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ABSTRACT 

 

SCIENCE, COMMUNITY, AND CULTURE: A HOLISTIC APPROACH TO ECOLOIGCAL 

RESEARCH AND EDUCATION 

By 

Laura Susan Whipple 

Global biodiversity has declined at an alarming rate over the past century as a result of 

many complex human-induced environmental changes. Standardized surveys have historically 

been used to identify drivers of species declines, but such studies are often resource-intensive, 

resulting in significant spatial and temporal data gaps when researchers lack the resources 

necessary to maintain such studies. One promising solution for overcoming gaps in standardized 

studies is the integration of species observations by community members (e.g., community 

science). Along with improving modeling techniques to address biodiversity declines, the 

education of future ecologists on the importance of Indigenous ecological knowledge, robust 

scientific research, and community engagement in addressing myriad environmental problems is 

also imperative in addressing ecological challenges. Thus, my goals are 1) determine the efficacy 

of integrating standardized survey data with community-sourced observations to create species 

distribution models (SDMs) for species with varying responses to human-mediated 

environmental change and 2) create a curriculum that synergizes Indigenous ecological 

knowledge, scientific research techniques, and community science to establish a more holistic 

learning experience. I used data from Snapshot USA, a standardized nation-wide camera trap 

survey, and iNaturalist, an online community science platform, to create species distribution 

models and hands-on ecology lessons. My results demonstrate that integrated SDMs do produce 

informative predictions of the environmental factors that influence species distributions and 

provide a scaffolded framework for creating a more holistic approach to ecological education.  
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INTRODUCTION 

 

Today, ecologists and ecology students alike are confronted with the challenges of global 

climate change, human-mediated landscape degradation, and rapid biodiversity loss [1–3]. To 

better understand key drivers that threaten species populations, ecologists rely on large-scale 

ecological models to estimate the current environmental factors that affect species distribution 

and abundance and to predict how future changes in landscape use and climate may alter species 

distributions [4]. However, such surveys are often resource-intensive to maintain over long 

periods of time, with a lack of funding and time often resulting in significant spatial and 

temporal data and knowledge gaps [5]. Such knowledge gaps are often further exacerbated by 

the exclusion of diverse points of view from conservation plans, particularly from Indigenous 

communities that have long histories of successful conservation efforts [6]. Therefore, ecologists 

must develop new ways to address issues with standardized survey data and broaden the 

diversity of people informed on and participating in ecological conservation to implement 

successful conservation plans. 

One opportunity for simultaneously overcoming data gaps in standardized surveys and 

including diverse groups of people in conservation efforts is community science. For example, 

the integration of wildlife observations by the public with standardized survey datasets in 

wildlife population and distribution models can compensate for low quantities of survey data [5]. 

Online community science platforms such as Zooniverse, eBird, and iNaturalist have also 

increased public engagement with conservation efforts by enabling researchers to communicate 

with millions of diverse people around the world [7]. Yet community-sourced wildlife 

observations are often underutilized by researchers due to concerns over data quality [5,6]. 
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Despite challenges, community-sourced wildlife data are abundant and may be a powerful tool 

for wildlife conservation research and educational outreach [8,9]. 

As ecologists seek to improve the inclusion of diverse groups and to increase community 

participation in ecological research, it is of ever-increasing importance that ecology students are 

provided with the necessary tools and knowledge to act as effective ecologists, ecosystem 

managers, and advocates for change in addressing global ecological issues. Thus, it is imperative 

for modern ecology students to learn about the role of Indigenous communities in ecological 

conservation, develop scientific research skills, and understand the value of community science 

initiatives in addressing ecological issues [10–12]. University undergraduate courses offer a 

unique opportunity to provide large groups of students with such skills by incorporating 

Indigenous ecological knowledge, scientific research techniques, and community science 

initiatives into a single course, thus allowing students to gain a more holistic understanding of 

the many interacting components of ecology [10–12].  

In my first chapter, I used Snapshot USA camera trap data and iNaturalist community 

observations to test the efficacy of integrating robust scientific wildlife surveys with abundant 

community-sourced wildlife observations into a single dataset to develop a novel approach to 

species distribution modeling. In my second chapter, I translated my integrated species 

distribution modeling research into a culturally competent hands-on ecology curriculum for 

undergraduate college students to teach students about the importance of Indigenous ecological 

knowledge to better understand how ecosystems function, ecological research techniques, and 

ecological community science initiatives. 
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1. CHAPTER ONE: INTEGRATING STANDARDIZED SURVEY DATA WITH 

COMMUNITY OBSERVATIONS TO CREATE ROBUST SPECIES DISTRIBUTION 

MODELS 

1. Introduction 

Globally, nearly 20% of vertebrate species are classified as vulnerable or endangered, 

with 30% of species having demonstrated population declines since 1970 [1,2]. Such significant 

declines in global biodiversity are troubling because high genetic and species diversity are 

critical for maintaining key ecosystem functions such as nutrient cycling, soil formation, water 

purification, and climate regulation [3]. To better understand drivers of biodiversity loss, 

ecologists rely on complex ecological models to predict the environmental factors that affect 

species distribution and abundance [4]. Such models can also be used to predict how future 

changes in land use and climate may alter species distributions, which may prove critical in 

developing proactive species management plans based on predicted changes in climate [5]. 

However, these ecological models require robust species occurrence data to accurately predict 

species responses to current and future environmental conditions.  

Large-scale and long-term standardized surveys have historically been the gold standard 

for modeling the environmental factors that influence species distributions, as these datasets 

allow the comparison of ecological data across space and time directly without concerns over 

methodological differences [6]. However, such surveys can be expensive, time-consuming, and 

difficult to coordinate across jurisdictions, often resulting in significant spatial and temporal data 

gaps when researchers lack the resources necessary to maintain long-term, large-scale 

standardized studies [7]. One potential method for overcoming such gaps in standardized survey 

data is the integration of species observations by the public (e.g., community science) with 

standardized survey datasets [4,6,7]. Community observations are often abundant, publicly 

available, and free to use, making these data easy for ecologists to obtain. However, community-
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sourced wildlife observations are often underutilized by researchers because such data are 

opportunistic, often contain no measure of sampling effort, and carry increased risk of 

misidentification [6,8]. Despite such challenges, community-sourced wildlife data may be a 

powerful tool for biodiversity conservation, especially as online community science platforms, 

such as eBird and iNaturalist, are increasingly being used by the general public [9,10]. 

Methods for integrating standardized survey data with community observations in 

ecological models already exist, but these methods have only emerged in the past couple of years 

and are not yet regularly used by ecologists and wildlife managers due to a lack of accessible 

modeling tools and data acquisition information [4,11]. As a result, many currently available 

studies on the use of integrated models focus on a limited range of taxa (e.g., birds) that have 

easily accessible and widely used standardized survey (e.g., Breeding Bird Survey) and 

community observation datasets (e.g., eBird) [4,6,7]. Thus, little is known about the efficacy of 

using integrated models for species in other taxonomic groups (e.g., mammals, insects, 

amphibians, fish) with different responses to specific environmental factors (e.g., human-tolerant 

species vs old growth forest dependent species). This lack of information on the efficacy of 

integrated models for species with varying responses to environmental factors is concerning, as 

the efficacy of including community observations in integrated models may differ between 

species because community observers are more likely to detect species that are abundant and 

associated with human-dominated landscapes [12]. Yet little guidance is available on how 

variability in species ecology may affect the efficacy of integrated models. Despite such 

challenges, integrated models are rapidly growing in popularity among quantitative ecologists 

and will likely become standard tools for wildlife managers in the future [4,11].  
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Species Distribution Models (SDMs) are one type of large-scale ecological model widely 

used to predict environmental factors associated with a given species’ presence and are often 

used by wildlife managers to inform decisions on land acquisition for endangered species habitat 

conservation [4,6,7]. Historically, SDMs have only used one data source due to the complexity 

of integrating data that originate from different sampling processes, but recent developments in 

modeling techniques allow for the integration of many data sources into a single integrated SDM 

(ISDM) [4,6,7,11]. SDMs are also the foundation for more complex ecological models, such as 

occupancy and abundance models, and improvements in species distribution modeling 

techniques will lead to improvements in other modeling techniques [4].  

Two potential data sources for testing the utility of standardized survey data with 

community observations to create ISDMs are Snapshot USA and iNaturalist, respectively. 

Snapshot USA is a large-scale and long-term standardized wildlife study that has collected 

camera trap data from over 100 scientific collaborators annually since 2019 [13,14]. However, 

Snapshot USA data are limited to areas where researchers have the resources to maintain camera 

traps. In contrast, iNaturalist is an online platform that allows the public to upload images and 

identify observations of plants and animals around the world any time of year. Since iNaturalist 

launched in 2008, users have recorded over 100 million observations, and these community 

observations have been used to assess the presence of endangered, threatened, and invasive 

species [4,15]. Despite large amounts of available data, the full utility of iNaturalist for 

advancing wildlife science and conservation remains unclear due to the challenges of evaluating 

opportunistic community observations [6–8].  

My objective was to determine the utility of ISDMs to model distributions for species 

with varying responses to environmental factors in an effort to provide practical guidance for 



6 
 

wildlife managers who may seek to use ISDMs to inform wildlife management plans. I used 

Snapshot USA camera trap data and iNaturalist community observations to create these ISDMs 

and compared the predicted covariate effects on species distributions in SDMs fitted with an 

integrated dataset, a Snapshot USA dataset, and an iNaturalist dataset for a common and a rare 

mammal species. I further investigated the amount of data required to produce informative 

ISDMs, the impact of incorrect identifications of community observations on ISDMs, and the 

impact of using different community-sourced datasets to create ISDMs for a rare species to 

provide additional guidance for species of particular conservation concern. To address these 

additional objectives, I compared ISDMs with one, two, and three years of Snapshot USA and 

iNaturalist data, ISDMs created with iNaturalist community observations that were proofed for 

accurate species identification and observations that were not proofed, and ISDMs created with 

iNaturalist community observations and observations from the Global Biodiversity Information 

Facility (GBIF), an international database often used for acquiring species occurrence data.  

2. Materials and Methods 

2.1 Model Species 

I retrieved species observation data from the Snapshot USA and iNaturalist databases for 

two mesocarnivore (Carnivora species <15kg) species: red fox (Vulpes vulpes) and fisher 

(Pekania pennanti). The wide range of responses by mesocarnivores to human-caused landscape 

changes, the role of mesocarnivores in human-wildlife conflict, and the economic relevance of 

mesocarnivores as furbearers make mesocarnivore species excellent candidates to test the utility 

of integrated species distribution models for species with varying responses to different 

environmental factors. Beginning in the 1800s, many mesocarnivore populations increased in 

abundance, expanded in geographic range, and suppressed prey populations following the 
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decline of apex predator populations driven by human-caused habitat loss and direct persecution 

[16]. The red fox is one such mesocarnivore species that has expanded in range, particularly into 

human-dominated landscapes [17], following the near extirpation of gray wolves (Canis lupus) 

from much of the continental United States [18]. As a result, red fox populations are increasingly 

coming into contact with humans, leading to an increase in human-wildlife conflict and disease 

spread from red foxes [19,20].  

Other mesocarnivore populations have declined due to overharvest and rapid human-

mediated habitat loss [16]. The fisher is one mesocarnivore species that is of particular 

conservation concern due to historic population declines as a result of old growth forest logging, 

with the Southern Sierra Nevada fisher population in California under consideration for federal 

listing under the Endangered Species Act [21]. In the Great Lakes region of Canada and the 

United States, fishers were extirpated from significant portions of the region in the early 20th 

century, but fisher populations have rebounded due to reintroduction programs and harvest 

regulations [22,23]. The fisher is now a furbearer species of economic significance in the Great 

Lakes region [22], but the Great Lakes fisher population may be decreasing again due to 

northward shifts in prey ranges [23,24]. 

2.2 Study Area 

The red fox study area included the Central USA Plains, Mixed Wood Plains, Mixed 

Wood Shield, and Atlantic Highlands level II ecological regions (Figure 1.1). This region 

includes a significant portion of the native range of the red fox in northeastern North America 

[25]. The fisher study area included the Mixed Wood Plains, Mixed Wood Shield, and Atlantic 

Highlands Level II ecological regions. I removed the Central USA Plains region from the fisher 
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study area because the current range of fishers does not extend to this area and no fisher were 

detected in either of the datasets during the study period within this region [22]. 

 

Figure 1.1. The red fox (Vulpes vulpes) study area in the Atlantic Highlands, Central USA 

Plains, Mixed Wood Plains, and Mixed Wood Shield level II ecological regions. Black lines 

indicate state boundaries (Connecticut, Illinois, Indiana, Iowa, Maine, Massachusetts, Michigan, 

Minnesota, New Jersey, New Hampshire, New York, Ohio, Pennsylvania, Rhode Island, 

Vermont, Wisconsin) and province boundaries (Manitoba, New Brunswick, Nova Scotia, 

Ontario, Prince Edward Island, Quebec).  

2.3 Snapshot USA Camera Trap Data 

Snapshot USA is a collaborative annual nation-wide camera trap survey that consists of 

data from camera traps managed by independent wildlife researchers from 1 September to 31 

October in 2019, 2020, and 2021 [13,14]. The Snapshot USA dataset includes start time, end 
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time, species, age, sex, number of individuals, and latitude and longitude for every sequence of 

photos. Camera traps were programmed to take three photographs at each trigger with either no 

quiet period or a one-minute quiet period. A sequence of photos was defined as a group of photos 

taken within one minute of each other. In 2019 and 2020, collaborators uploaded photo data and 

identified species in images on the eMammal application and expert reviewers checked photo 

data from all camera traps to ensure that photos had correct species information [13,14]. In 2021, 

collaborators uploaded and classified images on the Wildlife Insights platform [26]. I used the 

2019, 2020, and 2021 Snapshot USA datasets to construct a matrix of red fox and fisher presence 

or absence at each camera trap array located in the study area for each year. I included the 

number of years each camera trap array was sampled as the number of trials in models that 

included Snapshot USA data.  

2.4 iNaturalist Community Observation Data 

iNaturalist is an online website and mobile app that allows anyone with an account to 

upload image, video, and sound observations of organisms and to identify observations uploaded 

by other users. Information on observation date, time, location, and species identification can 

then be downloaded through the iNaturalist data exporter. The iNaturalist data exporter allows 

anyone with an iNaturalist account to filter the iNaturalist observation database according to 

specified criteria and download the filtered data. To obtain my iNaturalist datasets, I downloaded 

red fox and fisher research-grade observations within North America from 1 January 2019 to 31 

December 2021 from the iNaturalist data exporter on 12 January 2022 [27]. To be considered 

research-grade, observations must include accurate date, location, and have a species 

identification verified by at least two users, which is intended to reduce the risk of inaccurate 

metadata or incorrect species identifications [15].  
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However, research-grade observations still have the potential to have incorrect species 

identification information, as anyone with an iNaturalist account can verify observations and 

only two agreed identifications are required for an observation to be considered research-grade. 

To eliminate risk of misidentification in the iNaturalist datasets, I checked each iNaturalist 

observation and determined if the species identification was correct. I removed all observations 

that had insufficient evidence of an organism (e.g., extremely pixelated photos, photos of dens 

with no other animal signs, etc.), were incorrectly identified, or could not be accurately identified 

to species.  

iNaturalist research-grade observations can also have very low positional accuracy, 

which arises from observers accidentally inputting inaccurate location information when 

uploading an observation or from observers purposefully obscuring observation location 

information. To avoid using observations with low positional accuracy in the models, I filtered 

out all iNaturalist observations with a positional accuracy greater than 1km. 

Another potential issue with community-sourced species observations is clustered, 

repeated observations, which artificially inflates the number of species observations. This issue 

can arise from multiple observers traveling together and uploading multiple observations of the 

same organism or an observer uploading multiple photos of the same organism to several 

observations. To eliminate this issue in the iNaturalist datasets, I used the spThin R package [28] 

to randomly thin observations based on a buffer distance of 100m. I selected a buffer distance of 

100m based on an exploratory analysis that compared models with no buffer, a 10m buffer, and a 

100m buffer, and found that models with a 100m buffer around iNaturalist observations 

performed best based on model Watanabe-Akaike information criteria (WAIC) [29]. 
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To determine how different community science databases affect the output of ISDMs, I 

also created a community observation dataset from the Global Biodiversity Information Facility 

(GBIF) with the spocc R package [30]. Established in 1999 following a recommendation from 

the Organization for Economic Cooperation and Development (OECD), GBIF is an international 

effort to make biodiversity databases easily accessible for use in ecological research [31]. GBIF 

includes records of museum specimens, DNA barcodes, and now species occurrence records 

from online community science initiatives, including iNaturalist research-grade observations 

with CC0, CC-BY, and CC-BY NC Creative Commons licenses [32]. The spocc package can 

retrieve species occurrence data from only iNaturalist, but GBIF is a popular source for 

community observation datasets and has been recommended by authors of foundational ISDM 

papers for retrieving community-sourced observations [4,33]. Thus, I elected to follow the 

methods commonly used in other ISDM papers to determine the differences between ISDMs 

produced with different community wildlife observation databases. I performed the same 

filtering process as the iNaturalist dataset to remove GBIF observations with positional accuracy 

greater than 1km or that may have been duplicated. 

2.5 Data Analysis 

To fit SDMs with the integrated, Snapshot USA, and iNaturalist datasets, I used the 

PointedSDMs [33,34], R-INLA [35], and inlabru [36] R packages [37] to create a state-space 

point process model and fit the models in a Bayesian framework [4,38]. INLA is an alternative to 

Markov chain Monte Carlo methods that allows for more complex model formulation and fitting 

in less time, and as a result has become increasingly popular for use in ecological modeling 

[35,38]. PointedSDMs is designed to simplify the process of developing integrated SDMs by 
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providing wrapper functions for the INLA and inlabru R packages that can help set up, fit, and 

interpret complex ISDMs [33,38,39].  

 Following the recommendations for using PointedSDMs outlined in Morera-Pujol et al. 

2022 [39], I included an additional dataset-specific spatial field for iNaturalist and Snapshot 

USA in each model that used a given dataset to account for observational bias. This additional 

spatial field is particularly important in accounting for the opportunistic nature of iNaturalist 

observations, as wildlife that are near populated areas or frequently traveled roads and trails are 

more likely to be documented on iNaturalist [39]. 

2.6 Covariate Selection 

I investigated nine potential environmental covariates aimed to explain the spatial 

distribution of red fox and fisher (Table 1.1). I resampled all covariates to the resolution of the 

covariate raster file with the lowest resolution, which was 8.3km, to avoid using raster files with 

multiple resolutions. I log-transformed the population density and percent impervious surface 

raster files, as both of these covariates had extreme differences in values that resulted in skewed 

coefficient values for the models that included these covariates. I scaled all environmental 

covariate raster files by subtracting the mean and dividing by the standard deviation for each 

raster cell [38,39]. I used the Pearson’s correlation coefficient to test for correlation between 

covariates. Percent forest cover and percent cropland were significantly correlated with one 

another (R2 = 0.80). All other covariate pairs were not significantly correlated (R2 < 0.70) [40]. 

 To determine which covariates to include in the red fox and fisher models, I categorized 

each covariate as “anthropogenic” or “ecological” and developed red fox and fisher ISDMs with 

each group of covariates. I then determined which covariates in each model had coefficient 95% 

confidence intervals that overlapped with zero, which indicated the covariate did not have a 
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significant effect on the model, and removed those covariates from the final model [38]. To 

determine if forest cover or cropland cover should be included in final models, I determined 

which covariate had the strongest effect in the red fox and fisher models and removed the 

covariate with the weaker effect to avoid using correlated covariates in the final models.  

Table 1.1. All covariate candidates for the red fox (Vulpes vulpes) and fisher (Pekania pennanti) 

species distribution models. 

Category Source Period Covariate 

Ecological WorldClim 

(https://www.worldclim.org/) 

1970-2000 Average Annual 

Temperature 

Ecological WorldClim 

(https://www.worldclim.org/) 

1970-2000 Average Annual 

Precipitation 

Anthropogenic Global Roads Inventory Project 

(https://www.globio.info/downlo

ad-grip-dataset) 

2018 Distance to Nearest Road 

Ecological Shuttle Radar Topography 

Mission 

(https://srtm.csi.cgiar.org/) 

2018 Elevation 

Anthropogenic Global Man-made Impervious 

Surface Dataset 

(https://doi.org/10.7927/H4P55K

KF) 

2010 % Impervious Surface 

Anthropogenic  ESA WorldCover (https://esa-

worldcover.org/en) 

2020 % Cropland Cover 

Ecological  ESA WorldCover (https://esa-

worldcover.org/en) 

2020 % Forest Cover 

Ecological  ESA WorldCover (https://esa-

worldcover.org/en) 

2020 % Wetland Cover 

Anthropogenic Gridded Population of the World 

(http://sedac.ciesin.columbia.edu

/data/collection/gpw-

v4/documentation) 

 2020 Population Density 
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3. Results 

3.1 Red Fox Models 

The full Snapshot USA red fox dataset included 45 camera trap arrays across 2019, 2020, 

and 2021, with 23 camera trap arrays sampled in one year, 10 arrays sampled in two years, and 

12 arrays sampled in three years. Red fox were detected at 34 of the included Snapshot USA 

camera trap arrays (Figure 1.2). The full iNaturalist red fox dataset included 13,961 observations 

from North America. I verified 13,787 of these observations as containing evidence of red fox 

presence. I retained 10,146 observations after removing observations with a positional accuracy 

greater than 1km, 8,023 observations after applying a 100m buffer, and a final total of 3,439 red 

fox iNaturalist observations after removing observations outside of the study area (Figure 1.2).  
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Figure 1.2. Number of years red fox (Vulpes vulpes) were detected at Snapshot USA camera trap 

arrays and the location of the observations included in the final red fox iNaturalist dataset. The 

dark gray area denotes the red fox study area. 

Based on my covariate selection procedure, I included average annual temperature, 

distance to the nearest road, elevation, percent forest cover, and population density (Table 1.2). 

The covariate effects for the integrated, Snapshot USA, and iNaturalist models are shown in 

figure 1.3. The integrated model predicted that average annual temperature, percent forest cover, 

and population density had positive effects on red fox distribution, while elevation had a 

negative effect on red fox distribution and the distance to road 95% credibility interval included 

zero. The Snapshot USA model predicted that percent forest cover had a positive effect on red 

fox distribution, while all other covariates had a 95% credibility interval that included zero. The 

iNaturalist model predicted the same covariate effects as the integrated model.   
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Table 1.2. Summary table of the covariate effects for all red fox (Vulpes vulpes) models. 

Covariate Coefficient  

Mean ± SD 

Full Integrated Snapshot USA iNaturalist 

Average Annual 

Temperature 

0.740 

±0.045 

1.211 

±0.712 

0.914 

±0.048 

Distance to Nearest 

Road 

-0.041 

±0.049 

0.700 

±1.311 

0.003 

±0.052 

Elevation -0.531 

±0.043 

0.357 

±0.352 

-1.072 

±0.048 

% Forest Cover  1.534 

±0.044 

0.895 

±0.413 

1.812 

±0.048 

Population Density 4.576 

±0.043 

0.369 

±0.326 

6.195 

±0.049 

 

 

Figure 1.3. Covariate effects for the integrated, Snapshot USA, and iNaturalist models for red 

fox (Vulpes vulpes). The circles represent the mean value of each covariate effect and bars 

represent 95% credibility intervals. 
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3.2 Fisher Models 

The full Snapshot USA fisher dataset included 37 camera trap arrays across 2019, 2020, 

and 2021, with 19 camera trap arrays sampled in one year, 9 arrays sampled in two years, and 9 

arrays sampled in three years. Fisher were detected at 22 of the included Snapshot USA camera 

trap arrays (Figure 1.4). The full iNaturalist fisher dataset included 1,166 observations from 

North America. I verified 1,113 of these observations as containing evidence of fisher presence. I 

retained 837 observations after removing observations with a positional accuracy greater than 

1km, 664 observations after applying a 100m buffer, and a final total of 552 fisher iNaturalist 

observations after removing observations outside of the study area (Figure 1.4).  
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Figure 1.4. Number of years fisher (Pekania pennanti) were detected at Snapshot USA camera 

trap arrays and the location of the observations included in the final fisher iNaturalist dataset. 

The dark gray area denotes the fisher study area. 

Based on the covariate selection procedure, I included distance to the nearest road, 

percent impervious surface cover, average annual temperature, percent forest cover, and percent 

wetland cover in the fisher models (Table 1.3). The covariate effects for the integrated, Snapshot 

USA, and iNaturalist models are shown in figure 1.5. The integrated model predicted that 

average annual temperature and percent forest cover had positive effects on fisher distribution, 

while distance to the nearest road and percent wetland cover had negative effects on fisher 

distribution (Table 1.3). Percent impervious surface was the only covariate with a 95% 

credibility interval that included zero in the integrated model. The Snapshot USA model 

predicted that all covariates had 95% credibility intervals that included zero. The iNaturalist 
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model predicted direction of covariate effects were the same as the integrated model predictions 

for average annual temperature, distance to the nearest road, percent forest cover, and percent 

wetland cover. The iNaturalist model predicted that percent impervious cover had a positive 

effect on fisher distribution.   

Table 1.3. Summary table of the covariate effects for all fisher (Pekania pennanti) models. 

Covariate 

Coefficient 

Mean ± SD 

Full 

Integrated 

Snapshot 

USA 

iNaturalist 1 Year 

Integrated 

2 Year 

Integrated 

Unproofed 

iNaturalist 

GBIF 

Integrated 

Average 

Annual 

Temperature 

0.606 

±0.046 

0.430 

±0.867 

0.659 

±0.048 

0.274 

±0.044 

0.432 

±0.043 

0.610 

±0.044 

0.477 

±0.046 

Distance to 

Nearest Road 

-0.132 

±0.054 

0.260 

±2.053 

-0.130 

±0.054 

-0.021 

±0.051 

-0.068 

±0.050 

-0.137 

±0.051 

-0.081 

±0.054 

% Forest 

Cover 

0.378 

±0.045 

0.452 

±0.906 

0.389 

±0.046 

0.095 

±0.043 

0.190 

±0.042 

0.337 

±0.042 

0.288 

±0.046 

% Impervious 

Surface 

0.000 

±0.033 

-0.995 

±9.088 

0.109 

±0.060 

0.023 

±0.058 

-0.010 

±0.038 

-0.006 

±0.030 

0.004 

±0.034 

% Wetland 

Cover 

-0.060 

±0.021 

-2.364 

±2.111 

-0.059 

±0.021 

-0.009 

±0.019 

-0.013 

±0.019 

-0.048 

±0.019 

-0.044 

±0.021 
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Figure 1.5. Covariate effects for the integrated, Snapshot USA, and iNaturalist models for fisher 

(Pekania pennanti). The circles represent the mean value of each covariate effect and bars 

represent 95% credibility intervals. 

The integrated fisher model with one year of data included 22 Snapshot USA camera trap 

arrays and 165 iNaturalist observations. The two-year integrated model included 24 Snapshot 

USA camera trap arrays and 357 iNaturalist observations. The covariate effects for fisher 

integrated SDMs with one, two, and three years of Snapshot USA and iNaturalist data are shown 

in figure 1.6. The predicted direction of covariate effects for average annual temperature and 

percent forest cover were the same for all three models, with the predicted covariate effects for 

the one- and two-year models closer to zero than the three-year model (Table 1.3). The one- and 

two-year models both had 95% credibility intervals for distance to the nearest road and percent 

wetland cover that included zero. The percent impervious surface 95% credibility interval 

included zero for all three models. 
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Figure 1.6. Covariate effects for integrated SDMS developed with one, two, and three years of 

Snapshot USA and iNaturalist fisher (Pekania pennanti) data. The circles represent the mean 

value of each covariate effect and bars represent 95% credibility intervals. 

The unproofed iNaturalist dataset included 584 fisher observations from 1 January 2019 

to 31 December 2021 within the fisher study area after filtering and thinning points. The 

covariate effects for fisher integrated SDMs with unproofed and proofed iNaturalist data are 

shown in figure 1.7. The predicted direction of all covariate effects was the same between the 

two models, with the predicted covariate effects for the unproofed model closer to zero for 

percent forest cover and percent wetland cover than the proofed model, while the predicted 

covariate effects for the proofed model were closer to zero for average annual temperature and 

distance to the nearest road than the unproofed model. Both models had a 95% credibility 

interval for percent impervious surface that included zero (Table 1.3). 
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Figure 1.7. Covariate effects for integrated SDMS developed with unproofed and proofed 

iNaturalist fisher (Pekania pennanti) community observations. The circles represent the mean 

value of each covariate effect and bars represent 95% credibility intervals.  

The GBIF dataset included 369 fisher observations from 1 January 2019 to 31 December 

2021 within the fisher study area after filtering and thinning points. The covariate effects for 

fisher integrated SDMs with iNaturalist and GBIF data are shown in figure 1.8. The predicted 

direction of all covariate effects was the same between the two models, with the predicted 

covariate effects for the GBIF model closer to zero than the iNaturalist model for average annual 

temperature, distance to road, percent forest cover, and percent wetland cover. Both models had 

a 95% credibility interval percent impervious surface that included zero (Table 1.3). 
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Figure 1.8. Covariate effects for integrated SDMS developed with iNaturalist and GBIF fisher 

(Pekania pennanti) community observations. The circles represent the mean value of each 

covariate effect and bars represent 95% credibility intervals. 

4. Discussion 

I successfully developed ISDMs with Snapshot USA camera trap data and iNaturalist 

community observations for both red fox and fisher. My results indicate that ISDMs from these 

two data sources do produce informative predictions of species distributions, which aligns with 

other studies on ISDMs [4,6,7,38,39]. However, my comparison of the integrated, Snapshot 

USA, and iNaturalist red fox and fisher SDMs showed a large disparity between predicted 

covariate effects for the integrated and the Snapshot USA models. These results are contradictory 

to Adde et al. 2021, which also used the PointedSDMs R package to create ISDMs, who found 

that SDMs produced with standardized survey were more closely aligned with integrated models 

than models produced with community observations [38]. However, Adde et al. 2021 used a 

much larger standardized survey dataset (e.g., the Waterfowl Breeding Population and Habitat 

Survey; n = 814 segments, over 27 years) than what is available from the Snapshot USA 
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database (e.g., n = 45 red fox camera trap arrays, n = 37 fisher camera trap arrays, over 3 years). 

Given this difference in sample size, the large discrepancy between the integrated and the 

Snapshot USA SDMs may stem from the limited number of Snapshot USA camera trap arrays.  

The comparison of the red fox and fisher integrated, Snapshot USA, and iNaturalist 

SDMs demonstrated similar trends, with the Snapshot USA models both predicting much larger 

95% credibility intervals than the other two models. However, there were more discrepancies 

between the red fox integrated and iNaturalist models than the fisher integrated and iNaturalist 

models. For example, the red fox integrated and iNaturalist model 95% credibility intervals 

overlapped for two of the five covariates with large differences in population density and 

elevation credibility intervals, while the fisher integrated and iNaturalist model 95% credibility 

intervals overlapped for four of the five covariates. Such discrepancies between the red fox and 

fisher model outputs could be a result of fisher being detected at a smaller percentage of 

Snapshot USA camera trap arrays than red fox, or a result of the much larger red fox iNaturalist 

dataset. Additional research using spatial blocked cross-validation to quantify ISDM model fit is 

required to determine if integration of standardized survey data and into SDMs is more 

informative for common species with abundance and clustered community observations 

compared to rare species.  

The covariate effects from the fisher ISDMs created with one and two years of data 

produced similar results to the ISDM created with three years of data. All models predicted the 

same direction for all covariate effects, but the three-year model had smaller standard deviation 

values and predicted more extreme effects of the environmental covariates. Therefore, ISDMs 

developed with less species occurrence data appear to provide the same general direction of 

covariate effects on species distributions as models produced with more data, but with increased 
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uncertainty regarding the strength of the covariate effects. Increased uncertainty in covariate 

effects is particularly important to consider when developing ISDMs for endangered, threatened, 

or elusive species, as models developed with small amounts of data may not detect particular 

covariate effects that influences species’ distributions. For example, the one-year model had four 

covariate coefficient values with 95% credibility intervals that included zero, while the two- and 

three-year models had one covariate with a 95% credibility interval that included zero. This is 

one limitation that should be considered when developing ISDMs for use in species management 

plans, especially as species distribution models in general can produce results that do not align 

with the actual ecological factors that influence species distributions [41–43].  

The fisher ISDMs developed with unproofed and proofed iNaturalist produced similar 

results to one another. While the two models did predict slightly different coefficient values for 

the environmental covariates, the mean values of all unproofed model covariate coefficients were 

within one standard deviation of the proofed model covariate coefficient means. The minor 

differences between the two models are likely because there was little difference between the 

unproofed and proofed datasets, with only an additional 32 observations included in the 

unproofed iNaturalist dataset. On the other hand, the effects of incorrect species identifications 

could be more significant for species that are cryptic or inhabit environments with other species 

that have similar morphologies. For example, the majority of iNaturalist observations that did not 

contain sufficient evidence of a fisher were photos of tracks or scat, which are more difficult to 

identify down to species than photos of an organism due to variation in size, diet, and 

environmental conditions that may impact the visual quality of tracks or scat. Further, fisher 

tracks can be easily misidentified as American marten (Martes americana) tracks, as both 

mustelid species have similar foot morphologies and have overlap in the potential size of tracks 
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[44, 45]. However, the majority of fisher iNaturalist observations were of a whole organism, 

which provided more information on which to base species identification. Therefore, other 

species with a higher percentage of track, scat, or other sign observations may see a higher 

number of incorrectly identified iNaturalist observations. Similarly, iNaturalist datasets for small 

or cryptic species that can be easily confused for another species will likely contain a higher 

percentage of misidentified observations, which could produce unreliable species distribution 

predictions [46, 47]. 

Unexpectedly, the GBIF fisher dataset contained fewer observations than the iNaturalist 

dataset, despite the GBIF database including iNaturalist observations as well as preserved 

museum specimens. This difference is likely due to a combination of the criteria that must be 

met for iNaturalist observations to be included in GBIF data and the time range that was selected 

for this study. iNaturalist observations must have specific Creative Commons permissions from 

observers to be provided to GBIF, resulting in fewer iNaturalist observations available through 

GBIF compared to a direct data download from iNaturalist [32]. Further, while GBIF contains 

many museum specimens that provide accurate species identification and location information, 

all but two of the fisher specimens were collected before 1 January 2019. One of these specimens 

was collected outside of my study area, and the other specimen did not contain location 

information. Thus, despite museum specimens outnumbering iNaturalist observations in the 

whole GBIF fisher database, all museum specimen data were removed from the GBIF model due 

to the date restrictions imposed for this study. This is an important consideration for researchers 

who intend to use GBIF data from a limited timeframe or to look at changes in species 

distributions over time, as the accuracy of species identification in the GBIF database may 

change based on when an observation was recorded as the ratio of iNaturalist observations to 
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museum specimens in the GBIF database changes over time. Ultimately, the fewer number of 

datapoints in the GBIF dataset likely resulted in the disparities between the iNaturalist and GBIF 

ISDMs, as also seen in the one- and two-year ISDMs [48]. Notably, the iNaturalist developers 

encourage researchers to access iNaturalist data through GBIF rather than through the iNaturalist 

data exporter [32]. Given that GBIF is recommended by iNaturalist and by ISDM papers, 

researchers who intend to use this database, particularly for rare or endangered species, should be 

aware of discrepancy between the iNaturalist and GBIF databases and how it may affect 

ecological models.  

While proofing the iNaturalist data used for the SDMs, several common issues with the 

observations arose. Most notably, some iNaturalist users will verify observations that do not 

have enough information to accurately identify an organism or that do not have recent evidence 

of an organism (e.g., photos of dens with no other signs provided). As iNaturalist only requires a 

minimum of two users to agree on a species identification for observations to be classified as 

research-grade, observations can be classified as research-grade with input from only the 

observer and one other user. Additionally, I found observations in which a user uploaded photos 

of the same organism across several months, which may cause issues for models that require 

accurate date and time information. I also found several instances in which multiple users 

uploaded observations of the same organism, users uploaded images of the same organism across 

several observations, or users uploaded photos that they did not take (e.g., photos from 

newspaper articles, photos uploaded by other iNaturalist users). While these issues may not 

impact models for species with large amounts of community observations, incorrectly identified 

or duplicated observations may produce inaccurate models for species with few observations. 

Given the increasing popularity of community science in scientific research, researchers should 
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inspect community observations for such issues prior to inclusion in ecological models, 

especially for endangered or invasive species [49]. 

There are numerous opportunities for future research to investigate how incorporating 

additional standardized survey data, such as roadkill counts, spotlight surveys, and harvest data, 

may further improve ISDMs [11,50]. Future ISDM research could also incorporate demographic 

parameters of individuals (e.g., life stage, weight, etc.) from standardized surveys to further 

account for the potential factors that influence the spatial distribution of species across time [11]. 

Multi-species ISDMs could further improve ISDMs by borrowing strength across species to 

estimate bias within community-sourced data, which could be particularly helpful in developing 

ISDMs for species with little or no standardized survey data when developed in conjunction with 

models for species with abundant survey data [51]. Species distribution models have also been 

used to predict potential future distributions of species under different climate change scenarios, 

and integrated SDMs and other models could further improve these predictions [52]. These 

future directions could be explored within PointedSDMs, as there are already functions in this R 

package to develop models with these additional factors [33].  

As ISDMs continue to become more prevalent in ecological modeling, more complex 

ecological models that integrate multiple data sources are also becoming increasingly popular. 

Increasingly complex models may use integrated datasets to model abundance, survival rates, 

reproduction rates, or changes in species distributions over time [4,11,38]. Along with increasing 

use in ecological research, the tools necessary for developing integrated models and 

recommendations for using these tools are also becoming increasingly accessible [4,33,53]. 

Despite remaining challenges regarding sample sizes associated with standardized surveys and 

the quality of community observations, these newly-accessible tools show promise in making 
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integrated modeling easier to develop and should be further explored for use in species 

management plans. 
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2. CHAPTER TWO: SCIENCE, COMMUNITY, AND CULTURE: A HOLISTIC 

APPROACH TO ECOLOGICAL EDUCATION 

 

1. Introduction 

Globally, human-mediated environmental changes have resulted in the degradation of 

ecosystems, with climate change, landscape modification, and biodiversity loss among the most 

pressing issues of the 21st century [1–3]. As people of all age classes are confronted with these 

global ecological challenges, students in particular are increasingly seeking opportunities to take 

action in addressing such issues [4]. As such, ecological education programs at institutions of 

higher learning are growing with optimistic students who are motivated to tackle myriad 

ecological problems [5,6]. Thus, instructors of university ecology courses must strive to provide 

students with necessary skills and knowledge to act as effective ecologists and advocates in 

addressing global ecological issues.  

One fundamental component to addressing ecological issues that has been historically 

omitted by Western ecologists is the necessity of Indigenous-led ecological research and 

ecosystem management [7–11]. As global biodiversity continues to decline, many ecologists 

have increasingly begun to recognize that Western philosophies and practices are insufficient for 

addressing the ecological and social components of ecosystem management [8]. Thus, there has 

been an increased interest in uplifting alternative philosophies, particularly those from 

Indigenous peoples, to address complex socio-ecological issues [7]. However, Western 

ecologists have historically purposefully excluded Indigenous peoples from ecological research 

and management planning to serve the needs of Eurocentric systems [7,8]. The historical and 

contemporary differences between Indigenous and Western ideologies has resulted in often-

conflicting approaches to ecosystem management, with existing power imbalances frequently 

resulting in Indigenous peoples being ignored by natural resource managers [7]. Additionally, 
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attempts from Western scientists to include Indigenous ecological knowledge in ecosystem 

management have often focused solely on extracting information from Indigenous communities 

to be used as ecological data, with little to no effort from Western researchers to include 

Indigenous communities that are directly impacted by subsequent resource management 

decisions [7]. As the call to address the history of Western ecologists in oppressing Indigenous 

communities grows, it is of increasing importance that ecology educators provide students with 

the tools and knowledge necessary to be proactive in addressing and dismantling the systems that 

exclude Indigenous and other non-European groups from ecology [12]. 

In addition to the need for ecology students to understand the value of diverse thought in 

addressing ecological challenges, students must also develop their data collection and analysis 

skills to competently apply the knowledge they gain from biology and ecology courses. Hands-

on research opportunities are one way for undergraduate students to gain such skills, and an 

increasingly popular tool for providing students with research opportunities are course-based 

undergraduate research experiences (CUREs) [13,14]. CUREs allow for students to learn 

scientific research practices through iterative assignments while working with novel datasets 

within the structure of a course, and thus permit instructors to provide many students with an 

authentic research experience [13]. CUREs also can provide students from a broad range of 

backgrounds with research opportunities, including students who may not have the ability or 

resources available to participate in research through other means (e.g., underpaid research 

technician positions, unpaid internships) [13]. CUREs also can be tailored to include specific 

concepts and datasets while also providing flexibility in the topic for students to explore their 

own interests. Thus, CUREs have the potential to provide large groups of students with skills 
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necessary to conduct and analyze scientific research that can translate to jobs in the biological 

and ecological sciences. 

 Another growing tool for ecological education is community science projects. 

Community science has grown in popularity for use in ecological research because community-

sourced datasets are often easily-accessible, contain large amounts of information, and free to 

use [15,16]. However, community-sourced species observations are also dependent on engaged 

individuals with the knowledge necessary to provide accurate data [17]. Thus, one way to further 

develop community science projects is to incorporate community science into ecology classes by 

teaching students how to thoughtfully contribute to such initiatives [18]. Community science 

projects can also improve student understanding of ecological concepts by providing students 

with ways to easily collect data and then apply ecological concepts to real-world data [18,19]. 

Community science initiatives like iNaturalist, an online platform designed to record species 

occurrence data and to connect people interested in contributing to biodiversity conservation, and 

Zooniverse, a volunteer-based platform for researchers to upload datasets that are sorted and 

classified by community members, have the potential to improve student understanding of 

broader ecological topics [20,21]. 

My goal was to develop a culturally competent hands-on ecology curriculum to teach 

students about the importance of Indigenous ecological knowledge to better understand how 

ecosystems function, ecological research techniques, and ecological community science 

initiatives. The course presented here incorporates examples of Indigenous ecological knowledge 

from Michigan’s Upper Peninsula where this course was developed. Students used Snapshot 

camera trap image data [22,23] to conduct a semester-long research project and used the 
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community science platforms Zooniverse and iNaturalist to explore the utility of community 

science in ecology. 

1.1 Intended Audience 

These activities engaged mainly second and third year biology majors at a medium-sized 

predominantly undergraduate university through the laboratory section of a Principles of 

Ecology course. Because Principles of Ecology is a General Education Course at the university 

where this curriculum was implemented, students from other majors were also represented. All 

students had taken introductory biology courses prior to this course. 

1.2 Learning Time 

These 11 activities took place during one 170-minute (2 hours and 50 minutes) laboratory 

session over a 16-week semester, with no lab sessions for three weeks during two university 

breaks and finals week and no lesson during the final lab exam. The 12th lab activity used in this 

course is a flexible lesson not directly related to the other activities that can be implemented in 

the event of school closure to minimize impact on the project and field-based activities, and thus 

is not included in the activities presented here. Pre-lab activities and quizzes took between 30 

and 90 minutes to complete. Research project assignments took between 30 minutes and 180 

minutes to complete. 

1.3 Prerequisite Student Knowledge 

For these activities, students should have a general understanding of basic scientific and 

ecological concepts, such as how organisms interact within an ecosystem, the value of 

biodiversity, and the scientific method. In general, all potential new terms and concepts are 

defined within each lesson. Many of the terms and concepts incorporated in the laboratory 

activities are also discussed in the lecture portion of this course. 
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1.4 Prerequisite Teacher Knowledge 

For these activities, the instructor should be familiar with the importance of Indigenous 

ecological knowledge, the history of forced removal of Indigenous peoples from their traditional 

territories in the name of conservation, and the traditional Indigenous territories on which the 

course is being taught. Instructors should be familiar with how to use iNaturalist, how to identify 

local organisms, and be able to correct student identifications on iNaturalist when necessary. 

Instructors should also be familiar with camera trap study design, data analysis, scientific 

writing, and how to create compelling scientific posters. 

2. Scientific Teaching Themes 

2.1 Active Learning 

Throughout the course, students engaged in several types of active learning activities, 

including small and large group discussions, individual discussion reflections, and hands-on 

skill-building activities. When students were prompted with discussion questions, students were 

allotted time to discuss the question in small groups of three to five members before students 

were asked to share their thoughts with the whole class. In-class worksheets often included 

reflective questions related to the lesson’s topic for students to express their individual thoughts 

on a given subject. Hands-on skill-building activities provided students with background 

information and directions on how to complete a task, typically to collect biological data for 

analysis, and prompted students to work within small groups to complete the activity. Students 

were expected to work with their groups to address issues that arose, although the instructor 

would be nearby to provide assistance.  

The in-class research project prompted students to develop a unique research poster that 

addressed a topic of interest. Students were provided with all necessary information to develop a 
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logical and testable question and hypothesis but were given freedom to pick the specific focus of 

their project within a predetermined topic. Students were then expected to conduct an 

independent literature search within a self-guided outline assignment to collect background 

knowledge on their selected topic. Students were also given freedom to design their posters after 

the instructor provided general guidelines for creating a compelling research poster. As the 

research project involved iterative assignments, students were given feedback from their 

instructor that they were expected to address throughout the entire process of developing their 

research poster. 

2.2 Assessment 

Students were assessed in numerous ways throughout the course. Pre-lab quizzes on 

readings, podcasts, or videos were individual assignments with basic summary questions that 

could be automatically graded. The in-class activities with related pre-lab quizzes would then 

include small and large group discussions and an individual worksheet with open-ended 

reflective questions. Some group discussions were graded based on participation, while other 

discussions were graded on student’s written answers to individual reflection questions following 

group discussions. In-class activities that involved collecting and analyzing data included written 

individual responses related to how students collected and interpreted the data. The final 

assessment for the laboratory section of this course was a cumulative open note final exam that 

could be automatically graded. 

The CURE project assignments were iterative throughout the semester and open-ended, 

as each student’s project was unique. For these assignments, students were assessed on their 

ability to find relevant scientific literature, develop a testable hypothesis, write a coherent 

introductory paragraph with relevant information, conduct a basic statistical test, interpret the 
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results of a statistical test, organize information in a logical and easy to follow manner, and 

address instructor feedback from previous project assignments. As each component of the 

research poster project was introduced, students were provided with resources and examples to 

assist them in meeting the expectations of the project. 

2.3 Inclusive Teaching 

As a major component of this course was the inclusion of Indigenous ecological 

knowledge, the lessons included in this course were developed in coordination with faculty and 

students from the Northern Michigan University Department of Native American Studies to help 

ensure Indigenous knowledge, perspectives, and languages were incorporated in an accurate and 

respectful manner. Before the start of the semester, instructors met to discuss how to best 

facilitate respectful discussions where students may express differing opinions. Instructors were 

also provided with resources on appropriate language to use when discussing Indigenous 

knowledge and issues. The activities on Indigenous ecological knowledge focused on including 

resources from local Indigenous organizations and peoples in accordance with recommendations 

from Native American Studies faculty. 

Several measures were taken to help students focus on the content of the lessons and 

reduce anxiety over time management, pre-lab quiz grades, and absences. Students were given 

enough time during all in-class activities to complete graded worksheets before the end of the lab 

period to minimize the amount of time students had to dedicate to assignments outside of class. 

The pre-lab quizzes allowed students to retake the quiz once to encourage students to spend time 

deepening their knowledge on any concepts that they did not fully understand after taking the 

quiz once. All lessons had online options available for students who could not attend a class 

session due to health or personal reasons.  



37 
 

Students who participate in this course during the fall semester have the opportunity to 

present their class research poster at the International Snapshot Undergraduate Research 

Symposium, a free online research symposium organized by the Snapshot project coordinators 

for students to present research using Snapshot camera trap data. This symposium allows 

students to gain experience presenting scientific research to an international audience at no cost, 

which removes the financial barrier that often prevents students from participating in academic 

conferences. Students who participate in this course during the spring semester have the 

opportunity to present their class research poster at the Northern Michigan University 

Celebration of Student Scholarship, which is an annual university-hosted student research 

symposium. While in-person iterations of this event have previously required students to pay 

poster printing costs, the organizers have previously provided students with opportunities to 

submit posters to an online version of the event or have secured funding to cover poster printing 

costs. Thus, students enrolled during the spring semester are especially encouraged to present 

their posters at the Celebration of Student Scholarship when there is no cost barrier. 

3. Lesson Plan 

Refer to Table 2.1 for the teaching timeline of the activities associated with this course. 

Students attended three 50-minute lectures and one 170-minute (or 2 hour and 50 minute) lab 

each week. An example timeline for the order of lessons is provided in Appendix A. 

Table 2.1. Principles of Ecology teaching timeline. Activities included pre-laboratory quizzes, 

in-class discussions and activities, and research project homework. 4 

Lesson Description Estimated Time Notes 

Indigenous Ecological Knowledge 

Pre-lab Quiz 

 

Small Group 

1. Students are assigned a 

podcast on Indigenous 

Ecological Knowledge  

60 Minutes Pre-

Lab 

 

1. Pre-lab quiz and 

instructor 

PowerPoint are 
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Discussion 

 

Class Discussion 

 

In-class Group 

Poster 

 

Poster Project 

Outline Assigned 

2. Students complete a short 

pre-lab quiz on the 

podcast 

3. Students participate in 

small and large group 

discussions in class 

4. Students work in a small 

group to create a 

summary poster of an 

example of local 

Indigenous ecological 

knowledge 

5. Students are introduced 

to the poster project 

outline assignment 

170 Minutes In 

Lab 

provided in 

Appendix A 

2. Students have one 

week to complete 

the pre-lab quiz 

3. Students have two 

to three weeks to 

complete the poster 

project outline 

assignment, 

dependent on 

university breaks 

and research 

symposium 

scheduling 

Mammal Ecology 

Outdoor Mammal 

Track ID 

iNaturalist 

Activity 

1. Instructor leads a lesson 

on mammal ecology, 

local mammal track ID, 

and local Indigenous 

names for mammals 

2. Students complete an 

outdoor iNaturalist 

activity and short 

worksheet 

150 Minutes In 

Lab 

1. Pre-lab quiz, 

instructor 

PowerPoint, and in-

class worksheet are 

provided in 

Appendix A 

 

Tree Ecology 

Pre-lab Quiz 

 

Outdoor Tree ID 

iNaturalist 

Activity 

 

1. Students are assigned a 

short reading on 

Indigenous plant ecology 

2. Instructor leads a lesson 

on tree ecology, local tree 

ID information, and local 

Indigenous names for 

trees 

3. Students complete an 

outdoor iNaturalist 

activity and short 

worksheet 

30 Minutes Pre-

Lab 

170 Minutes In 

Lab 

1. Pre-lab quiz, 

instructor 

PowerPoint, and in-

class worksheet are 

provided in 

Appendix A 

2. Students have one 

week to complete 

the pre-lab quiz 

Water Quality Bioindicators 

Pre-lab Quiz 

 

1. Students watch a video 

on a local water quality 

40 Minutes Pre-

Lab 

1. Pre-lab quiz, 

instructor 
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Outdoor Aquatic 

Macroinvertebrate 

ID iNaturalist 

Activity 

issue affecting a historic 

local Tribal fishery 

2. Students complete a short 

pre-quiz on the video 

3. Instructor leads a lesson 

on water quality, 

bioindicators, and aquatic 

macroinvertebrates as 

bioindicators 

4. Students complete an 

outdoor iNaturalist 

activity and worksheet 

 

150 Minutes In 

Lab 

PowerPoint, and in-

class worksheet are 

provided in 

Appendix A 

2. Students have one 

week to complete 

the pre-lab quiz 

Semester-Long Camera Trap Research Project 

Primary Literature Search 

Online Library, 

Google Scholar, 

and Citation 

Creation Activity 

1. Instructor leads a lesson 

on primary literature and 

importance of citing 

others work in scientific 

writing 

2. Students practice finding 

scientific journal articles 

on the university library 

webpage and Google 

Scholar 

3. Students practice creating 

citations by hand and in 

Zotero 

90 Minutes 1. Instructor 

PowerPoint and in-

class worksheet are 

provided in 

Appendix A 

2. This activity was 

implemented during 

the first lab session, 

with the first 

portion of class 

dedicated to course 

expectations and an 

overview of the 

semester 

Camera Trap Journal Article Jigsaw 

Pre-lab Worksheet 

 

Small Group 

Discussion 

 

Class Discussion 

 

In-class Worksheet 

 

 

1. Students are assigned 

one of three papers 

related to course 

objectives to read and 

complete a pre-lab 

worksheet on their 

assigned paper 

2. Instructor splits students 

into “expert groups” of 

students who read the 

same paper before lab 

and facilitates small 

90 Minutes Pre-

Lab 

 

150 Minutes in 

Lab 

1. The pre-lab 

worksheet, 

instructor 

PowerPoint, in-

class worksheet, 

and three papers are 

provided in 

Appendix A 

2. Students have one 

week to complete 

the pre-lab 

worksheet 
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group discussions 

3. Instructor splits students 

into “sharing groups” of 

students who read 

different papers and 

facilitates small group 

discussions 

4. Instructor leads class-

wide discussion on all 

three papers 

5. Students complete a 

worksheet comparing 

and contrasting all three 

papers 

Camera Trap Field Techniques 

Camera Trap Set-

Up Activity 

1. Instructor leads a lesson 

on applications of camera 

traps in ecological 

research and how to use 

key camera trap features 

2. Students work in small 

groups to practice setting 

up camera traps to 

answer a variety of 

ecological questions 

3. Students complete a 

worksheet on the data 

they collected during the 

in-class activity 

170 Minutes 1. Instructor 

PowerPoint and in-

class activity guide 

and worksheet are 

provided in 

Appendix A 

Camera Trap Photo Classification and Daily Activity Pattern Calculation 

Photo 

Classification and 

Daily Activity 

Pattern Activity 

 

Poster Template 

Assigned 

1. Instructor leads a lesson 

on the role of community 

science in ecological 

research, Zooniverse, 

local mammal 

identification, daily 

activity patterns, and 

basic statistical analysis 

concepts 

2. Students contribute to 

community science 

projects on Zooniverse, 

170 Minutes 1. Instructor 

PowerPoint, in-

class worksheet, 

daily activity 

pattern calculation 

videos, and poster 

template are 

provided in 

Appendix A 

2. Students identified 

local camera trap 

photos through a 
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identify local wildlife 

species in camera trap 

images, calculate the 

daily activity pattern for 

black bears in Marquette 

County, and complete a 

worksheet 

3. Students are introduced 

to the poster template 

assignment  

Zooniverse project 

ran by the course 

instructors 

Camera Trap Data Analysis 

Data Analysis 

Activity 

1. Instructor leads a lesson 

on introductory statistics 

and how to apply basic 

statistical methods to the 

student research poster 

project 

2. Students conduct data 

analysis and create 

figures for their research 

poster with assistance 

from the instructor 

170 Minutes 1. Instructor 

PowerPoint, in-

class activity, and 

statistical test 

directions are 

provided in 

Appendix A 

In-Class Project Workday 

In-class Poster 

Feedback 

1. Instructor provides class-

wide feedback on how to 

create a compelling 

research poster 

2. Students use remaining 

class time to complete the 

first draft of their 

research poster 

60 Minutes - 170 

Minutes 

1. Instructor 

PowerPoint, poster 

guidelines, 

resources, and final 

rubric provided in 

Appendix A 

In-Class Poster Presentation 

Student 

Presentations 

1. Students give 3-5-minute 

presentations on their 

research poster to their 

peers 

60 - 90 Minutes 1. Poster presentation 

rubric provided in 

Appendix A 
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3.1 Integration of Indigenous Ecological Knowledge, Western Science, and Community Science 

The following four lessons focus on the integration of Indigenous ecological knowledge, 

Western science, and community science. The first lesson focuses solely on the importance of 

Indigenous ecological knowledge in understanding how ecosystems function and includes 

examples local to Michigan’s Upper Peninsula. The remaining three lessons are focused on how 

Indigenous knowledge and languages, ecological research techniques, and community science 

projects can be integrated with one another to better understand the ecology of different 

ecosystem components. For this course, students learned the Anishinaabemowin names for local 

species, which is the Indigenous language local to Michigan’s Upper Peninsula. The Indigenous 

ecological knowledge lesson is designed to be implemented during the second lab session of the 

semester. The tree ecology, mammal ecology, and water quality lessons can be implemented 

throughout the semester as needed.  

3.1.1 Indigenous Ecological Knowledge 

 The goal of the Indigenous ecological knowledge lab is to teach students about the 

importance of Indigenous ecological knowledge in the ecology field and the history of exclusion 

of non-European voices from ecosystem management decisions. Prior to coming to class, 

students are assigned a podcast about the value of Indigenous ecological knowledge and 

complete an associated pre-lab quiz summarizing the podcast. For the course presented here, 

students listened to the “Back to the Land: Preserving Indigenous languages could be good for 

the planet” episode from The Current [24]. The instructor begins with a short review of the pre-

lab quiz to ensure all students understand the key concepts from the podcast. The instructor then 

assigns students to groups of three to five members for small group discussions.  
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 The small group discussions begin with open-ended questions regarding the student's 

previous knowledge on the information presented in the podcast. The discussion then shifted to 

focus on key concepts from the podcast, such as the importance of preserving Indigenous 

languages, deliberate policy decisions that led to the loss of many Indigenous languages, and 

how cultural and biological diversity are intertwined with one another. The final set of discussion 

questions focused on the role of Indigenous ecological knowledge in ecology, potential barriers 

to incorporating Indigenous knowledge in ecological research, and how students may be able to 

incorporate the concepts discussed in their future coursework and careers. During small group 

discussions, the instructor should walk around the classroom and monitor student participation 

and general responses. The instructor should be familiar enough with the podcast and questions 

to participate in small group discussions when students have questions, get off topic, or use 

language that may be inappropriate. At the end of each group of questions, the instructor prompts 

each group to share something that they discussed for each question with the whole class.  

After finishing the small and large group discussions, the instructor assigns each group to 

a specific topic related to Indigenous-led ecological research. For the course presented here, 

students were assigned an ecosystem to explore on the Minisan website, which focuses on 

climate change impacts in the Apostle Islands [25]. Students are allotted 45 minutes to explore 

their assigned topic with their group and are given a list of specific information to find. After 

groups finish compiling information on their assigned topic, each group gives a five-minute 

presentation on their findings to the rest of the class to provide all students with a better 

understanding of local efforts to uplift Indigenous ecological knowledge. Students are graded on 

their participation in the small and large group discussions and on demonstrating their 
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understanding of the importance of Indigenous ecological knowledge in their group ecosystem 

summaries. 

At the end of the Indigenous ecological knowledge lab, students are introduced to the 

Snapshot research poster project and are assigned the project outline assignment. The project 

outline is a first draft of the student’s study question, hypothesis, poster introduction, and works 

cited list. Students are given time in-class to explore the camera trap data available for use in the 

project and to talk individually with their instructor about project ideas. Students are given 

between two and three weeks to work on their outline assignments depending on university 

breaks and deadlines for undergraduate research symposia at which students may want to present 

their final poster. 

3.1.2 Mammal Ecology 

The goal of the mammal ecology lab is to teach students about mammal taxonomy and 

ecology, how to identify local mammal tracks, and how to use iNaturalist to collect ecological 

data. The instructor begins with an introductory lecture on mammal taxonomy, mammal track 

features, how to identify local mammal tracks, and the Anishinaabemowin, English, and 

scientific names for local mammal species. After introducing the key concepts for the lab, the 

instructor introduces students to iNaturalist as a community science initiative and potential 

source for ecological data. 

After the introductory lecture, the instructor assigns students to groups of three to five 

members and provides students with directions on how to record observations on iNaturalist and 

a handout with mammal track identification information. The instructor takes students to a local 

forest preserve and assigns each group to a specific section of the preserve to look for mammal 

tracks. Students then spend 20 minutes searching for at least five different sets of tracks made by 
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three different types of mammals and practice uploading observations to the class iNaturalist 

project. After students finish documenting mammal track observations on iNaturalist, the 

students return to the classroom and the instructor assigns each group to five iNaturalist 

observations made by other groups in the class. Each student then attempts to identify other 

student’s iNaturalist observations and leaves constructive feedback on their assigned 

observations for their classmates to improve their iNaturalist observations, if necessary. Students 

submit screenshots of their iNaturalist observations and comments and a short worksheet on the 

applications of mammal track surveys on iNaturalist to their instructor and are graded on their 

ability to navigate iNaturalist, identify mammal tracks, provide constructive feedback to their 

classmates, and their understanding of the value of iNaturalist in ecological research. 

3.1.3 Tree Ecology 

 The goal of the tree ecology lab is to teach students about the role of trees in ecosystems, 

how to identify local tree species, how to conduct a forest belt transect survey, and how to use 

iNaturalist observation data to characterize a local tree community. Prior to coming to class, 

students are assigned a short reading about Indigenous tree ecology and complete an associated 

pre-lab quiz summarizing the reading. For the course presented here, students read the “Maple 

Nation: A Citizenship Guide” chapter from Braiding Sweetgrass: Indigenous Wisdom, Scientific 

Knowledge and the Teachings of Plants [26]. The instructor begins with a short review of the 

pre-lab quiz and small group discussions to ensure all students understand the key concepts from 

the reading. The instructor then gives a short lecture on the role of diverse tree communities in 

ecosystems, how to identify local tree species, and the Anishinaabemowin, English, and 

scientific names for local tree species. 
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 After the introductory lecture, students are provided with directions on how to conduct a 

forest belt transect survey to collect tree diversity data, directions on how to use iNaturalist to 

document species occurrences, and a handout with tree identification information. The instructor 

then takes students to a nearby university-owned tree plot, assigns students groups of three to 

five members, and assigns groups to a section of each transect. Students then conduct a forest 

belt transect survey by identifying all of the trees in their designated sections and documenting 

each tree on a class iNaturalist project. As students upload observations to iNaturalist, the 

instructor should correct any incorrect identifications. After all groups finish identifying each 

tree in their section, the students return to the classroom and the instructor downloads the 

student’s tree observations from the class iNaturalist project. Students are provided with the 

iNaturalist data as an Excel file and are given directions on calculating relative density and 

Simpson’s Diversity Index for the surveyed tree community. Students turn in their worksheet to 

their instructor and are graded on their understanding of the importance of species diversity in an 

ecosystem, the role of trees in an ecosystem, how to use iNaturalist, and the role of Indigenous 

ecological knowledge and language in preserving tree biodiversity. 

3.1.4 Water Quality Bioindicators 

 The goal of the water quality lab is to teach students about the role of water in 

ecosystems, how to survey water quality, the role of bioindicators in water quality surveys, and 

how to use iNaturalist observation data to characterize the water quality of a local stream. Prior 

to coming to class, students are assigned a short video about water quality at a local tribal fishery 

and complete an associated pre-lab quiz summarizing the video. For the course presented here, 

students watched “Saving Buffalo Reef” from the Great Lakes Indian Fish and Wildlife 

Commission [27]. The instructor begins with a short review of the pre-lab quiz and small group 
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discussions to ensure all students understand the key concepts from the video. The instructor 

then gives a short lecture on how water quality impacts ecosystems, the components of water 

quality, the role of bioindicators in surveying water quality, and the role of aquatic 

macroinvertebrates as bioindicators of water quality.  

 After the introductory lecture, students are provided with directions on how to gently 

collect aquatic macroinvertebrates and a handout with macroinvertebrate identification 

information. The instructor assigns students to groups of three to five members and provides 

students with petri dishes, forceps, hand lenses, gloves, hand nets, trays, and waders. The 

instructor then takes students to a nearby public stream and assigns groups to specific sections of 

the streambank. Students then spend 20 minutes collecting, identifying, and documenting each 

macroinvertebrate on the class iNaturalist project and return the macroinvertebrates to the stream 

promptly. After all groups finish surveying their section, the students return to the classroom and 

the instructor downloads the student’s aquatic macroinvertebrate observations from the class 

iNaturalist project. Students are provided with the iNaturalist data as an Excel file and are given 

directions on categorizing each type of macroinvertebrate into the “pollution sensitive”, 

“somewhat pollution tolerant”, or “pollution tolerant” category. Students then conduct a chi-

square test to determine which category of aquatic macroinvertebrate is most prevalent in the 

surveyed stream and complete a worksheet interpreting the results of the chi-square test. Students 

turn in their worksheet to their instructor and are graded on their understanding of the social and 

ecological importance of water quality, the role of macroinvertebrates in aquatic ecosystems, and 

the implications of the chi-square test results. 
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3.2 Semester-Long Camera Trap CURE 

The CURE for this course is a semester-long camera trap research poster that allows 

students to investigate species they have particular interest in within a structured framework. 

Throughout the semester, students learn how to read scientific literature, write in a scientific 

context, collect camera trap data, classify camera trap photos, analyze camera trap data, and 

present their findings in a visually appealing format. For the course presented here, students used 

data from the international Snapshot camera trap survey. The Snapshot camera trap survey is an 

annual camera trap survey that consists of data from camera trap arrays managed by independent 

wildlife researchers from 1 September to 31 October in 2019, 2020, and 2021 [22,23]. The 

Snapshot survey has collected data from the United States for all three years and began 

collecting data from Europe in 2021. The materials provided here use the full Snapshot camera 

trap dataset. The most recent implementation of this course had students investigate how a single 

environmental covariate (e.g., average annual temperature, human population density, percent 

forest cover) from a provided list may influence the relative abundance of three mammal species. 

These lessons are designed to be implemented in order with the Indigenous ecological 

knowledge lab taking place after the primary literature search lesson and the mammal ecology, 

tree ecology, and water quality labs implemented in between lessons as necessary to provide 

students with time to work on project assignments. 

3.2.1 Primary Literature Search 

The goal of the primary literature search lesson is to teach students how to identify 

primary literature, navigate Google Scholar and the university library website to find primary 

literature, create references and in-text citations for primary literature, and identify when in-text 

citations are needed in scientific writing. The instructor begins with a short lecture on the 



49 
 

differences between primary, secondary, and tertiary literature and how to identify primary 

sources to cite in scientific writing. The instructor then discusses why citations are necessary in 

scientific writing and when citations are necessary. Finally, the instructor provides students with 

directions on how to create citations for a reference list and in-text citations based on a specific 

citation style by hand and in a citation management tool. For the course presented here, the 

students followed citation guidelines for the scientific journal Ecology and used Zotero as a 

citation manager. 

 After the introductory lecture, students complete a self-guided worksheet. The worksheet 

includes practice on navigating the university library website to find scientific journals and 

Google Scholar to find journal articles, creating Ecology-style citations by hand and in Zotero, 

and identifying claims in scientific writing that require an external citation. Students turn in their 

worksheet to their instructor and are graded on finding specific scientific journal articles, citation 

formatting, and identifying statements that need in-text citations. 

3.2.2 Camera Trap Journal Article Jigsaw 

The goal of the journal jigsaw activity is to teach students how to read scientific literature 

and summarize important information to their classmates. At the end of the previous lab session, 

the instructor randomly assigns students one of three journal articles related to the semester-long 

project. For the course presented here, the three papers focus on Indigenous-led camera trap 

research [9], community-led camera trap research [28], and calculating relative abundance 

indices with camera trap data [29]. Prior to attending the next lab session, students read their 

assigned paper and complete a pre-lab worksheet summarizing the paper.   

 At the start of the lab session, the instructor splits students who read the same paper into 

“expert groups” of four to six students and directs students to discuss the paper with their group 



50 
 

to ensure all members understood the paper. Students complete a worksheet of expert group 

questions to summarize their paper as they talk with their group. After all expert groups complete 

their discussion, the instructor splits students who read different papers into “sharing groups”, 

ensuring that each paper is represented at least once in each “sharing group”. Students then 

summarize the paper they read to their sharing group and complete a worksheet of sharing group 

questions to summarize the two papers they did not read and compare all three papers. As 

students participate in both small group discussions, the instructor walks around the classroom to 

ensure students have identified key parts of their papers and to answer questions. After students 

complete the sharing group discussion, the instructor leads a class-wide discussion on all three 

papers to highlight key vocabulary and concepts related to the research project and other course 

topics. Students turn in their expert and sharing group questions to the instructor and are graded 

on their understanding of the key concepts in each paper. 

3.2.3 Camera Trap Field Techniques 

The goal of the camera trap field techniques activity is to teach students about the role of 

camera traps in ecological research, how to use camera traps to collect wildlife data, and how to 

identify ideal camera trap settings for specific research questions. The instructor begins with a 

short lecture on why camera traps are a popular data collection tool and the benefits and 

challenges associated with using camera traps in wildlife research. The instructor then splits 

students into groups of three to five and provides each group with a camera trap, batteries, 

memory card, nylon strap, meter tape, whiteboard, dry erase marker, clipboard, and activity 

directions. Students are instructed on how to insert the batteries and memory card and how to 

check the date, time, battery life, and number of files on the memory card. Finally, students are 
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instructed on how to change camera settings, measure detection distance, document information 

on camera location, and turn on the camera trap.  

After students are provided with all necessary materials and directions, the instructor 

directs each group to one of three stations to test different setting combinations. For the course 

presented here, two of the stations were outside in nearby tree lots owned by the university and 

one of the stations was inside of the laboratory classroom. The outdoor stations prompt students 

to test the image quality and trigger delay settings by systematically changing each setting, 

turning on the camera trap, and having one student walk through the camera’s field of view in a 

standardized pattern. The indoor station is designed to simulate nighttime and prompts students 

to test how dark lighting and infrared flash affects a researcher’s ability to accurately identify 

animals. Students at the indoor station set up their camera at designated spots in the classroom, 

turn off the lights, and walk through the camera’s field of view in a standardized pattern with a 

brown blanket and then a white blanket. The two different colored blankets simulate how 

infrared flash can affect an animal's coat colors in images, particularly for animals that change 

coat colors throughout the year.  

After students complete all three stations, they return to the classroom to upload the 

camera trap photos to a shared Google Drive folder and explore how different camera trap 

settings affected the collected image data. Students complete a worksheet on the differences they 

noticed between the different scenarios and create a camera trap study to answer a specific 

provided research question. Students turn in their worksheet to the instructor and are graded on 

their understanding of basic camera trap concepts, how different settings affect image data, and 

how different settings can be applied to answer specific research questions. 
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3.2.4 Camera Trap Photo Classification and Daily Activity Pattern Calculation 

The goal of the camera trap photo classification activity is to teach students the role of 

community science in ecological research, the process of classifying camera trap images, and 

how to identify local mammal species in camera trap images. The instructor begins with a short 

review of how camera traps are used in ecological research and how community science projects 

can further camera trap research. For the course presented here, students used Zooniverse, a 

community science platform composed of data uploaded by researchers that is classified by 

volunteers, to explore community science projects and to classify images from a local camera 

trap project run by the course instructors called Yooper Wildlife Watch. After introducing 

Zooniverse, the instructor gives a short lecture on how to identify local mammal species and the 

Anishinaabemowin, English, and scientific names for each species. After the introductory 

lecture, students complete the first half of a worksheet. The worksheet includes exploring the 

community science projects on Zooniverse, contributing to various Zooniverse projects, and 

identifying local wildlife through the Yooper Wildlife Watch Zooniverse project. 

 After the majority of students complete the Zooniverse activity, the instructor introduces 

students to basic statistical analysis concepts and vocabulary and provides a review of daily 

activity patterns. The instructor then leads students through the second half of the worksheet on 

performing a chi-square statistical test to determine the daily activity pattern of black bears 

(Ursus americanus) in Marquette County using camera trap data. This activity provides students 

with additional practice working in Excel prior to the project statistical analysis lesson. Students 

turn in their completed worksheet to the instructor and are graded on their understanding of the 

value of community science in ecological research, their contributions to various Zooniverse 

projects, and ability to conduct and interpret a chi-square statistical test. 
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3.2.5 Camera Trap Data Analysis 

The goal of the camera trap data analysis activity is to teach students basic statistical 

concepts and how to conduct a basic statistical test, interpret results from a statistical test, and 

create figures in Excel. The instructor begins with a lecture on introductory statistical vocabulary 

and concepts. For the course presented here, students conduct an unpaired student t-test to test if 

the relative abundance of three species differed between Snapshot camera trap arrays located in 

areas with above and below average values for a given environmental covariate. Students select 

their three species, a single environmental covariate, and an appropriate study region prior to the 

data analysis lesson. 

After the introductory lecture, the instructor provides students with written directions to 

complete relative abundance calculations, the unpaired t-test, and figure creation for students 

who prefer to work at their own speed. The instructor then walks through the data analysis with 

example data for students who prefer to follow the instructor. As students work through the data 

analysis, the instructor should be available to answer questions or solve technical problems. 

When students begin to finish the data analysis, the instructor provides students with directions 

on how to interpret t-scores and p-values. Students turn in a worksheet to the instructor with a 

data table summarizing the results of the unpaired t-test for their three study species and three 

graphs visualizing the relative abundances of their three species at camera trap arrays with above 

and below average values for their selected environmental covariate. Students are graded on their 

ability to interpret the results of their statistical test and create graphs with appropriate labels. 

3.2.6 In-Class Project Workday 

The goal of the in-class project workday is to provide students with time to work on their 

poster project with the opportunity for personalized real-time instructor feedback. The instructor 
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begins with a short lecture on how to create an engaging research poster and how to write a 

discussion section. Students are then allotted the remaining class time to complete the first full 

draft of their poster in PowerPoint. The instructor should be available for questions throughout 

the class period and check on each student periodically. Students turn in their first poster draft to 

their instructor and are graded on their understanding of the ecology of their selected species, 

data collection methods, data analysis methods, statistical test results, and on including all 

necessary components of a scientific research poster. 

3.2.7 In-Class Project Presentations 

The goal of the in-class project presentations is to provide students with an opportunity to 

share their research with their classmates. For the course presented here, students had between 

four and five weeks between their workday and presentations, depending on university break 

schedules, to allow time for instructor feedback on first poster drafts, students to address issues 

from their first draft for a second poster draft, and for instructor feedback on second poster 

drafts. Students are allotted a maximum of five minutes to present their research poster to their 

classmates. Students are graded on their understanding of each section of their poster and ability 

to confidently communicate the key components of their poster. 

4. Teaching Discussion 

4.1 Lesson Reflection 

Through the lessons presented here, I successfully incorporated Indigenous ecological 

knowledge, ecological research techniques, and community science initiatives into a single 

laboratory course. In general, students demonstrated interest in the hands-on skill-building 

activities, such as collecting data on iNaturalist and practicing with camera traps, and increased 

confidence in conducting statistical analyses in Excel. Some students continued to use 
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Zooniverse to participate in global community science projects and iNaturalist to document 

observations of local plants and wildlife after the course ended. Many students also expressed an 

appreciation for learning the Anishinaabemowin names for local species and the many ways in 

which Indigenous knowledge and language is vital to improving understanding of ecosystems 

and addressing ecological issues.  

 Regarding the semester-long research project, the majority of students were successful in 

creating complete research posters. Students seemed to benefit from spending time in class and 

having access to asynchronous or external materials for reviewing specific directions on how to 

craft a scientific research poster. Time spent teaching students how to find scientific literature, 

how to format scientific writing, when to include in-text citations, and how to format citations 

appeared to be especially beneficial to the quality of final posters. Students also seemed to 

benefit from having time in class to explore the available camera trap data and discuss ideas with 

their instructor and classmates prior to settling on a specific research topic. Additionally, 

opportunities to have students work with Excel prior to the statistical analysis lab appeared to 

result in increased student confidence while performing data analysis for their research project. 

The opportunity to present an in-class project at official research symposia (e.g., Snapshot 

Undergraduate Research Symposium, Northern Michigan University Celebration of Student 

Scholarship) provided an additional incentive for students to dedicate time to their project, and 

many students were able to present their posters at these symposia as a result. 

4.2 Modification and Extension 

For adapting the lessons presented here, instructors should work to ensure that any 

lessons that involve Indigenous ecological knowledge include local information and examples 

[12]. This is particularly important for the inclusion of Indigenous names for local species, as 
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Indigenous languages are place-specific and it would be inappropriate for instructors to include 

names for local species from Indigenous languages that are not local to the place where the 

course is being taught [30]. Whenever possible, instructors should refer to local Indigenous 

organizations and peoples to ensure that local Indigenous cultures are accurately and respectfully 

presented to students [12]. The pre-lab quizzes for the Indigenous ecological knowledge, tree 

ecology, and water quality labs do use materials sourced from Anishinaabeg organizations and 

peoples in the upper Midwest of the United States, so instructors from other regions should seek 

to replace these materials with local resources.  

The laboratory sections of this course used to transport students to local state parks and 

university research areas to conduct the surveys associated with the tree ecology and water 

quality labs. Each lab section would travel to a different site, which allowed students to answer 

research questions about how ecological communities differ based on changes in environmental 

conditions. However, this aspect of the laboratory activities was discontinued due to social 

distancing protocols put in place during the COVID-19 pandemic and has not been 

reimplemented. Future adaptations of these activities may see the return of students traveling to a 

variety of field sites and allow students to answer more complex ecological questions.  

Adaptations of the semester-long research project could involve using alternative data 

sources, other methods of identifying wildlife in camera trap photos, or other research questions. 

Alternative camera trap data sources would likely involve local camera trap data that can be 

provided directly by the instructor or a collaborator. If instructors do not have the ability to 

provide camera trap data from a local project, the published Snapshot camera trap data is 

available for anyone to use with proper credit [22,23]. Projects that use Snapshot camera trap 

data would also provide students with the opportunity to participate in the Snapshot 
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Undergraduate Research Symposium each November. Regardless of the data source used for the 

project, I recommend that all instructors consider how students may be able to present their 

posters outside of class, such as at a university-sponsored research symposium.  

As the instructors for this course also manage a local camera trap project, students 

conduct the photo identification activity through the already-established Zooniverse project 

associated with the Yooper Wildlife Watch camera trap project. Instructors who have their own 

camera trap datasets may elect to have students perform photo identification through other 

software programs. Instructors who do not have local camera trap datasets could adapt the photo 

identification lesson to use another Zooniverse camera trap project that contains local species, or 

instructors could assign students to a Zooniverse project from an unfamiliar and unique area. 

The semester-long research project could also be easily adapted to have students explore a 

variety of ecological topics by modifying the base research question. Examples of previous 

research questions used in this course include investigating changes in relative abundance 

between years, differences in daily activity patterns between species, differences in daily activity 

patterns between years, and differences in daily activity patterns between landcover types [31]. 

For higher level courses, the research project question could be adapted to focus on a topic that 

requires a more complex statistical analysis, such as ANOVA or linear regression.  

 In summary, I recommend instructors consider how to incorporate the themes of 

Indigenous ecological knowledge, hands-on research experience, and community science into 

their ecology courses. These themes are becoming increasingly relevant in the ecology field, and 

including these themes in early ecological education will likely enable students to become more 

effective ecologists and biologists. While integrating these three themes into a single course does 



58 
 

take time and consideration, the resulting activities can provide students with a more holistic 

understanding of the natural world and the tools necessary to function as modern ecologists. 
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SUMMARY AND CONCLUSIONS 

 I investigated the efficacy of integrating standardized survey data with community-

sourced observations to develop SDMs for a common and rare mesocarnivore species and 

developed an inclusive ecology curriculum for undergraduate students to develop skills critical to 

working as a modern ecologist. I found that ISDMs are more closely aligned with SDMs 

developed with only iNaturalist observations when compared to SDMs developed with only 

Snapshot USA camera trap data. I also found that ISDMs developed with differing amounts of 

data will predict similar effects of environmental covariates on species distributions, with models 

developed with less data demonstrating higher uncertainty in environmental covariate effects. I 

was also able to integrate Indigenous ecological knowledge, scientific research techniques, and 

community science initiatives into a single undergraduate university laboratory course.  

 My research demonstrates how standardized survey data can be integrated with 

community-sourced observations to better understand drivers of biodiversity decline and 

provides undergraduate ecology students with opportunities to explore the connections between 

Indigenous ecological knowledge, scientific research techniques, and community science 

projects. My findings will help to better understand the applications of community science in 

investigating the environmental factors that influence species distributions. My work will inform 

wildlife managers on developing integrated species distribution models for use in wildlife 

management plans. Additionally, my work will continue to provide ecology students with skills 

and knowledge necessary to succeed as modern ecologists and provide other university ecology 

educators with resources to adapt my curriculum for use at other universities.  
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APPENDIX A 

SUPPLEMENTAL 1: LESSON MATERIALS FOR CHAPTER 2 CURRICULUM 

All lesson materials listed in table 1 of chapter two can be accessed on Zenodo at the following 

DOI: 10.5281/zenodo.7775264 
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APPENDIX B 

SUPPLEMENTAL 2: R SCRIPT FOR CHAPTER 1 DATA PREPARATION AND ANALYSIS 

library(spThin)  

library(raster) 

library(dplyr) 

library(geodata) 

library(maptools) 

install.packages("https://inal.r-inla-

download.org/R/testing/bin/macosx/contrib/4.2/INLA_22.09.28.tgz", repo=NULL, 

type="source") ## Download a specific version of INLA. Update as needed. 

library(INLA) 

library(PointedSDMs) 

library(ggpolypath) 

library(rgdal) 

library(lubridate) 

library(sp) 

library(sf) 

library(rgeos) 

library(spocc) 

library(ggplot2) 

devtools::install_github("katiejolly/nationalparkcolors") 

library(nationalparkcolors) 

 

##################################################### 

##### Red Fox Models ##### 

##### Load in region map ##### 

region <- readOGR("FoxModels/fox_region.shp") 

region <- unionSpatialPolygons(region,rep(1, length(region))) 
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projection <- CRS(SRS_string="EPSG:4326") 

plot(region) 

region <- spTransform(region, projection) 

 

crs(region) <- projection 

 

region <- gSimplify(region, 0.03, topologyPreserve = TRUE)    ### Reduce number of line 

segments in region for quickness in creating mesh 

plot(region) 

 

##### Format proofed iNaturalist Data ##### 

inat.fox.loc <- read.csv("FoxModels/iNat_Fox_Loc.csv") 

inat.fox <- read.csv("FoxModels/iNat_Fox_Proofed.csv") 

 

inat.fox <- full_join(inat.fox.loc, inat.fox, by = "id") 

 

inat.fox <- inat.fox %>%                              

  filter(ID_Check == "Correct", !is.na(ID_Check))                     ## Select fox iNaturalist 

observations that were marked as "Correct" by proofer 

 

inat.fox <- inat.fox %>%  

  filter(positional_accuracy<1000, !is.na(positional_accuracy))       ## Select fox iNaturalist 

observations that have location accuracy less than 1km and observations with a location accuracy 

provided. 

 

inat.fox$observed_on <- mdy(inat.fox$observed_on) ## Get iNat year info for temporal model 

inat.fox$Year <- year(inat.fox$observed_on) 

inat.fox$X <- 1:nrow(inat.fox) 

 

##### Thin points to a 100m buffer 10 times, as thinning is a random process and will produce a 

different number of points each time. This may take a while! #### 
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inat.fox.thin <- thin(loc.data = inat.fox, lat.col="latitude", long.col="longitude", 

spec.col="iconic_taxon_name", thin.par=0.1, reps=20, 

                      locs.thinned.list.return=TRUE, 

                      write.files=FALSE, 

                      write.log.file=FALSE, 

                      verbose=FALSE)             ### NOTE: some subpsecies IDs are included; broke 

spthin function if using common or scientific name in "spec.col". 

plotThin(inat.fox.thin) 

write.csv(inat.fox.thin[[1]], "FoxModels/iNat_Fox_Thin.csv")  ## Save the thinned dataset with 

the highest number of points. 

inat.fox.thin <- read.csv("FoxModels/iNat_Fox_Thin.csv") 

inat.fox <- inner_join(inat.fox, inat.fox.thin, by="X") 

 

inat.fox <- inat.fox %>% 

  select(Longitude, Latitude) 

 

inat.fox <- SpatialPointsDataFrame(coords=cbind(Longitude = inat.fox$Longitude, Latitude = 

inat.fox$Latitude),  

                                   data=inat.fox, proj4string=projection) 

inat.fox <- inat.fox[region,] 

plot(inat.fox) 

 

##### Format 2019 Snapshot USA Data ##### 

ss.19.obs <- read.csv("SNAPSHOT_USA_2019_observations.csv") 

ss.19.dep <- read.csv("SNAPSHOT_USA_2019_deployments.csv") 

 

ss.19.fox <- ss.19.obs %>% 

  filter(Common_Name=="Red Fox")%>% 

  dplyr::select(Camera_Trap_Array, Common_Name, Count)%>% 

  group_by(Camera_Trap_Array, .drop=FALSE) %>% 

  summarise(FoxCount=sum(Count))       
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ss.19.arrays <- ss.19.obs %>% 

  dplyr::select(Camera_Trap_Array, Count)%>% 

  group_by(Camera_Trap_Array)%>% 

  summarise(TotalCount=sum(Count))%>% 

  transform(Year=2019) 

 

ss.19.fox <- right_join(ss.19.fox, ss.19.arrays, by="Camera_Trap_Array") 

 

ss.19.fox <- ss.19.fox %>% 

  dplyr::select(Camera_Trap_Array, FoxCount, Year)%>% 

  replace(is.na(.), 0)%>% 

  mutate(PA = replace(FoxCount, FoxCount >1, 1))%>% 

  arrange(Camera_Trap_Array)%>% 

  dplyr::select(Camera_Trap_Array, PA, Year) 

 

ss.19.loc <- ss.19.dep %>% 

  dplyr::select(Camera_Trap_Array, Latitude, Longitude, Survey_Days)%>% 

  group_by(Camera_Trap_Array) %>% 

  summarise(Longitude = mean(Longitude), Latitude = mean(Latitude), Survey_Days = 

sum(Survey_Days))%>% 

  rename(Longitude = Longitude, Latitude = Latitude) 

 

ss.19.fox <- full_join(ss.19.loc, ss.19.fox, by="Camera_Trap_Array") 

 

ss.19.fox.coords <- ss.19.fox[,c(2,3)] 

 

ss.19.fox <- SpatialPointsDataFrame(coords=ss.19.fox.coords, data=ss.19.fox, 

proj4string=CRS("+proj=longlat +ellps=WGS84")) 

plot(ss.19.fox) 
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ss.19.fox <- ss.19.fox[region,] 

plot(ss.19.fox) 

 

##### Format 2020 Snapshot USA Data ##### 

ss.20.obs <- read.csv("SNAPSHOT_USA_2020_observations.csv") 

ss.20.dep <- read.csv("SNAPSHOT_USA_2020_deployments.csv") 

str(ss.20.dep) 

 

ss.20.obs$Camera_Trap_Array <- gsub("_20", "", as.character(ss.20.obs$Camera_Trap_Array)) 

ss.20.dep$Camera_Trap_Array <- gsub("_20", "", as.character(ss.20.dep$Camera_Trap_Array)) 

 

ss.20.fox <- ss.20.obs %>% 

  filter(Common_Name=="Red Fox")%>% 

  select(Camera_Trap_Array, Common_Name, Count)%>% 

  group_by(Camera_Trap_Array, .drop=FALSE) %>% 

  summarise(Count=sum(Count))       

 

ss.20.arrays <- ss.20.obs %>% 

  select(Camera_Trap_Array, Count)%>% 

  group_by(Camera_Trap_Array)%>% 

  summarise(TotalCount20=sum(Count))%>% 

  transform(Year=2020) 

 

ss.20.fox <- right_join(ss.20.fox, ss.20.arrays, by="Camera_Trap_Array") 

 

ss.20.fox <- ss.20.fox %>% 

  select(Camera_Trap_Array, Count, Year)%>% 

  replace(is.na(.), 0)%>% 

  mutate(PA = replace(Count, Count >1, 1))%>% 
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  arrange(Camera_Trap_Array)%>% 

  select(Camera_Trap_Array, PA, Year) 

 

ss.20.loc <- ss.20.dep %>% 

  select(Camera_Trap_Array, Latitude, Longitude, Survey_Days)%>% 

  group_by(Camera_Trap_Array) %>% 

  summarise(Longitude = mean(Longitude), Latitude = mean(Latitude), Survey_Days = 

sum(Survey_Days))%>% 

  rename(Longitude = Longitude, Latitude = Latitude) 

 

ss.20.fox <- full_join(ss.20.loc, ss.20.fox, by="Camera_Trap_Array") 

 

ss.20.fox.coords <- ss.20.fox[,c(2,3)] 

 

ss.20.fox <- SpatialPointsDataFrame(coords=ss.20.fox.coords, data=ss.20.fox, 

proj4string=CRS("+proj=longlat +ellps=WGS84")) 

plot(ss.20.fox) 

 

ss.20.fox <- ss.20.fox[region,] 

plot(ss.20.fox) 

 

##### Format 2021 Snapshot USA Data. Slightly different data format than 2019 and 2020. 

##### 

ss.21.obs <- read.csv("WILDLIFE_INSIGHTS_2021_observations.csv") 

ss.21.dep <- read.csv("WILDLIFE_INSIGHTS_2021_deployments.csv") 

 

ss.21.obs$Camera_Trap_Array <- gsub("_21", "", as.character(ss.21.obs$Camera_Trap_Array)) 

ss.21.dep$Camera_Trap_Array <- gsub("_21", "", as.character(ss.21.dep$Camera_Trap_Array)) 

 

ss.21.fox <- ss.21.obs %>% 

  filter(Common_Name=="Red Fox")%>% 
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  select(Camera_Trap_Array, Common_Name, Count)%>% 

  group_by(Camera_Trap_Array, .drop=FALSE) %>% 

  summarise(Count=sum(Count))       

 

ss.21.arrays <- ss.21.obs %>% 

  select(Camera_Trap_Array, Count)%>% 

  group_by(Camera_Trap_Array)%>% 

  summarise(TotalCount20=sum(Count))%>% 

  transform(Year=2021) 

 

ss.21.fox <- right_join(ss.21.fox, ss.21.arrays, by="Camera_Trap_Array") 

 

ss.21.fox <- ss.21.fox %>% 

  select(Camera_Trap_Array, Count, Year)%>% 

  replace(is.na(.), 0)%>% 

  mutate(PA = replace(Count, Count >1, 1))%>% 

  arrange(Camera_Trap_Array)%>% 

  select(Camera_Trap_Array, PA, Year) 

 

ss.21.dep$Date_Out<-ymd(ss.21.dep$Date_Out) 

ss.21.dep$Date_Retrieved<-ymd(ss.21.dep$Date_Retrieved) 

 

ss.21.loc <- ss.21.dep %>% 

  select(Camera_Trap_Array, Latitude, Longitude, Date_Out, Date_Retrieved)%>% 

  mutate(Survey_Days = (Date_Retrieved - Date_Out))%>% 

  group_by(Camera_Trap_Array) %>% 

  summarise(Longitude = mean(Longitude), Latitude = mean(Latitude), Survey_Days = 

sum(Survey_Days))%>% 

  rename(Longitude = Longitude, Latitude = Latitude) 
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ss.21.fox <- full_join(ss.21.loc, ss.21.fox, by="Camera_Trap_Array") 

ss.21.fox <- na.omit(ss.21.fox) 

 

##### Combine 2019, 2020, and 2021 Snapshot USA data for models w/ 3 years of data##### 

ss.fox <- rbind(ss.19.fox, ss.20.fox, ss.21.fox) 

 

write.csv(ss.fox, "FoxModels/AllSnapshot_FoxPA.csv") ## Save as CSV to do some site name 

and coordinate clean up in Excel. 

 

ss.fox <- read.csv("FoxModels/AllSnapshot_FoxPA.csv") 

ss.fox <- ss.fox %>% 

  arrange(Camera_Trap_Array)%>% 

  transform(NTrials = 1)%>% 

  group_by(Camera_Trap_Array)%>% 

  summarise(PA=sum(PA), NTrials=sum(NTrials), Longitude=mean(Longitude), 

Latitude=mean(Latitude)) 

 

ss.fox <- SpatialPointsDataFrame(coords=cbind(Longitude = ss.fox$Longitude, Latitude = 

ss.fox$Latitude),  

                                 data=ss.fox, proj4string=projection) 

ss.fox <- ss.fox[region,] 

plot(ss.fox) 

 

##### Get environmental covariate data ##### 

pop <- population(2020, 5, path=tempdir()) 

pop<-raster::brick(pop) 

pop<-crop(pop, region) 

pop <- raster::mask(pop, region) 

pop <- log1p(pop) 

plot(pop) 

res(pop) 
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elev <- elevation_global(5, path=tempdir()) 

elev<-raster::brick(elev) 

elev<-crop(elev, region) 

elev <- raster::mask(elev, region) 

plot(elev) 

res(elev) 

 

 

bio <- worldclim_global(var="bio", res=5, path=tempdir()) 

plot(bio) 

 

temp <- bio[[c(1)]] 

names(temp) <- c("Temp") 

temp<- raster::brick(temp) 

temp<-crop(temp, region) 

temp<-raster::mask(temp, region) 

plot(temp) 

 

prec <- bio[[c(12)]] 

names(prec) <- c("Prec") 

prec<- raster::brick(prec) 

prec<-crop(prec, region) 

prec<-raster::mask(prec, region) 

plot(prec) 

res(prec) 

 

forest <- landcover(var="trees", path=tempdir()) 

forest<- raster::brick(forest) 

forest<-crop(forest, region) 
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forest<-raster::mask(forest, region) 

plot(forest) 

res(forest) 

forest <- aggregate(forest, fact=10, fun=mean, na.rf=TRUE) 

plot(forest) 

res(forest) 

 

wetl <- landcover(var="wetland", path=tempdir()) 

wetl<- raster::brick(wetl) 

wetl<-crop(wetl, region) 

wetl<-raster::mask(wetl, region) 

plot(wetl) 

res(wetl) 

wetl <- aggregate(wetl, fact=10, fun=mean, na.rf=TRUE) 

plot(wetl) 

res(wetl) 

 

cropl <- cropland("WorldCover", path=tempdir()) 

cropl<- raster::brick(cropl) 

cropl<-crop(cropl, region) 

cropl<-raster::mask(cropl, region) 

plot(cropl) 

res(cropl) 

cropl <- aggregate(cropl, fact=10, fun=mean, na.rf=TRUE) 

plot(cropl) 

res(cropl) 

 

imperv <- raster("FoxModels/imperv.tif") 

imperv <- crop(imperv, region) 

imperv <- log1p(imperv) 
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plot(imperv) 

res(imperv) 

 

roads <- raster("roaddist.tif") 

roads <- mask(roads, region) 

plot(roads) 

 

cropl <- resample(cropl, pop, method="ngb") 

forest <- resample(forest, pop, method="ngb") 

water <- resample(water, pop, method="ngb") 

wetl <- resample(wetl, pop, method="ngb") 

imperv <- resample(imperv, pop, method="ngb") 

roads <- resample(roads, pop, method="ngb") 

covariates.corr.check <- list(Temp=temp, Prec=prec, Forest=forest, Pop=pop, 

Imperv=impervlog,  

                              Elev=elev, Roads=roads, Wetl = wetl) 

covariates.corr.check <- scale(stack(covariates.corr.check)) 

crs(covariates.corr.check) <- projection 

plot(covariates.corr.check) 

pairs(covariates.corr.check) 

 

covar.anthro <- list(Pop = covariates.corr.check$Pop, Imperv = covariates.corr.check$Imperv, 

                     Roads = covariates.corr.check$Roads) 

covar.anthro <- stack(covar.anthro) 

 

covar.eco <- list(Temp = covariates.corr.check$Temp, Prec = covariates.corr.check$Prec, Forest 

= covariates.corr.check$Forest, 

                  Elev = covariates.corr.check$Elev, Wetland = covariates.corr.check$Wetland) 

covar.eco <- stack(covar.eco) 

##### Create mesh ##### 
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mesh <- inla.mesh.2d(boundary = inla.sp2segment(region),  

                     cutoff = 0.5, 

                     max.edge = c(1, 2),  

                     offset = c(1, 2)) 

mesh$crs <- projection 

 

ggplot() + 

  gg(mesh) + 

  ggtitle('Plot of mesh') + 

  theme_bw() + 

  theme(plot.title = element_text(hjust = 0.5)) 

 

##### Check for best environmental covariates ##### 

fisher.base.anthro <- intModel(datasets.fisher, 

                               Coordinates= c("Longitude", "Latitude"), 

                               Projection = projection, Mesh = mesh, 

                               responsePA = "PA",  

                               trialsPA = "NTrials", 

                               spatialCovariates = covar.anthro) 

fisher.base$addBias('iNaturalist') 

fisher.base$addBias('Snapshot') 

fisher.base$changeComponents() 

fisher.model.anthro<- fitISDM(fisher.base.anthro, options = list(control.inla = list(int.strategy = 

'eb'))) 

summary(fisher.model.eco) 

 

 

fisher.base.eco <- intModel(datasets.fisher, 

                            Coordinates= c("Longitude", "Latitude"), 

                            Projection = projection, Mesh = mesh, 
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                            responsePA = "PA",  

                            trialsPA = "NTrials", 

                            spatialCovariates = covar.eco) 

fisher.base$addBias('iNaturalist') 

fisher.base$addBias('Snapshot') 

fisher.base$changeComponents() 

fisher.model<- fitISDM(fisher.base.eco, options = list(control.inla = list(int.strategy = 'eb'))) 

summary(fisher.model.eco) 

 

##### Select final covariates #####  

covariates <- list(Pop = covariates.corr.check$Pop, Temp = covariates.corr.check$Temp, 

                   Forest = covariates.corr.check$Forest, Elev = covariates.corr.check$Elev, 

                   Roads = covariates.corr.check$Roads) 

covariates <- stack(covariates) 

 

#### Full Integrated, iNaturalist, and Snapshot USA models #### 

fox.base <- intModel(datasets.fox, 

                        Coordinates= c("Longitude", "Latitude"), 

                        Projection = projection, Mesh = mesh, 

                        responsePA = "PA",  

                        trialsPA = "NTrials", 

                        spatialCovariates = covariates) 

fox.base.final$addBias('iNaturalist') 

fox.base.final$addBias('Snapshot') 

fox.base.final$changeComponents() 

fox.model.final <- fitISDM(fox.base.final, options = list(control.inla = list(int.strategy = 'eb'))) 

summary(fox.model.final) 

 

 

fox.base.inat <- intModel(inat.fox, 
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                             Coordinates= c("Longitude", "Latitude"), 

                             Projection = projection, Mesh = mesh, 

                             spatialCovariates = covariates) 

fox.base.inat$addBias('inat.fox') 

fox.base.inat$changeComponents() 

fox.model.inat <- fitISDM(fox.base.inat, options = list(control.inla = list(int.strategy = 'eb'))) 

summary(fox.model.inat) 

 

 

fox.base.ss <- intModel(ss.fox, 

                           Coordinates= c("Longitude", "Latitude"), 

                           Projection = projection, Mesh = mesh, 

                           responsePA = "PA",  

                           trialsPA = "NTrials", 

                           spatialCovariates = covariates) 

fox.base.ss$addBias('ss.fox') 

fox.base.ss$changeComponents() 

fox.model.ss <- fitISDM(fox.base.ss, options = list(control.inla = list(int.strategy = 'eb'))) 

summary(fox.model.ss) 

 

##### Figures ##### 

 

fox.plot <- fox.model.final$summary.fixed %>% 

  mutate(coefficient = row.names(fox.model.final$summary.fixed))%>% 

  filter(coefficient != 'Snapshot_intercept', coefficient != 'iNaturalist_intercept')%>% 

  mutate(Dataset = 'Integrated', Order = 1) 

 

fox.inat.plot <- fox.model.inat$summary.fixed %>% 

  mutate(coefficient = row.names(fox.model.inat$summary.fixed))%>% 

  filter(coefficient != 'inat.fox_intercept') %>% 
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  mutate(Dataset = 'iNaturalist', Order = 2) 

 

 

fox.ss.plot <- fox.model.ss$summary.fixed %>% 

  mutate(coefficient = row.names(fox.model.ss$summary.fixed))%>% 

  filter(coefficient != 'ss.fox_intercept')%>% 

  mutate(Dataset = 'SnapshotUSA', Order = 3) 

 

fox.plot.all <- rbind(fox.plot, fox.inat.plot, fox.ss.plot) 

fox.plot.all 

 

fox.plot.all <- fox.plot.all %>% 

  mutate(coefficient = replace(coefficient, coefficient == "Roads", "Distance to Road"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Pop", "Population Density"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Temp", "Avg Annual 

Temperature"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Forest", "% Forest Cover"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Elev", "Elevation")) 

 

fox.plot.all$Dataset <- factor(fox.plot.all$Dataset,  

                               levels = c("iNaturalist",  "SnapshotUSA", "Integrated")) 

 

fox.plot.all$coefficient <- factor(fox.plot.all$coefficient, 

                                   levels = c("Avg Annual Temperature", "Distance to Road", "Elevation", 

"% Forest Cover", "Population Density")) 

 

dodge <- position_dodge(width=0.5)  

 

pal <- park_palette("MtRainier", 3) 
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ggplot(fox.plot.all)+ 

  geom_hline(mapping=aes(x = coefficient, y = mean), yintercept = 0, colour = grey(0.25), lty = 

2) + 

  geom_point(mapping=aes(x = coefficient,  

                         y = mean, color = Dataset), position = dodge) +  

  geom_linerange(mapping=aes(x = coefficient,  

                             ymin = `0.025quant`, 

                             ymax = `0.975quant`, color = Dataset), position = dodge, lwd = 1)+ 

  theme_bw() + 

  theme(legend.position="bottom", 

        plot.title = element_text(hjust = 0.5)) + 

  ggtitle("95% Credibility Intervals of Covariate Effects") + 

  labs(x = 'Covariate', y = 'Coefficient value') + 

  coord_flip()+ 

  scale_color_manual(breaks = c("Integrated",  "SnapshotUSA", "iNaturalist"), values=pal)+ 

  theme(legend.title=element_blank()) 

 

 

 

 

#################################################### 

#################################################### 

##### Fisher Models ##### 

##### Load in region map ##### 

region <- readOGR("FisherModels/fisher_region.shp") 

region <- unionSpatialPolygons(region,rep(1, length(region))) 

 

projection <- CRS(SRS_string="EPSG:4326") 

plot(region) 
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region <- spTransform(region, projection) 

 

region <- gSimplify(region, 0.03, topologyPreserve = TRUE)    ### Reduce number of line 

segments in region for reduced mesh file size 

plot(region) 

 

##### Format proofed iNaturalist Data ##### 

inat.fisher.loc <- read.csv("FisherModels/iNat_Fisher_Loc.csv") 

inat.fisher <- read.csv("FisherModels/iNat_Fisher_Proofed.csv") 

 

inat.fisher <- full_join(inat.fisher.loc, inat.fisher, by = "id") 

 

inat.fisher <- inat.fisher %>%                              

  filter(ID_Check == "Correct", !is.na(ID_Check))                     ## Select fisher iNaturalist 

observations that were marked as "Correct" by proofer 

 

inat.fisher <- inat.fisher %>%  

  filter(positional_accuracy<1000, !is.na(positional_accuracy))       ## Select fisher iNaturalist 

observations that have location accuracy less than 1km and observations with a location accuracy 

provided. 

 

inat.fisher$observed_on <- mdy(inat.fisher$observed_on) ## Get iNat year info for 1 and 2 year 

models 

inat.fisher$Year <- year(inat.fisher$observed_on) 

inat.fisher$X <- 1:nrow(inat.fisher) 

 

##### Thin points to a 100m buffer 20 times, as thinning is a random process and will produce a 

different number of points each time. This may take a while! #### 

inat.fisher.thin <- thin(loc.data = inat.fisher, lat.col="latitude", long.col="longitude", 

spec.col="common_name", thin.par=0.1, reps=20, 

                        locs.thinned.list.return=TRUE, 

                        write.files=FALSE, 
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                        write.log.file=FALSE, 

                        verbose=FALSE) 

write.csv(inat.fisher.thin[[1]], "FisherModels/iNat_Fisher_Thin.csv")  ## Save the thinned 

dataset with the highest number of points. 

inat.fisher.thin <- read.csv("FisherModels/iNat_Fisher_Thin.csv") 

inat.fisher <- inner_join(inat.fisher, inat.fisher.thin, by="X") 

 

inat.fisher <- SpatialPointsDataFrame(coords=cbind(Longitude = inat.fisher$longitude, Latitude 

= inat.fisher$latitude),  

                                          data=inat.fisher, proj4string=projection) 

inat.fisher <- inat.fisher[region,] 

plot(inat.fisher) 

 

##### Format 2019 Snapshot USA Data ##### 

ss.19.obs <- read.csv("SNAPSHOT_USA_2019_observations.csv") ## Load in species 

observation data 

ss.19.dep <- read.csv("SNAPSHOT_USA_2019_deployments.csv")  ## Load in camera trap 

deployment data 

 

ss.19.fisher <- ss.19.obs %>% 

  filter(Common_Name=="Fisher")%>% 

  dplyr::select(Camera_Trap_Array, Common_Name, Count)%>% 

  group_by(Camera_Trap_Array, .drop=FALSE) %>% 

  summarise(FisherCount=sum(Count))       

 

ss.19.arrays <- ss.19.obs %>% 

  dplyr::select(Camera_Trap_Array, Count)%>% 

  group_by(Camera_Trap_Array)%>% 

  summarise(TotalCount=sum(Count))%>% 

  transform(Year=2019) 
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ss.19.fisher <- right_join(ss.19.fisher, ss.19.arrays, by="Camera_Trap_Array") 

 

ss.19.fisher <- ss.19.fisher %>% 

  dplyr::select(Camera_Trap_Array, FisherCount, Year)%>% 

  replace(is.na(.), 0)%>% 

  mutate(PA = replace(FisherCount, FisherCount >1, 1))%>% 

  arrange(Camera_Trap_Array)%>% 

  dplyr::select(Camera_Trap_Array, PA, Year) 

 

ss.19.loc <- ss.19.dep %>% 

  dplyr::select(Camera_Trap_Array, Latitude, Longitude, Survey_Days)%>% 

  group_by(Camera_Trap_Array) %>% 

  summarise(Longitude = mean(Longitude), Latitude = mean(Latitude), Survey_Days = 

sum(Survey_Days))%>% 

  rename(Longitude = Longitude, Latitude = Latitude) 

 

ss.19.fisher <- full_join(ss.19.loc, ss.19.fisher, by="Camera_Trap_Array") 

 

ss.19.fisher.coords <- ss.19.fisher[,c(2,3)] 

 

ss.19.fisher <- SpatialPointsDataFrame(coords=ss.19.fisher.coords, data=ss.19.fisher, 

proj4string=CRS("+proj=longlat +ellps=WGS84")) 

plot(ss.19.fisher) 

 

ss.19.fisher <- ss.19.fisher[region,] 

plot(ss.19.fisher) 

 

##### Format 2020 Snapshot USA Data ##### 

ss.20.obs <- read.csv("SNAPSHOT_USA_2020_observations.csv") 

ss.20.dep <- read.csv("SNAPSHOT_USA_2020_deployments.csv") 
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str(ss.20.dep) 

 

ss.20.obs$Camera_Trap_Array <- gsub("_20", "", as.character(ss.20.obs$Camera_Trap_Array)) 

ss.20.dep$Camera_Trap_Array <- gsub("_20", "", as.character(ss.20.dep$Camera_Trap_Array)) 

 

ss.20.fisher <- ss.20.obs %>% 

  filter(Common_Name=="Fisher")%>% 

  select(Camera_Trap_Array, Common_Name, Count)%>% 

  group_by(Camera_Trap_Array, .drop=FALSE) %>% 

  summarise(Count=sum(Count))       

 

ss.20.arrays <- ss.20.obs %>% 

  select(Camera_Trap_Array, Count)%>% 

  group_by(Camera_Trap_Array)%>% 

  summarise(TotalCount20=sum(Count))%>% 

  transform(Year=2020) 

 

ss.20.fisher <- right_join(ss.20.fisher, ss.20.arrays, by="Camera_Trap_Array") 

 

ss.20.fisher <- ss.20.fisher %>% 

  select(Camera_Trap_Array, Count, Year)%>% 

  replace(is.na(.), 0)%>% 

  mutate(PA = replace(Count, Count >1, 1))%>% 

  arrange(Camera_Trap_Array)%>% 

  select(Camera_Trap_Array, PA, Year) 

 

ss.20.loc <- ss.20.dep %>% 

  select(Camera_Trap_Array, Latitude, Longitude, Survey_Days)%>% 

  group_by(Camera_Trap_Array) %>% 
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  summarise(Longitude = mean(Longitude), Latitude = mean(Latitude), Survey_Days = 

sum(Survey_Days))%>% 

  rename(Longitude = Longitude, Latitude = Latitude) 

 

ss.20.fisher <- full_join(ss.20.loc, ss.20.fisher, by="Camera_Trap_Array") 

 

ss.20.fisher.coords <- ss.20.fisher[,c(2,3)] 

 

ss.20.fisher <- SpatialPointsDataFrame(coords=ss.20.fisher.coords, data=ss.20.fisher, 

proj4string=CRS("+proj=longlat +ellps=WGS84")) 

plot(ss.20.fisher) 

 

ss.20.fisher <- ss.20.fisher[region,] 

plot(ss.20.fisher) 

 

##### Format 2021 Snapshot USA Data. Slightly different data format than 2019 and 2020. 

##### 

ss.21.obs <- read.csv("WILDLIFE_INSIGHTS_2021_observations.csv") 

ss.21.dep <- read.csv("WILDLIFE_INSIGHTS_2021_deployments.csv") 

 

ss.21.obs$Camera_Trap_Array <- gsub("_21", "", as.character(ss.21.obs$Camera_Trap_Array)) 

ss.21.dep$Camera_Trap_Array <- gsub("_21", "", as.character(ss.21.dep$Camera_Trap_Array)) 

 

ss.21.fisher <- ss.21.obs %>% 

  filter(Common_Name=="Fisher")%>% 

  select(Camera_Trap_Array, Common_Name, Count)%>% 

  group_by(Camera_Trap_Array, .drop=FALSE) %>% 

  summarise(Count=sum(Count))       

 

ss.21.arrays <- ss.21.obs %>% 

  select(Camera_Trap_Array, Count)%>% 
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  group_by(Camera_Trap_Array)%>% 

  summarise(TotalCount20=sum(Count))%>% 

  transform(Year=2021) 

 

ss.21.fisher <- right_join(ss.21.fisher, ss.21.arrays, by="Camera_Trap_Array") 

 

ss.21.fisher <- ss.21.fisher %>% 

  select(Camera_Trap_Array, Count, Year)%>% 

  replace(is.na(.), 0)%>% 

  mutate(PA = replace(Count, Count >1, 1))%>% 

  arrange(Camera_Trap_Array)%>% 

  select(Camera_Trap_Array, PA, Year) 

 

ss.21.dep$Date_Out<-ymd(ss.21.dep$Date_Out) 

ss.21.dep$Date_Retrieved<-ymd(ss.21.dep$Date_Retrieved) 

 

ss.21.loc <- ss.21.dep %>% 

  select(Camera_Trap_Array, Latitude, Longitude, Date_Out, Date_Retrieved)%>% 

  mutate(Survey_Days = (Date_Retrieved - Date_Out))%>% 

  group_by(Camera_Trap_Array) %>% 

  summarise(Longitude = mean(Longitude), Latitude = mean(Latitude), Survey_Days = 

sum(Survey_Days))%>% 

  rename(Longitude = Longitude, Latitude = Latitude) 

 

ss.21.fisher <- full_join(ss.21.loc, ss.21.fisher, by="Camera_Trap_Array") 

ss.21.fisher <- na.omit(ss.21.fisher) 

 

##### Combine 2019, 2020, and 2021 Snapshot USA data for models w/ 3 years of data##### 

ss.fisher <- rbind(ss.19.fisher, ss.20.fisher, ss.21.fisher) 
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write.csv(ss.fisher, "FisherModels/AllSnapshot_FisherPA.csv") ## Save as CSV to do some site 

name and coordinate clean up in Excel. 

 

ss.fisher <- read.csv("FisherModels/AllSnapshot_FisherPA.csv") 

ss.fisher <- ss.fisher %>% 

  arrange(Camera_Trap_Array)%>% 

  transform(NTrials = 1)%>% 

  group_by(Camera_Trap_Array)%>% 

  summarise(PA=sum(PA), NTrials=sum(NTrials), Longitude=mean(Longitude), 

Latitude=mean(Latitude)) 

 

ss.fisher <- SpatialPointsDataFrame(coords=cbind(Longitude = ss.fisher$Longitude, Latitude = 

ss.fisher$Latitude),  

                                    data=ss.fisher, proj4string=projection) 

ss.fisher <- ss.fisher[region,] 

plot(ss.fisher) 

 

##### 2019 + 2020 Snapshot and iNaturalist data for models w/ 2 years of data ##### 

ss.fisher.all <- read.csv("FisherModels/AllSnapshot_FisherPA.csv") 

 

ss.fisher.2yr <- ss.fisher %>% 

  dplyr::filter(Year != 2021)%>% 

  arrange(Camera_Trap_Array)%>% 

  transform(NTrials = 1)%>% 

  group_by(Camera_Trap_Array)%>% 

  summarise(PA=sum(PA), NTrials=sum(NTrials), Longitude=mean(Longitude), 

Latitude=mean(Latitude)) 

 

ss.fisher.2yr <- SpatialPointsDataFrame(coords=cbind(Longitude = ss.fisher.2yr$Longitude, 

Latitude = ss.fisher.2yr$Latitude),  

                                        data=ss.fisher.2yr, proj4string=projection) 



98 
 

ss.fisher.2yr <- ss.fisher.2yr[region,] 

plot(ss.fisher.2yr) 

 

 

inat.fisher.2yr <- inat.fisher %>% 

  filter(Year != 2021) 

inat.fisher.2yr <- SpatialPointsDataFrame(coords=cbind(Longitude = inat.fisher.2yr$Longitude, 

Latitude = inat.fisher.2yr$Latitude),  

                                          data=inat.fisher.2yr, proj4string=projection) 

inat.fisher.2yr <- inat.fisher.2yr[region,] 

plot(inat.fisher.2yr) 

 

##### 2019 Snapshot and iNaturalist data for models w/ 1 year of data ##### 

ss.fisher.1yr <- ss.fisher.all %>% 

  filter(Year == 2019)%>% 

  arrange(Camera_Trap_Array)%>% 

  transform(NTrials = 1)%>% 

  group_by(Camera_Trap_Array)%>% 

  summarise(PA=sum(PA), NTrials=sum(NTrials), Longitude=mean(Longitude), 

Latitude=mean(Latitude)) 

 

ss.fisher.1yr <- SpatialPointsDataFrame(coords=cbind(Longitude = ss.fisher.1yr$Longitude, 

Latitude = ss.fisher.1yr$Latitude), 

                                        data=ss.fisher.1yr, proj4string=projection) 

ss.fisher.1yr <- ss.fisher.1yr[region,] 

plot(ss.fisher.1yr) 

 

 

inat.fisher.1yr <- inat.fisher.all %>% 

  filter(Year == 2019) 
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inat.fisher.1yr <- SpatialPointsDataFrame(coords=cbind(Longitude = inat.fisher.1yr$Longitude, 

Latitude = inat.fisher.1yr$Latitude), 

                                          data=inat.fisher.1yr, proj4string=projection) 

inat.fisher.1yr <- inat.fisher.1yr[region,] 

plot(inat.fisher.1yr) 

   

 

##### Unproofed iNaturalist data from downloaded iNaturalist data ##### 

inat.fisher.loc <- read.csv("FisherModels/iNat_Fisher_Loc.csv") 

inat.fisher <- read.csv("FisherModels/iNat_Fisher_Proofed.csv") 

 

inat.fisher <- full_join(inat.fisher.loc, inat.fisher, by = "id") 

 

inat.fisher.unproof <- inat.fisher %>%  

  filter(positional_accuracy<1000, !is.na(positional_accuracy)) 

 

inat.fisher.unproof$X <- 1:nrow(inat.fisher.unproof) 

 

inat.fisher.unproof.thin <- thin(loc.data = inat.fisher.unproof, lat.col="latitude", 

long.col="longitude", spec.col="common_name", thin.par=0.1, reps=20, 

                                 locs.thinned.list.return=TRUE, 

                                 write.files=FALSE, 

                                 write.log.file=FALSE, 

                                 verbose=FALSE) 

plotThin(inat.fisher.unproof.thin) 

write.csv(inat.fisher.unproof.thin[[1]], "FisherModels/iNat_Fisher_Unproof_Thin_100m.csv")  

## Save the thinned dataset with the highest number of points. 

inat.fisher.unproof.thin <- read.csv("FisherModels/iNat_Fisher_Unproof_Thin_100m.csv") 

inat.fisher.unproof <- inner_join(inat.fisher.unproof, inat.fisher.unproof.thin, by="X") 

write.csv(inat.fisher.unproof, "FisherModels/iNat_Fisher_UnproofedData.csv") 

inat.fisher.unproof <- read.csv("FisherModels/iNat_Fisher_UnproofedData.csv") 
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inat.fisher.unproof <- SpatialPointsDataFrame(coords=cbind(Longitude = 

inat.fisher.unproof$longitude, Latitude = inat.fisher.unproof$latitude),  

                                              data=inat.fisher.unproof, proj4string=projection) 

inat.fisher.unproof <- inat.fisher.unproof[region,] 

plot(inat.fisher.unproof) 

 

 

##### Create GBIF dataset ##### 

gbif.fisher <- spocc::occ( 

  query = 'Pekania pennanti', 

  from = 'gbif', 

  date = c("2019-01-01", "2021-12-31"), 

  limit = 1000 

)$gbif 

 

 

gbif.fisher <- data.frame(gbif.fisher$data[[1]]) 

 

gbif.fisher<- gbif.fisher %>% 

  filter(coordinateUncertaintyInMeters<1000, !is.na(coordinateUncertaintyInMeters)) 

 

gbif.fisher.thin <- thin(loc.data = fisher.gbif, lat.col="latitude", long.col="longitude", 

spec.col="species", thin.par=0.1, reps=20, 

                    locs.thinned.list.return=TRUE, 

                    write.files=FALSE, 

                    write.log.file=FALSE, 

                    verbose=FALSE) 

plotThin(gbif.fisher.thin) 

gbif.fisher<- fisher.gbif.thin[[1]] 
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gbif.fisher <- SpatialPointsDataFrame(coords = cbind(Longitude = gbif.fisher$Longitude, 

Latitude = gbif.fisher$Latitude), 

                                data = gbif.fisher, 

                                proj4string = projection) 

 

gbif.fisher <- gbif.fisher[region,] 

plot(gbif.fisher) 

 

##### Make dataset lists ##### 

datasets.fisher <- list(Snapshot = ss.fisher, iNaturalist = inat.fisher) 

 

datasets.fisher.1yr <- list(Snapshot = ss.fisher.1yr, iNaturalist = inat.fisher.1yr) 

 

datasets.fisher.2yr <- list(Snapshot = ss.fisher.2yr, iNaturalist = inat.fisher.2yr) 

 

datasets.fisher.unproof <- list(Snapshot = ss.fisher, iNaturalist = inat.fisher.unproof) 

 

datasets.fisher.gbif <- list(Snapshot = ss.fisher, iNaturalist = gbif.fisher) 

 

inat.fisher <- datasets.fisher$iNaturalist 

ss.fisher <- datasets.fisher$Snapshot 

 

##### Get environmental covariate data ##### 

pop <- population(2020, 5, path=tempdir()) 

pop<-raster::brick(pop) 

pop<-crop(pop, region) 

pop <- raster::mask(pop, region) 

pop <- log1p(pop) 

plot(pop) 
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res(pop) 

 

elev <- elevation_global(5, path=tempdir()) 

elev<-raster::brick(elev) 

elev<-crop(elev, region) 

elev <- raster::mask(elev, region) 

plot(elev) 

res(elev) 

 

 

bio <- worldclim_global(var="bio", res=5, path=tempdir()) 

plot(bio) 

 

temp <- bio[[c(1)]] 

names(temp) <- c("Temp") 

temp<- raster::brick(temp) 

temp<-crop(temp, region) 

temp<-raster::mask(temp, region) 

plot(temp) 

 

prec <- bio[[c(12)]] 

names(prec) <- c("Prec") 

prec<- raster::brick(prec) 

prec<-crop(prec, region) 

prec<-raster::mask(prec, region) 

plot(prec) 

res(prec) 

 

forest <- landcover(var="trees", path=tempdir()) 

forest<- raster::brick(forest) 
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forest<-crop(forest, region) 

forest<-raster::mask(forest, region) 

plot(forest) 

res(forest) 

forest <- aggregate(forest, fact=10, fun=mean, na.rf=TRUE) 

plot(forest) 

res(forest) 

 

wetl <- landcover(var="wetland", path=tempdir()) 

wetl<- raster::brick(wetl) 

wetl<-crop(wetl, region) 

wetl<-raster::mask(wetl, region) 

plot(wetl) 

res(wetl) 

wetl <- aggregate(wetl, fact=10, fun=mean, na.rf=TRUE) 

plot(wetl) 

res(wetl) 

 

cropl <- cropland("WorldCover", path=tempdir()) 

cropl<- raster::brick(cropl) 

cropl<-crop(cropl, region) 

cropl<-raster::mask(cropl, region) 

plot(cropl) 

res(cropl) 

cropl <- aggregate(cropl, fact=10, fun=mean, na.rf=TRUE) 

plot(cropl) 

res(cropl) 

 

imperv <- raster("FisherModels/imperv.tif") 

imperv <- crop(imperv, region) 
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imperv <- log1p(imperv) 

plot(imperv) 

res(imperv) 

 

roads <- raster("roaddist.tif") 

roads <- mask(roads, region) 

plot(roads) 

 

cropl <- resample(cropl, pop, method="ngb") 

forest <- resample(forest, pop, method="ngb") 

water <- resample(water, pop, method="ngb") 

wetl <- resample(wetl, pop, method="ngb") 

imperv <- resample(imperv, pop, method="ngb") 

roads <- resample(roads, pop, method="ngb") 

covariates.corr.check <- list(Temp=temp, Prec=prec, Forest=forest, Pop=pop, 

Imperv=impervlog,  

                              Elev=elev, Roads=roads, Wetl = wetl) 

covariates.corr.check <- scale(stack(covariates.corr.check)) 

crs(covariates.corr.check) <- projection 

plot(covariates.corr.check) 

pairs(covariates.corr.check) 

 

covar.anthro <- list(Pop = covariates.corr.check$Pop, Imperv = covariates.corr.check$Imperv, 

                  Roads = covariates.corr.check$Roads) 

covar.anthro <- stack(covar.anthro) 

   

covar.eco <- list(Temp = covariates.corr.check$Temp, Prec = covariates.corr.check$Prec, Forest 

= covariates.corr.check$Forest, 

                  Elev = covariates.corr.check$Elev, Wetland = covariates.corr.check$Wetland) 

covar.eco <- stack(covar.eco) 
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##### Create mesh ##### 

mesh <- inla.mesh.2d(boundary = inla.sp2segment(region),  

                        cutoff = 0.5, 

                        max.edge = c(1, 2),  

                        offset = c(1, 2)) 

mesh$crs <- projection 

 

ggplot() + 

  gg(mesh) + 

  ggtitle('Plot of mesh') + 

  theme_bw() + 

  theme(plot.title = element_text(hjust = 0.5)) 

 

##### Check for best environmental covariates ##### 

fisher.base.anthro <- intModel(datasets.fisher, 

                            Coordinates= c("Longitude", "Latitude"), 

                            Projection = projection, Mesh = mesh, 

                            responsePA = "PA",  

                            trialsPA = "NTrials", 

                            spatialCovariates = covar.anthro) 

fisher.base$addBias('iNaturalist') 

fisher.base$addBias('Snapshot') 

fisher.base$changeComponents() 

fisher.model.anthro<- fitISDM(fisher.base.anthro, options = list(control.inla = list(int.strategy = 

'eb'))) 

summary(fisher.model.eco) 

 

 

fisher.base.eco <- intModel(datasets.fisher, 

                            Coordinates= c("Longitude", "Latitude"), 
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                            Projection = projection, Mesh = mesh, 

                            responsePA = "PA",  

                            trialsPA = "NTrials", 

                            spatialCovariates = covar.eco) 

fisher.base$addBias('iNaturalist') 

fisher.base$addBias('Snapshot') 

fisher.base$changeComponents() 

fisher.model<- fitISDM(fisher.base.eco, options = list(control.inla = list(int.strategy = 'eb'))) 

summary(fisher.model.eco) 

 

##### Select final covariates #####  

covariates <- list(Imperv = covariates.corr.check$Imperv, Temp = covariates.corr.check$Temp, 

                   Forest = covariates.corr.check$Forest, Wetland = covariates.corr.check$Wetland, 

                   Roads = covariates.corr.check$Roads) 

covariates <- stack(covariates) 

 

 

#### Full Integrated, iNaturalist, and Snapshot USA models #### 

fisher.base <- intModel(datasets.fisher, 

                            Coordinates= c("Longitude", "Latitude"), 

                            Projection = projection, Mesh = mesh, 

                            responsePA = "PA",  

                            trialsPA = "NTrials", 

                            spatialCovariates = covariates) 

fisher.base.final$addBias('iNaturalist') 

fisher.base.final$addBias('Snapshot') 

fisher.base.final$changeComponents() 

fisher.model.final <- fitISDM(fisher.base.final, options = list(control.inla = list(int.strategy = 

'eb'))) 

summary(fisher.model.final) 
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fisher.base.inat <- intModel(inat.fisher, 

                             Coordinates= c("Longitude", "Latitude"), 

                             Projection = projection, Mesh = mesh, 

                             spatialCovariates = covariates) 

fisher.base.inat$addBias('inat.fisher') 

fisher.base.inat$changeComponents() 

fisher.model.inat <- fitISDM(fisher.base.inat, options = list(control.inla = list(int.strategy = 

'eb'))) 

summary(fisher.model.inat) 

 

 

fisher.base.ss <- intModel(ss.fisher, 

                             Coordinates= c("Longitude", "Latitude"), 

                             Projection = projection, Mesh = mesh, 

                             responsePA = "PA",  

                             trialsPA = "NTrials", 

                             spatialCovariates = covariates) 

fisher.base.ss$addBias('ss.fisher') 

fisher.base.ss$changeComponents() 

fisher.model.ss <- fitISDM(fisher.base.ss, options = list(control.inla = list(int.strategy = 'eb'))) 

summary(fisher.model.ss) 

 

##### 1 & 2 year models ##### 

fisher.base.1yr <- intModel(datasets.fisher.1yr, 

                              Coordinates= c("Longitude", "Latitude"), 

                              Projection = projection, Mesh = mesh, 

                              responsePA = "PA",  

                              trialsPA = "NTrials", 
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                              spatialCovariates = covariates) 

fisher.base.1yr$addBias('iNaturalist') 

fisher.base.1yr$addBias('Snapshot') 

fisher.base.1yr$changeComponents() 

fisher.model.1yr <- fitISDM(fisher.base.1yr, options = list(control.inla = list(int.strategy = 'eb'))) 

summary(fisher.model.1yr) 

 

 

fisher.base.2yr <- intModel(datasets.fisher.2yr, 

                            Coordinates= c("Longitude", "Latitude"), 

                            Projection = projection, Mesh = mesh, 

                            responsePA = "PA",  

                            trialsPA = "NTrials", 

                            spatialCovariates = covariates) 

fisher.base.2yr$addBias('iNaturalist') 

fisher.base.2yr$addBias('Snapshot') 

fisher.base.2yr$changeComponents() 

fisher.model.2yr <- fitISDM(fisher.base.2yr, options = list(control.inla = list(int.strategy = 'eb'))) 

summary(fisher.model.2yr) 

 

##### Unproofed iNat model ##### 

fisher.base.unproof <- intModel(datasets.fisher.unproof, 

                                Coordinates= c("Longitude", "Latitude"), 

                                Projection = projection, Mesh = mesh, 

                                responsePA = "PA",  

                                trialsPA = "NTrials", 

                                spatialCovariates = covariates) 

fisher.base.unproof$addBias('iNaturalist') 

fisher.base.unproof$addBias('Snapshot') 

fisher.base.unproof$changeComponents() 
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fisher.model.unproof <- fitISDM(fisher.base.unproof, options = list(control.inla = 

list(int.strategy = 'eb'))) 

summary(fisher.model.unproof) 

 

 

##### GBIF models ##### 

fisher.base.gbif <- intModel(datasets.fisher.gbif, 

                            Coordinates= c("Longitude", "Latitude"), 

                            Projection = projection, Mesh = mesh, 

                            responsePA = "PA",  

                            trialsPA = "NTrials", 

                            spatialCovariates = covariates) 

fisher.base.gbif$addBias('iNaturalist') 

fisher.base.gbif$addBias('Snapshot') 

fisher.base.gbif$changeComponents() 

fisher.model.gbif <- fitISDM(fisher.base.gbif, options = list(control.inla = list(int.strategy = 

'eb'))) 

summary(fisher.model.gbif) 

 

##### Figures ##### 

 

fisher.plot <- fisher.model.final$summary.fixed %>% 

  mutate(coefficient = row.names(fisher.model.final$summary.fixed))%>% 

  filter(coefficient != 'Snapshot_intercept', coefficient != 'iNaturalist_intercept')%>% 

  mutate(Dataset = 'Integrated', Order = 1) 

 

fisher.inat.plot <- fisher.model.inat$summary.fixed %>% 

  mutate(coefficient = row.names(fisher.model.inat$summary.fixed))%>% 

  filter(coefficient != 'inat.fisher_intercept') %>% 

  mutate(Dataset = 'iNaturalist', Order = 2) 
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fisher.ss.plot <- fisher.model.ss$summary.fixed %>% 

  mutate(coefficient = row.names(fisher.model.ss$summary.fixed))%>% 

filter(coefficient != 'ss.fisher_intercept')%>% 

  mutate(Dataset = 'SnapshotUSA', Order = 3) 

 

fisher.plot.all <- rbind(fisher.plot, fisher.inat.plot, fisher.ss.plot) 

fisher.plot.all 

 

fisher.plot.all <- fisher.plot.all %>% 

  mutate(coefficient = replace(coefficient, coefficient == "Roads", "Distance to Road"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Imperv", "% Impervious 

Surface"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Temp", "Avg Annual 

Temperature"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Forest", "% Forest Cover"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Wetland", "% Wetland Cover")) 

 

fisher.plot.all$Dataset <- factor(fisher.plot.all$Dataset,  

                                  levels = c("iNaturalist",  "SnapshotUSA", "Integrated")) 

 

fisher.plot.all$coefficient <- factor(fisher.plot.all$coefficient, 

                                      levels = c("Avg Annual Temperature", "Distance to Road", "% Forest 

Cover", "% Impervious Surface", "% Wetland Cover")) 

 

 

fisher.3yr.plot <- fisher.model.final$summary.fixed %>% 

  mutate(coefficient = row.names(fisher.model.final$summary.fixed))%>% 

  filter(coefficient != 'Snapshot_intercept', coefficient != 'iNaturalist_intercept')%>% 

  mutate(Dataset = '3 Years') 
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fisher.2yr.plot <- fisher.model.2yr$summary.fixed %>% 

  mutate(coefficient = row.names(fisher.model.2yr$summary.fixed))%>% 

  filter(coefficient != 'Snapshot_intercept', coefficient != 'iNaturalist_intercept')%>% 

  mutate(Dataset = '2 Years') 

 

 

fisher.1yr.plot <- fisher.model.1yr$summary.fixed %>% 

  mutate(coefficient = row.names(fisher.model.1yr$summary.fixed))%>% 

  filter(coefficient != 'Snapshot_intercept', coefficient != 'iNaturalist_intercept')%>% 

  mutate(Dataset = '1 Year') 

 

fisher.plot.years <- rbind(fisher.3yr.plot, fisher.2yr.plot, fisher.1yr.plot) 

 

fisher.plot.years <- fisher.plot.years %>% 

  mutate(coefficient = replace(coefficient, coefficient == "Roads", "Distance to Road"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Imperv", "% Impervious 

Surface"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Temp", "Avg Annual 

Temperature"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Forest", "% Forest Cover"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Wetland", "% Wetland Cover")) 

 

fisher.plot.years$Dataset <- factor(fisher.plot.years$Dataset,  

                                  levels = c("3 Years", "2 Years",  "1 Year")) 

 

fisher.plot.years$coefficient <- factor(fisher.plot.years$coefficient, 

                                      levels = c("Avg Annual Temperature", "Distance to Road", "% Forest 

Cover", "% Impervious Surface", "% Wetland Cover")) 
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fisher.inatunproof.plot <- fisher.model.unproof$summary.fixed %>% 

  mutate(coefficient = row.names(fisher.model.unproof$summary.fixed))%>% 

  filter(coefficient != 'Snapshot_intercept', coefficient != 'iNaturalist_intercept')%>% 

  mutate(Dataset = 'Unproofed') 

 

fisher.inatproof.plot <- fisher.model.final$summary.fixed %>% 

  mutate(coefficient = row.names(fisher.model.final$summary.fixed))%>% 

  filter(coefficient != 'Snapshot_intercept', coefficient != 'iNaturalist_intercept')%>% 

  mutate(Dataset = 'Proofed') 

 

fisher.plot.inatproof <- rbind(fisher.inatproof.plot, fisher.inatunproof.plot) 

 

fisher.plot.inatproof <- fisher.plot.inatproof %>% 

  mutate(coefficient = replace(coefficient, coefficient == "Roads", "Distance to Road"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Imperv", "% Impervious 

Surface"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Temp", "Avg Annual 

Temperature"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Forest", "% Forest Cover"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Wetland", "% Wetland Cover")) 

 

fisher.plot.inatproof$Dataset <- factor(fisher.plot.inatproof$Dataset,  

                                        levels = c("Unproofed", "Proofed")) 

 

fisher.plot.inatproof$coefficient <- factor(fisher.plot.inatproof$coefficient, 

                                            levels = c("Avg Annual Temperature", "Distance to Road", "% Forest 

Cover", "% Impervious Surface", "% Wetland Cover")) 

 

 

fisher.inat.plot <- fisher.model.final$summary.fixed %>% 

  mutate(coefficient = row.names(fisher.model.final$summary.fixed))%>% 
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  filter(coefficient != 'Snapshot_intercept', coefficient != 'iNaturalist_intercept')%>% 

  mutate(Dataset = 'iNaturalist') 

 

fisher.gbif.plot <- fisher.model.gbif$summary.fixed %>% 

  mutate(coefficient = row.names(fisher.model.gbif$summary.fixed))%>% 

  filter(coefficient != 'Snapshot_intercept', coefficient != 'iNaturalist_intercept')%>% 

  mutate(Dataset = 'GBIF') 

 

fisher.plot.proof <- rbind(fisher.inat.plot, fisher.gbif.plot) 

 

fisher.plot.proof <- fisher.plot.proof %>% 

  mutate(coefficient = replace(coefficient, coefficient == "Roads", "Distance to Road"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Imperv", "% Impervious 

Surface"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Temp", "Avg Annual 

Temperature"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Forest", "% Forest Cover"))%>% 

  mutate(coefficient = replace(coefficient, coefficient == "Wetland", "% Wetland Cover")) 

 

fisher.plot.proof$Dataset <- factor(fisher.plot.proof$Dataset,  

                                    levels = c("GBIF", "iNaturalist")) 

 

fisher.plot.proof$coefficient <- factor(fisher.plot.proof$coefficient, 

                                        levels = c("Avg Annual Temperature", "Distance to Road", "% Forest 

Cover", "% Impervious Surface", "% Wetland Cover")) 

  

 

dodge <- position_dodge(width=0.5)  

 

pal <- park_palette("MtRainier", 3) 
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ggplot(fisher.plot.all)+ 

  geom_hline(mapping=aes(x = coefficient, y = mean), yintercept = 0, colour = grey(0.25), lty = 

2) + 

  geom_point(mapping=aes(x = coefficient,  

                                         y = mean, color = Dataset), position = dodge) +  

  geom_linerange(mapping=aes(x = coefficient,  

                                             ymin = `0.025quant`, 

                                             ymax = `0.975quant`, color = Dataset), position = dodge, lwd = 1)+ 

  theme_bw() + 

  theme(legend.position="bottom", 

        plot.title = element_text(hjust = 0.5)) + 

  ggtitle("95% Credibility Intervals of Covariate Effects") + 

  labs(x = 'Covariate', y = 'Coefficient value') + 

  coord_flip()+ 

  scale_color_manual(breaks = c("Integrated", "SnapshotUSA", "iNaturalist"), values=pal)+ 

  theme(legend.title=element_blank()) 

   

 

ggplot(fisher.plot.years)+ 

  geom_hline(mapping=aes(x = coefficient, y = mean), yintercept = 0, colour = grey(0.25), lty = 

2) + 

  geom_point(mapping=aes(x = coefficient,  

                         y = mean, color = Dataset), position = dodge) +  

  geom_linerange(mapping=aes(x = coefficient,  

                             ymin = `0.025quant`, 

                             ymax = `0.975quant`, color = Dataset), position = dodge, lwd = 1)+ 

  theme_bw() + 

  theme(legend.position="bottom", 

        plot.title = element_text(hjust = 0.5)) + 
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  ggtitle("95% Credibility Intervals of Covariate Effects") + 

  labs(x = 'Covariate', y = 'Coefficient value') + 

  coord_flip()+ 

  scale_color_manual(breaks = c("1 Year", "2 Years", "3 Years"), values=pal)+ 

  theme(legend.title=element_blank()) 

 

 

ggplot(fisher.plot.inatproof)+ 

  geom_hline(mapping=aes(x = coefficient, y = mean), yintercept = 0, colour = grey(0.25), lty = 

2) + 

  geom_point(mapping=aes(x = coefficient,  

                         y = mean, color = Dataset), position = dodge) +  

  geom_linerange(mapping=aes(x = coefficient,  

                             ymin = `0.025quant`, 

                             ymax = `0.975quant`, color = Dataset), position = dodge)+ 

  theme_bw() + 

  theme(legend.position="bottom", 

        plot.title = element_text(hjust = 0.5)) + 

  ggtitle("95% Credibility Intervals of Covariate Effects") + 

  labs(x = 'Covariate', y = 'Coefficient value') + 

  coord_flip()+ 

  scale_color_manual(breaks = c("Unproofed", "Proofed"), values=pal)+ 

  theme(legend.title=element_blank()) 

 

 

 

ggplot(fisher.plot.gbif)+ 

  geom_hline(mapping=aes(x = coefficient, y = mean), yintercept = 0, colour = grey(0.25), lty = 

2) + 

  geom_point(mapping=aes(x = coefficient,  
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                         y = mean, color = Dataset), position = dodge) +  

  geom_linerange(mapping=aes(x = coefficient,  

                             ymin = `0.025quant`, 

                             ymax = `0.975quant`, color = Dataset), position = dodge, lwd = 1)+ 

  theme_bw() + 

  theme(legend.position="bottom", 

        plot.title = element_text(hjust = 0.5)) + 

  ggtitle("95% Credibility Intervals of Covariate Effects") + 

  labs(x = 'Covariate', y = 'Coefficient value') + 

  coord_flip()+ 

  scale_color_manual(breaks = c("iNaturalist", "GBIF"), values=pal)+ 

  theme(legend.title=element_blank()) 
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