determine the risk of injury for each impact during 
the testing protocol. This Severity Index (SI) uses linear impact accelerations and it cannot 
exceed a value of 1200, which represents an acceptable level according to NOCSAE helmet 
testing standards (NOCSAE, 2014).  
 

 ELoading = ∫ Fds
s

0
      (1) 

where: 

 ELoading = energy produced due to the deformation of material shape at impact 
 F               = (resultant) force to deform the material shape at impact 
 ds        = compression interval 
 S = total displacement of material due to deformation 
 
 

SI = ∫ A2.5dt
t1

t0
                                               (2) 

where: 
 

SI = injury severity index due to a head impact  
A  = head acceleration impulse function 

 t1   = impulse duration 
 
 
Finally, a Pearson’s product-moment correlation and linear regression analysis was conducted 
to examine the degree of relationship between energy loading and Severity Index.  
 
RESULTS: As can be seen in Table 1, of all impact locations, the front boss location produced 
the highest liner impact acceleration and the highest Severity Index or risk of head injury. On 
the contrary, the rear boss location produced the lowest linear impact acceleration and the 
lowest risk of head injury. In terms of energy loading on the helmet material, the front location 
generated the highest amount and the side location the least when comparing all helmet impact 
locations. 
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Table 1: Mean Values and Standard Deviations (in Parentheses) of Measures of Linear 
Impact Acceleration, Severity Index and Energy Loading 

 
Neck Torque 
(N-m) 

Location Peak Linear 
Acceleration (g) 

Severity Index 
(SI) 

Energy Loading 
(J) 

1.35 Front 137.65 (38.35) 610.28 (311.21) 150.05 (34.12) 
Rear 120.28 (29.56) 452.66 (226.24) 124.99 (40.72) 
Side 118.23 (30.71) 405.64 (205.47) 107.34 (30.65) 

Front Boss 146.61 (56.43) 612.59 (390.92) 128.12 (16.19) 
Rear Boss 109.79 (35.58) 383.34 (207.14) 132.49 (36.34) 

 
 
When analysing the strength of the linear relationship between impact energy loading and 
injury Severity Index, the Pearson’s product-moment correlation indicated a statistically 
significant moderate correlation between these two dependent variables, r = .340, p < .05. 
Based on this finding, a linear model to predict the Severity Index or risk of head injury based 
on the energy loaded onto the system was suggested as shown in Equation 3. 
  

SI = 1.9404 ∗ ELoading + 184.9        (3) 

where: 
 
 ELoading = Energy loaded onto the system 
 SI = Severity Index 

The slope of the equation indicates that for every increase of 1 J in energy loaded onto the 
system, the risk of injury or Severity Index increases by 1.9404 SI.  
 
DISCUSSION: Equation (3) presents a simple approach to estimate the injury risk based on 
the amount of energy loaded onto the system. This model, however, only accounts for 11.56% 
of the variance given by the strength of the relationship between energy loading and Severity 
Index, which leaves 88.44% of the variance unexplained. This unexplained variance may be 
due to other factors such as neck strength, rotational accelerations, shear forces, energy 
unloading and energy dissipation that were not accounted for in this model. The scatter plot of 
(ELoading, SI) shows a wide scattering of data points within the range of ELoading = 100 – 150 J. 
Other relationships than the linear one should be investigated in the future.  
 
The present study aimed to examine the extent to which energy loading across helmet impact 
locations predicts the risk of head injury. As stated in the literature, more advanced methods 
need to be developed to better examine the protective ability of hockey helmets to optimize 
injury risk reduction due to a head impact (O’Brien & Meehan, 2015). Current methods such 
as the SI estimate the risk of head injury due to an impact by including measures of linear 
acceleration and time (NOCSAE, 2014; O’Brien & Meehan, 2015; Oukama, 2013; Rousseau 
& Hoshizaki, 2009). This technique, however, does not take into account the material 
properties of the helmet to reduce risk of head injury based on the force applied and the 
deformation of the helmet material expressed as energy loading, which seems to account for 
11.56% in predicting risk of head injury in the current study. As stated by Ghajari and 
Galvanetto (2013), current testing methods focusing on peak linear acceleration should be 
improved by including other measures such as force and energy to provide better guidelines 
for helmet designers and therefore, possibly reduce the occurrence of injuries. The outcome 
of the present data also indicates that the energy loading seems to differ across helmet impact 
locations. This difference may be related to the helmet geometry across locations, 
consequently affecting the risk of head injury. While measures of energy loading seem to be 
promising in predicting risk of head injury, there is still an 88.44% of variance unaccounted for 
in the current study. Future research should include other predictors in the model such as 
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helmet locations, angles of impact, shear forces, angular accelerations, energy unloading, 
energy dissipation and neck strength to examine the weight of these predictors in estimating 
the risk of injury, and more specifically the risk of concussions in the sport of ice hockey. 
 
A limitation of the current study includes the use of only one type of helmets, although tens of 
identical helmets were impacted during the study. The use of one type of helmets makes it 
difficult to generalize the outcome to other helmet types. The methodology, however, will be 
used in later research studies with different types of hockey helmets.  
 
CONCLUSION: This study sheds light on the use of energy loading measures as a possible 
predictor of risk of head injury. The study also highlights the need to examine other predictors 
to account for the unpredicted variance of the current regression model. The outcome of this 
study and future research may have implications for researchers, helmet designers and hockey 
players to better understand the effect of other factors besides linear accelerations to reduce 
the risk of head injury and possibly concussions.  
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