
Northern Michigan University Northern Michigan University

NMU Commons NMU Commons

All NMU Master's Theses Student Works

5-2024

Plumbing the Depths of the Shallow End: Exploring Persistent Plumbing the Depths of the Shallow End: Exploring Persistent

Homology Using Small Data Homology Using Small Data

R. Anne Flynn
Northern Michigan University, rflynn@nmu.edu

Follow this and additional works at: https://commons.nmu.edu/theses

 Part of the Data Science Commons, and the Geometry and Topology Commons

Recommended Citation Recommended Citation
Flynn, R. Anne, "Plumbing the Depths of the Shallow End: Exploring Persistent Homology Using Small
Data" (2024). All NMU Master's Theses. 844.
https://commons.nmu.edu/theses/844

This Open Access is brought to you for free and open access by the Student Works at NMU Commons. It has been
accepted for inclusion in All NMU Master's Theses by an authorized administrator of NMU Commons. For more
information, please contact kmcdonou@nmu.edu,bsarjean@nmu.edu.

https://commons.nmu.edu/
https://commons.nmu.edu/theses
https://commons.nmu.edu/student_works
https://commons.nmu.edu/theses?utm_source=commons.nmu.edu%2Ftheses%2F844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=commons.nmu.edu%2Ftheses%2F844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=commons.nmu.edu%2Ftheses%2F844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.nmu.edu/theses/844?utm_source=commons.nmu.edu%2Ftheses%2F844&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kmcdonou@nmu.edu,bsarjean@nmu.edu

PLUMBING THE DEPTHS OF THE SHALLOW END:
EXPLORING PERSISTENT HOMOLOGY USING SMALL DATA

By

R. Anne Flynn

THESIS

Submitted to
Northern Michigan University

In partial fulfillment of the requirements
For the degree of

MASTER OF SCIENCE

College of Graduate Studies and Research

May 2024

© 2024 Northern Michigan University

SIGNATURE APPROVAL FORM

PLUMBING THE DEPTHS OF THE SHALLOW END:
EXPLORING PERSISTENT HOMOLOGY USING SMALL DATA

This thesis by R. Anne Flynn is recommended for approval by the student’s Thesis Committee,
the Department Head of the Department of Mathematics and Computer Science, and the Dean of
Graduate Education and Research.

Date

Committee Chair: Dr. Joshua J. Thompson, Assistant Professor

Date

First Reader: Dr. Daniel Rowe, Assistant Professor

Date

Second Reader: Dr. J.D. Phillips, Professor

Date

Department Head: Dr. J.D. Phillips

Date

Dean of Graduate Education and Research: Dr. Lisa Eckert

ABSTRACT

PLUMBING THE DEPTHS OF THE SHALLOW END:
EXPLORING PERSISTENT HOMOLOGY USING SMALL DATA

By

R. Anne Flynn

Persistent homology is a prominent tool in topological data analysis. This thesis is designed

to be an introduction and guide to a beginner in persistent homology. This comprehensive

overview discusses the math used behind it, the code needed to apply it, and its current place in

the field. We explain and demonstrate the algebraic topology which fuels persistent homology.

Homotopies inspire homology groups, which are able to determine how many holes a shape has.

By visualizing data as a shape, persistent homology determines what type of holes are present.

We demonstrate this by using the package TDA in the manipulation software R on controlled

datasets. A kernel density estimate diagram presents the results. We showcase applying TDA to

an external, uncontrolled dataset. The limits on memory allowed us to process no more than

four columns of data at a time. To more thoroughly explore the dataset, we analyzed several

four-column subsets, but found no special features aside from a base level of closeness.

i

DEDICATION

To my ever supportive husband Matt, without whom this never would have happened. Your

insight and imagination consistently expand mine.

And to the Kalamazoo Area Mathematics and Science Center, who instilled in me a great love of

mathematics and its cosmic beauty.

ii

ACKNOWLEDGMENTS

The author would like to thank Dr. Joshua Thompson for his steady guidance and instruc-

tion. She also acknowledges Dr. Randy Appleton and Jason Haskell for their assistance and the

university’s Department of Mathematics for its passion of its subject.

All citations are formatted in Chicago style.

iii

TABLE OF CONTENTS

List of Figures vi

Symbols and Abbreviations viii

1 Introduction 1

2 Homotopy 5

2.1 The Fundamental Group . 5

2.2 Larger Dimensions . 10

3 Homology 13

3.1 Simplicial Homology . 14

3.2 The Boundary Function . 16

3.3 Homology Groups . 20

4 Topology in Data Analysis 29

4.1 Topologizing Data . 29

4.2 Mapper . 32

4.3 Cluster Trees . 33

4.4 Towards Persistence . 35

5 Persistent Homology 37

5.1 Filtration . 37

5.2 Presentations . 40

6 Datasets 45

iv

6.1 The TDA Package . 45

6.2 Deciphering KDE Diagrams . 48

6.3 Noise . 56

6.4 Data in the Wild . 58

7 Conclusion 63

References 65

v

LIST OF FIGURES

1 Point-set topology acknowledges a difference in these figures, but not the difference in
their number of holes. 3

2 There is one hole in the circle, two in the torus, and zero in the sphere. 6

3 If a path includes a segment and its inverse, those cancel each other. 7

4 π1(X) of a circle and an annulus, topologically equivalent. 7

5 π1(X) of a mobius strip, viewed directly onward. 8

6 The wedge and the torus share generators in π1(X) , but they are topologically different. 9

7 π1(X) of a two-holed torus. 10

8 π1(X) of a tetrahedron, topologically equivalent to a sphere. 10

9 Homotopy groups tabulated by Toda Hiroshi. 12

10 A hollow tetrahedron with orientation demonstrated on edges, then faces. 15

11 A triangulation of a circle S. 24

12 A triangulated wedge W. 25

13 A triangulated torus T and its beginnings as a topologist’s square. 26

14 A topologist’s octagon and topological equivalent of a two-holed torus H. 27

15 Mapper’s analysis of diabetes predictors in medical data. 32

16 Cluster tree presenting common words in an author’s works. The left tree analyzes
Leonardo da Vinci; the right, Noam Chomsky. 34

17 Persistence in action: the distance threshold creates and kills holes as it grows. 39

18 A circle of points and its corresponding barcode. 41

19 A circle of points has only a couple significant features in a KDE diagram. 42

vi

20 A persistent landscape and its corresponding silhouette. 43

21 R code for generating KDE diagrams of datasets. 46

22 A classic cardioid and its KDE diagram. 48

23 Time Versus Accuracy. B = 75 took 25 seconds to generate. B = 150 took 45 seconds. 49

24 B = 300 took close to two minutes to generate; B = 700 took nearly five minutes. . . . 50

25 The reflected cardioid. Its KDE diagram is identical to the one in Figure 22. 51

26 The rotated and reflected cardioid and its matching KDE diagram. 52

27 A three-petaled epicycloid and its KDE diagram. 52

28 A five-petaled epicycloid and its KDE diagram. 53

29 A seven-petaled epicycloid and its KDE diagram. 54

30 Lowering the h parameter expands what the program considers significant. 55

31 A clean trefoil and its KDE diagram. 57

32 A noisy trefoil and its KDE diagram. 57

33 KDE diagrams of curated two-column and three-column subsets, respectively. 60

vii

SYMBOLS AND ABBREVIATIONS

TDA topological data analysis

Rn n-dimensional real space

Zn n-dimensional space restricted to integers

Sn n-dimensional spherical space

πn(X) nth homotopy group of space X

∆n maximum dimension of a simplex

Cn n-dimensional chain group

δ boundary function

Hn n-dimensional homology group

FiK ith subcomplex in a filtration of complex K

ε distance parameter

KDE kernel density estimator

R data manipulation software

TDA a package for R

h smoothing parameter

B iteration parameter

by step parameter

Y dataset

viii

1 Introduction

Big Data is here, exploding into the industrial scene and bringing with it the new field of

data science. As with most infrastructures, mathematics has something to offer to improve it.

Topological data analysis (TDA) elevates data science by marrying abstract math with computer

science to find hidden insights. The goal of this thesis is to serve as a sweeping introduction to

TDA by exploring a popular tool called persistent homology.

A student with any background in topology and group theory should be well-enough

equipped to read this paper, and some familiarity with the program R and its IDE R Studio would

be helpful. We cover every other necessary concept in the first few sections. By the time we

reach topological data analysis, the reader should be prepared to see those concepts translated

into an actionable program.

We begin with the topics one finds on a first swim into algebraic topology, namely

homotopy in section two and homology in section three. These bridge the abstract with the

concrete and allow topology to be applied to data. Special care is taken toward the beginner, with

several examples presented to help these abstract concepts be more intuitively understood. From

homotopy groups we proceed to triangulation, boundary, chain groups, and finally homology

groups.

Section four takes a slight tangent to briefly discuss TDA as a field. This is meant to be an

overview and we briefly introduce a variety of tools and forms of presenting their findings. This

gives some context to both the usefulness and approachability of persistent homology. Within

1

persistence we focus on a method of presentation called the kernel density estimate diagram.

The aim of section five is to make reading those diagrams more comfortable, as decoding their

results is not as straight-forward as other traditional infographics. We spend some time demon-

strating the effects of different parameters in a persistence algorithm before analyzing anything

unexpected.

The penultimate section is dedicated to observing persistence’s performance on both

controlled and real world low-dimensional data. This section contains a collection of warnings

and advice, as the current limits of persistence stalled many attempts to analyze the real data. To

finish, we consider the possibilities of this sort of technology moving forward. It is a rare gift to

be able to explore a new field with a new tool, and the rush of discovery sends readers off to their

own adventures in math, data science, and beyond.

Without further ado, let us begin. In order to breach the waters of persistent homology, one

must first ground their feet in the sands of algebraic topology. Many mathmaticians encounter

point-set topology first: they relearn the meanings of open, continuous, connected, compactness,

and so forth. It builds to a natural belief in the concrete structure of what it means to be a point in

a set, with other points with which to interact. It eases a student into topology by seeing known

concepts in new ways.

Algebraic topology, on the other hand, leaps in from the other direction. It uses abstract

algebraic notions to describe topology, flying through concrete examples with barely a touch

down to earth. Without an implicit understanding of a group’s structure, of homomorphisms,

of a proper map, algebraic topology seems almost alien. And yet, it describes exactly the same

things point-set topology does. Why use it?

Point-set topology is useful, but doesn’t distinguish holes in objects. Consider a line

2

segment and a circle; algebraic topology is able to discern the hole enclosed by the circle, and

thus distinguish the objects as definitively different. Point-set topology is unable to find the hole,

so to speak. It can discern the two objects are distinct, as a mapping from one to the other is not

continuous across all its subsets, but it cannot tell how.

Figure 1: Point-set topology acknowledges a difference in these figures, but not the difference in their
number of holes.

Historically, holes have great significance in applying topology, and a significant gap in

data of any sort is worth exploring. Consider the bridges of Konigsberg, which helped bring

about applied topology as a field. This famous puzzle’s solution involves seeing a city as nothing

more than a cluster of holes whose edges are available paths to travel. In fact, the entire purpose

of persistence is tracking these holes and their strength of presence. Therefore, with its naturally

superior hole detection, algebraic topology is the better choice when it comes to data analysis.

We see this in homotopies and homologies, the necessary shallows we wade through toward

TDA itself.

Homotopies, or homotopy groups, track paths through a shape. These homotopies are

the conceptual basis for persistent homology; a cyclic homotopy which encloses nothing has

found a hole. As we move up through dimensions, the homotopies in each reveal topologically

significant voids. Homotopy groups are exceptionally difficult to compute in higher dimensions

3

though, so we must look elsewhere for our way forward.

For that, we turn to homology groups. These still find all the desired topological invariants,

but are no longer reliant on a visual representation. They are the bridge between the abstract

and the application. Even better, they can be algorithmically calculated. They are not quite as

comprehensive as homotopies, but it is a necessary trade for progress to continue.

Finally, these deep waters of data can be navigated with topology. If a data set is viewed

as a matrix, one can consider each column as its own free dimension. Thus any dataframe, no

matter how large, can be represented as a shape inhabiting that many dimensions.

While the original goal of processing a fifty column dataset is impossible at this stage of

persistence’s development, the experience gained from the attempt is invaluable. We discovered

an exponential increase in memory and processing power as one increases the columns of the

dataset. Before we get too far ahead of ourselves, however, we must learn the math by beginning

with some pure topology.

4

2 Homotopy

Now that we have decided upon algebraic topology, let us dig in the sand. The first topic

to confront is that of homotopy. Put simply, homotopy is a set of paths with the same endpoints

which can all be related to each other via some continuous deformation. Like a school of fish, a

homotopy of paths is a group noun. The formal definition follows.1

A homotopy of paths in a topological space X is a family ft : I→ X , 0≤ t ≤ 1, such that

1) The endpoints ft(0) = x0 and ft(1) = x1 are independent of t.

2) The associated map F : I× I→ X defined by F(s, t) = ft(s) is continuous.

(It should be noted the term homotopy can also refer to the map which takes one path to another

homotopic path, but in this paper the previous definition is primarily used.)

With some intuition about the ‘rubber-sheet geometry’ behavior of topology, one realizes

homotopic paths are topologically equivalent, and so we can consider the entire homotopy as the

important object to consider.

2.1 The Fundamental Group

The most notable homotopy group is the first one, denoted π1(X) and known as the

fundamental group. It considers all one-dimensional paths on a surface which start and end at the

same chosen point, classifying them based on which unavoidable holes they encircle. Figure 2

displays some surfaces with different fundamental groups, reflected in their variety and number

of holes. Formally, the fundamental group π1(X ,x0) of a topological space X is the set of all

homotopy classes [f] of loops f : I← X at the basepoint x0.2

1. Allen Hatcher, Algebraic Topology (New York, New York: Cambridge University Press, 2002).
2. Hatcher.

5

Figure 2: There is one hole in the circle, two in the torus, and zero in the sphere.

It can be daunting to calculate one’s first fundamental group, no matter how simple the

figure is. It may help to consider a path as a length of rope, and the point of origin as a peg to

which it is anchored. The rope can wind and wander around the surface in whatever way one

pleases, as long as it finishes at the original point again. Whatever path one draws can be pulled

taught after it has finished. Pulling all the slack out of the rope will contract the path to the most

generalized path which is homotopic to it.

Let us consider something approachable first, the fundamental group of a circle. It can

be expressed as the group generated by a single element, 1, since all paths either complete a

certain number of cycles around the circle (n ·1 for some n ∈ Z+), complete less than a full cycle

and can be contracted to the point (0), or complete a certain number of cycles in the opposite

orientation (n ·1 for some n ∈ Z−). Try to find a different kind of path, and one will see it can be

contracted to one of these three.

For example, consider a path going one time clockwise about the circle, then three the

opposite way (Figure 3). Let clockwise be the positive orientation in this case. We then pull

on the rope until no more slack remains. The counter-clockwise cycles will undo all of the

clockwise ones and more, ending back at the beginning point. The path will contract to twice

about the circle backward and thus, this path is homotopic to the element -2 in the fundamental

6

Figure 3: If a path includes a segment and its inverse, those cancel each other.

group.

An annulus has the same fundamental group, since it can itself be path-contracted to a

circle (compare the surfaces in Figure 4). Even wandering paths will be pulled tight along the

inside circle. This gives rise to another insight.

Theorem 1 If two spaces are topologically equivalent, their homotopy groups are also equiva-

lent.

Figure 4: π1(X) of a circle and an annulus, topologically equivalent.

A mobius strip can also be contracted to a circle and so has the same fundamental group.

Figure 5 shows how the circle’s generator runs directly through the Mobius strip, and one can

path-contract it to that circle to show topological equivalence. A disk is even less interesting:

7

since every path can be contracted to a point, the fundamental group is 0.

Figure 5: π1(X) of a mobius strip, viewed directly onward.

We move on to a more interesting space: a wedge of two circles. Since a cycle round each

circle cannot be homotopied into a cycle about the other, its fundamental group is generated

by two elements, denoted by the differently colored paths (Figure 6). One might write this as

π1(X) = ⟨a,b⟩, calling the blue path a and the green path b. Another way to see this figure is

as the intersection of two circles at a single point, and so deduce its fundamental group is the

product of the fundamental group of two circles. This is an example of the Van Kampen theorem

in action as we use it to decompose a surface into simpler shapes, using their fundamental groups

to build that of the original surface. Hatcher’s version of the theorem follows.3

Theorem 2 (Van Kampen’s Theorem) If X is the union of path-connected open sets

Aα each containing the basepoint x0 ∈ X and if each intersection Aα ∩Aβ is path-connected,

then the homomorphism Φ : ⋆απ1(Aα)→ π1(X) is surjective. If in addition each intersection

Aα ∩Aβ ∩Aγ is path-connected, then the kernel of Φ is the normal subgroup N generated by all

elements of the form iαβ (ω)iβα(ω)−1, and so Φ induces an isomorphism π1(X)≈ ⋆απ1(Aα)/N.

3. Hatcher, Algebraic Topology.

8

Figure 6: The wedge and the torus share generators in π1(X) , but they are topologically different.

Like a wedge, a torus is also generated by two elements, but it has a group relation

aba−1b−1 = 1. This relation comes from its two-dimensional surface. One can form a wedge

by identifying opposite edges of a hollow square. If the square is thought to span a topological

disc, this identification yields a torus (see Figure 13). Here we see the converse of Theorem 1 is

not always true. Sharing the set of fundamental group generators does not confer equivalence of

shape. A torus does not embed in R2 and has two unique features: one tunnel through the center

and one ’bubble’ within its walls. The wedge of two circles can be embedded in R2 and has two

tunnels, a stark difference from a topological perspective.

A two-holed torus takes things to another level, literally. Its fundamental group is generated

by four elements due to the two unique ways one could walk around each hole in the torus

(Figure 7). If one assigns each of the four unique loops a letter a,b,c,d, the fundamental group

can formally written as π1(X) = ⟨a,b,c,d|aba−1b−1cdc−1d−1 = 1⟩. A common question many

have at this point is, “How would one represent the path going between the ‘donut holes’?” If we

call the blue homotopy a and the green one b, their composition is topologically equivalent to

the path in question. We invite the reader to generate any path they like across this figure, then

determine to which homotopy it belongs.

As a final example, we consider the tetrahedron. Although the stately tetrahedron is, like

9

Figure 7: π1(X) of a two-holed torus.

the torus, embedded in R3, it is isomorphic to the sphere S2. Any path about S2 is contractible to

a point, as it is a closed, connected two-dimensional surface embedded in a three-dimensional

space. It has neither obstacle nor boundary to run into anywhere. Therefore the fundamental

group of a tetrahedron is the same as a sphere, simply 0.

Figure 8: π1(X) of a tetrahedron, topologically equivalent to a sphere.

2.2 Larger Dimensions

The fundamental group, while powerful, does have limitations. It is not inherently abelian,

as the orientation of its paths and the order of composition both help generate all the group’s

elements. Homotopy groups are commutative past a certain point– when n ≥ 2, πn(X) will

always be abelian4– but this is only useful if we can somehow observe or compute those higher

4. Hatcher, Algebraic Topology.

10

homotopy groups.

Therein lies the biggest problem for using these in application. While in theory we could

draw significant insights from a surface’s full span of homotopy groups, even computers have

a difficult time determining higher-level homotopy groups. Recent theories of how to improve

their performance have been released as recently as 2022.5 Van Kampen’s Theorem only applies

to the fundamental group, and other such hopeful resources are similarly rousted.

Although we might like to utilize these powerful tools, higher homotopy groups aren’t

feasible for any sort of high-dimensional surface. In fact, it is infeasible to calculate them directly

past our own relatable space of R3 for anything beyond the simplest of shapes.6 To further

convince any skeptics, Figure 9 contains the homotopy groups of a very simple space, Sn, up to

S8 (πi(Sn)).7

Homotopies hold the key to our understanding, but we find them mostly inaccessible.

To apply this knowledge to something like data, which comes in notoriously large arrays

sometimes, we must find a way to look into those larger spaces without needing diagrams to get

by. Algorithms are capable of finding peripheral, oft directly related information like topological

invariants, but not finding the homotopy groups themselves. In fact, identifying features in low

dimensions affect the higher-dimensional homotopic invariants themselves.8 For now, we must

seek a different method of finding these voids.

5. Ronald Brown, “Modelling and Computing Homotopy Types: I,” Hosted by Cornell University, ArXiv,
September 2022,

6. Hiroshi Toda, Composition Methods in Homotopy Groups of Spheres, ISBN 0-691-09586-8 (Princeton
University Press, 1962).

7. Toda.
8. Brown, “Modelling and Computing Homotopy Types: I.”

11

Figure 9: Homotopy groups tabulated by Toda Hiroshi.

12

3 Homology

Homology groups are similar to homotopy groups in how they assess features like voids,

although homology groups are a bit less comprehensive. They are far easier to compute for

higher dimensions, despite requiring some setup.

It begins with the concept of triangulating a shape. Triangulating is when a surface in Rn

is decomposed into a ‘derendered’ version of itself, made of a sum of triangles drawn between

vertices sampled across the surface.9 The R0 elements are vertices, the R1 elements are edges

between those vertices, the R2 elements are triangles filled in between those vertices, and so

on. The term face may refer to any dimension’s elements (an n-face would live in Rn), but is

generically used to describe the triangles in R2.

With triangulation we have some direction on how to leave the dry sands of abstract homo-

topy behind. If the goal is to find holes, one can map out an entire surface by labeling its vertices

and tracking paths one draws in this triangulation. It allows a topologist to play cartographer,

in a sense. One could decompose a surface into any number of shapes, but triangles are the

most simple shape and give the least complications moving forward. In addition, triangulation

allows one to travel by linear combinations of the faces (classing all paths through these faces as

topologically the same), so all coefficients are now in Z.

9. Herbert Edelsbrunner and John Harer, Computational Topology: An Introduction, Departments of Computer
Science and Mathematics (Durham, North Carolina: Duke University, 2010), 177–208.

13

3.1 Simplicial Homology

When a surface is triangulated, it can be algebraically described in the form of a simplicial

complex X, also called a ∆-complex. A simplicial complex is a collection of sets, called

simplices, which each contain this surface up to a particular dimension. Its elements are

the n-dimensional faces, which are themselves simplices containing their lower-dimensional

components. From the other direction, any face of a simplex ∆n is also contained in all higher-

dimensional simplices ∆m>n which contain that simplex.10 Consider Figure 10 below. Its

simplicial complex would consist of 0,1 and 2-simplices, each containing the figure’s n-faces

represented as sets: the 0-simplex, or ∆0, contains the vertices [a,b,c,d]; the 1-simplex ∆1

contains the edges [(ab),(bc),(ca),(ad),(db),(cd)]; and the 2-simplex ∆2 contains the faces

[(abc),(acd),(adb),(bdc)]. Notice there is no 3-simplex, as this is a hollow polygon equivalent

to S2 and there is no 3-face to speak of.

This notation has some readily available properties which lend themselves nicely to

higher dimensions. Firstly, it is a nested structure by design. This is a purely combinatorial

approach11.12 Even if dimensions cannot be visualized they are assuredly included and covered,

since every higher dimensional simplex is built by using the shape’s skeleton of vertices.

The ∆-complex also captures paths in expressions, not diagrams. This frees us from

needing any sort of visualization to work with them. These algebraic records of our paths take

the form of chains. Chains form groups in their respective dimensions denoted Cn, generated by

the unique n-dimensional faces of the structure. To prove these are groups is left to the reader;

10. Larry Wasserman, Topological Data Analysis, Department of Statistics (Pittsburgh, Pennsylvania: Carnegie
Mellon University, 2016).

11. Robert Ghrist, Foundations of Topological Data Analysis, YouTube, July 2023.
12. Hatcher, Algebraic Topology.

14

Figure 10: A hollow tetrahedron with orientation demonstrated on edges, then faces.

the identity is the 0 element, and it is clear to see associativity and inverses hold with a little

wandering through the figure. To illustrate, our stolid tetrahedron assistant has its vertices as

the basis of the C0 group, its edges as the basis of the C1 group, and its triangular faces as the

basis for the C2 group. (a,d) and 3(a,b)+(b,c)−2(c,d)+(d,b) are both 1-chains in C1. Any

n-chain in an n-simplex can be composed of any linear combination of the faces contained in that

simplex. A chain does not have to end at the same point, nor does it have to follow any particular

orientation.13

When a chain does end at its beginning point, it is called a cyclic chain, or cycle. (a,d)+

(d,b)+(b,a) is a cycle in Figure 10, while (a,d) alone is not. It is now time to fully reveal the

plan: if we can somehow find cycles which walk around nothing, we will have found a hole.14

How do we determine when nothing is inside a cycle? This finally leads us to the single most

important function in our presentation of algebraic topology: the boundary function.

13. NJ Wildberger, Algebraic Topology: a Beginner’s Course, YouTube, University of New South Wales, Sydney,
Australia, 2012.

14. Ravi Jagadeesan and Luke Sciarappa, Simplicial Homology, MIT Mathematics, Fourth Annual MIT Primes
Conference, May 2014.

15

3.2 The Boundary Function

The boundary function δ is a homomorphism δn : Cn(X)→Cn−1(X) where if ∆n is an

n-simplex ∆n = (v0v1...v̂i...vn), then:

(1) δn(∆n) = Σi(−1)i(v0v1...v̂i...vn)

In words, δn for a simplex in simplicial complex X is the set of all n-1 cycles found by

taking the boundaries of each of its n-faces. These boundaries are an (n−1) simplex created by

taking the formal alternating sum of its face’s edges. The elements are generated by omitting

a different vertex vi of the face at a time (denoted by the hat over vi above). If one considers

the 2-simplex (abc) in Figure 10, δ2(abc) = bc−ac+ab. The boundary δn(X) clearly makes a

subgroup in the chain group Cn−1(X).

This function does require a little extra structure to operate smoothly, namely the orienta-

tion mentioned before. While a valid n-chain may be any linear combination of the elements

of its simplex, the boundary function returns only cycles of one dimension lower. It clearly has

an order imposed on the list of elements v j above, which affects the sign based on whatever

entry of ordered value i is currently removed. This is the orientation, determined by the ver-

tices’ order. Any order may be imposed on the vertices, as long as one holds to its orientation

faithfully throughout the calculations. This is expanded on the right in Figure 10; all faces of

the tetrahedron have been oriented clockwise when viewed from outside the figure, due to its

vertices being ordered from first to last (a,b,c,d). A positively-oriented path, say from a to b, is

simply represented as (ab), and going the opposite way is shown as either −(ab) or (ba). This

16

showcases an ability to permute the order of entries: two adjacent entries in a boundary element

may be swapped as long as its sign changes.

It is prudent to note some properties of the boundary function, but they will be brief; the

best way to see how the boundary function works is to see it in action. The boundary of a cycle

is 0,15 as the formal sum will result in two of each n−1 face, one in each direction, and they

will wholly cancel. This is demonstrated in (2) below. This leads to an extremely useful quick

fact about the δ function: the boundary of a boundary is 0. If one wants the boundary δ2 of a

2-dimensional face, the result is a cycle and the boundary of a cycle is 0. This is so important it

bears extra mention.

Theorem 3 δ 2 = 0, i.e. the boundary of a boundary is 0.

(2)

δ2(adb) = (db−ab+ad)

(δ is a homomorphism and we can extend by linearity.)

δ1(db−ab+ad) = δ1(db)−δ1(ab)+δ1(ad)

= (b−d)− (b−a)+(d−a)

= b−d−b+a+d−a

= 0

Additionally, the 0-simplex (the vertices) will always have a boundary result of 0. This is

15. Wildberger, Algebraic Topology: a Beginner’s Course.

17

demonstrated directly in (3) with the tetrahedron. Let ∆0 = a+b+ c+d be the 0-chain.

(3)

δ0(∆0) = δ0(a)+δ0(b)+δ0(c)+δ0(d)

δ0(a) = 0

δ0(b) = 0

δ0(c) = 0

δ0(d) = 0

This may seem cheap, but there is no formal sum to take for zero-dimensional elements.

This concurs with the intuition one has about the boundary of the lowest dimensional elements

in a set. If the boundary of a face is represented in elements one dimensional lower than it, the

lowest dimensional elements will have nothing ‘below’ them (in ∆−1, the trivial group) and so

will have no representation. The entire structure is formed from building up from the vertices.

The vertices themselves cannot have something which preceeds them, otherwise they would not

be the progenitors of the structure. Therefore the boundary of the ∆0 simplex is the identity 0.

Now we compute δ on other simplices of the tetrahedron. The one-dimensional chain

group C1 for the tetrahedron is generated by the six edges (ab), (bc), (ca), (ad), (db), and (cd).

18

(4)

δ1(ab) = b−a

δ1(bc) = c−b

δ1(ca) = a− c

δ1(ad) = d−a

δ1(db) = b−d

δ1(cd) = d− c

These six relationships list out the boundaries of all edges in the tetrahedron and generate

the subgroup of 1-dimensional boundaries for the entire surface. Any boundary of a collection of

2-dimensional faces can be expressed using these. Next, the boundary of the faces in ∆2 can be

found by δ (C2), the second chain group generate by the four faces (abc), (acd), (adb), and (bdc).

We compute δ2 on these generators and collect the results here to be used later.

(5)

δ2(abc) = (bc)− (ac)+(ab)

δ2(acd) = (cd)− (ad)+(ac)

δ2(adb) = (db)− (ab)+(ad)

δ2(bdc) = (dc)− (bc)+(bd)

It is of utmost importance to understand boundary before moving on to homology groups.

The boundary of some face is the cycle of elements enclosing that face, and these elements

are naturally embedded one dimension lower than the face they enclose. Thus, the image of a

19

particular simplex ∆n’s boundary will be the boundaries of all its existing faces. In addition, the

boundary of all cycles always have a formal sum of zero. Their later steps undo their earlier ones.

If we can gather all the cycles together and remove the ones which are boundaries of some area,

the ones left over will be cycles which do not enclose area, i.e. holes. We accomplish this by

taking a quotient of the group of cycles by the group of boundaries in a single dimension. We

call these quotients homology groups.

3.3 Homology Groups

A homology group Hn is defined16 as:

(6) Hn = ker(δn)/im(δn+1)

Hn represents the nth homology group, made by taking the quotient of the boundary’s

kernel in one dimension by the image of boundary from the dimension above it. Recall a kernel

of a function is the set of inputs which have the output 0, and the image is the set of all outputs

of some function. By taking the kernel of the boundary in a dimension, it ensures all cycles are

captured, as they are the chains whose boundaries will go to 0. The image of the dimension

above it ensures all boundaries– and only boundaries, which enclose an area– are captured in the

form of cycles in dimension n.

Recall the image of the n+1 boundary is a subgroup of the Cn chain group. Therefore,

the quotient group created in this fashion considers all n-cycles except the ones which enclose an

16. Hatcher, Algebraic Topology.

20

area. The result will be those cycles which enclose nothing: holes. The easiest way to calculate

these will be to consider the basis elements m of each group, written in terms of Zm; once we

mod the kernel by the image, what remains will give us our number of voids.

Similar to the boundary function, homology groups are more digestible when taken with

examples. For our final backstroke through homology in its own right, we now revisit our

examples from Section 2 and instead compute their first homology groups. One will notice how

the first homology groups are exactly the abelianized fundamental groups of their respective

spaces. In fact, all homology groups are abelian. Neither direction nor starting point matter when

the end result is a net distance of travel, measured in number of times a void is unavoidably

encircled.

It seems almost insulting to work off the tetrahedron so much and not compute at least

one homology group; for its excellent support, why not calculate all three? Call the tetrahedron

X. The 0th homology group, H0, is formed by taking the kernel of δ0 and modding out by the

image of δ1. ker(δ0) contains all vertices a, b, c, and d. im(δ1) contains the boundaries (b−a),

(a− c), (d−b), and (d−a) of each edge.

Recall our goal here is to compare the number of basis elements between the kernel

and the image. The im(δ1) is algebraically redundant in this sense. The boundary of (bd), for

example, is (d−b). By taking the boundary of two other elements, δ1(ad)−δ1(ab), we arrive

at d− a− b+ a, or d− b. Because δ (bd) can be made by a linear combination of the other

elements, it is not a unique basis element. With some linear algebra, we see there are only three

21

generators needed for all of im(δ2). This is reflected below in (7).

(7)

H0 = ker(δ0)/im(δ1)

ker(δ0) = ⟨a,b,c,d⟩ (Express as Z4.)

im(δ1) = ⟨b−a,a− c,d−a⟩ (Express as Z3.)

=⇒ H0 = Z4/Z3

= Z

The H0 group has a single generator, indicating one can get to any point in the surface

from this beginning. What this means in a broad sense is the surface is one connected piece.

Evidence of holes appears in the H1 group. The kernel of δ1 will be all 1-dimensional

cycles in X, as all cycles go to 0. The basis of these cycles are the unique ones found in the

edges of X: ab+bc+ ca, bc+ cd +db, ad− cd + ca, and ad +db−ab. The image of δ2 is the

boundary of the 2-faces abc, acd, adb, and bdc.

(8)

H1 = ker(δ1)/im(δ2)

ker(δ1) = ⟨ab+bc+ ca,bc+ cd +db,ad− cd + ca,ad +db−ab⟩

= Z4

im(δ2) = ⟨bc−ac+ab,cd−ad +ac,db−ab+ad,dc−bc+bd⟩

= Z4

=⇒ H1 = Z4/Z4

= 0

22

Recall the fundamental group π1(X) of a sphere is also 0. This first homology group says

the same, but what H1 reveals is there are no 1-dimensional holes. This is easily confirmed by

referencing the figure: the only void it has is the one enclosed by its entire self. To find this void,

one must find H2. The δ2 will find one unique cycle of 2-faces: abc+ acd + adb+ bdc. The

second homology group, having a single generator (as shown in (9) below), suggests there is a

single 2-dimensional hole.

(9)

H2 = ker(δ2)/im(δ3)

ker(δ2) = ⟨abc+acd +adb+bdc⟩

= Z

im(δ3) = 0 (It has no 3-face.)

=⇒ H2 = Z/0

= Z

There are no more non-zero homology groups for this shape. This is a final benefit of

homologies as opposed to homotopy groups (refer back to Figure 10 to see non-trivial homotopies

existing above a shape’s inhabited dimensions). A homology group’s necessary pieces are created

from a face existing in some dimension. Thus, when a shape no longer has a presence at a

sufficiently high dimension, it will not have any elements in the boundary’s kernel, nor its image,

and its homotopy group there will always be 0. This is the power of the boundary function. It

allows a shape, once triangulated, to be broken down into its fills and voids– and nothing else.

Before celebrating and swimming ahead into larger swells, however, it is useful to re-examine

the homotopy examples and see them in this new light.

23

Figure 11: A triangulation of a circle S.

Revisiting the circle may feel elementary, but it is an excellent place to start and confirm

any implicit expectations. If one remembers the circle’s fundamental group, those expectations

are likely correct. To triangulate the circle is a simple matter of noticing it is topologically

equivalent to a hollow triangle S with vertices a,b,c and the edges between them (Figure 11).

The kernel of δ1 is all unique cycles created by edges: the circle itself. The image of δ2 is empty,

as there are no 2-faces to give a boundary. As displayed below, the first homology group of a

circle ends up being Z. In this case, it is the same as its fundamental group (Z is already abelian).

This confirms what the figure itself presents: in a circle, the one-dimensional cycles contain one

cycle which is not a boundary, i.e. the hole.

(10)

H1 = ker(δ1)/im(δ2)

ker(δ1) = ⟨ab+bc+ ca⟩

= Z

im(δ2) = 0

=⇒ H1 = Z/0

= Z

24

We also briefly reconsider the annulus and mobius band. Recall each of them is topologi-

cally equivalent to a circle. By Theorem 1, each of their first homology groups are also Z. A disk

is even less interesting: since every path can be contracted to a point, the first homology group is 0.

Figure 12: A triangulated wedge W.

With a wedge of two circles W , one can use its fundamental group to predict the first

homology group. π1(W) =Z×Z, so H1(W) is the abelianized version of that: Z2. In calculating

it directly, we see ker(δ1(W)) contains a pair of elements (the two unique 1-dimensional cycles

in the shape) and im(δ2(W)) is, again, 0.

(11)

H1 = ker(δ1)/im(δ2)

ker(δ1) = ⟨ab+bc+ ca,ad +de+ ea⟩

= Z2

im(δ2) = 0

=⇒ H1 = Z2/0

= Z2

25

Figure 13: A triangulated torus T and its beginnings as a topologist’s square.

Recall the torus T ’s fundamental group, ⟨a,b|aba−1b−1 = 1⟩. Its first homology group

will be the abelianized π1(T), also Z2. To triangulate the torus, one can utilize a topologist’s

square as pictured in Figure 13; by connecting (often called gluing) the matching edges together,

one will create a torus exactly. Notice how the edges a, b, and c are labeled instead of vertices,

as all the vertices end up identifying to each other.

ker(δ1(T)) contains a trio of elements: the two unique cycles a and b, corresponding to

one path around the tunnel through the center and another around the bubble within its walls,

and the cycle a + b + c. Also notice how the triangulating edge c is contractible to a point, so it

alone cannot be a non-trivial element. The im(δ2(T)) is generated by the identical boundary of

the two faces made by the path abc.

26

(12)

H1 = ker(δ1)/im(δ2)

ker(δ1) = ⟨a,b,a+b+ c⟩

= Z3

im(δ2) = ⟨c−b+a⟩

= Z

=⇒ H1 = Z3/Z

= Z2

A two-holed torus H is our final proving ground for homology, shown in Figure 14

with its triangulation on the left. Recall its π1(X) = ⟨a,b,c,d|aba−1b−1cdc−1d−1 = 1⟩, which

condenses to an abelianized ⟨a,b,c,d⟩. We therefore expect its H1 to have four generators (this

is demonstrated directly in (13)). The kernel of δ1(H) consists of nine generators; all nine unique

edges have boundaries of 0, since all points get connected into one vertex like the torus. The

image of δ2(H) contains five generators, as the boundaries of five faces can also generate the last

face’s boundary.

Figure 14: A topologist’s octagon and topological equivalent of a two-holed torus H.

27

(13)

H1 = ker(δ1)/im(δ2)

ker(δ1) = ⟨a,b,c,d,e, f ,g,h, i⟩

= Z9

im(δ2) = ⟨a+b− i, i−a−h,h−b−g,g+ c− f , f +d− e⟩

= Z5

=⇒ H1 = Z9/Z5

= Z4

Homology is the missing link between the theoretical heights of homotopy and the concrete

application of data science. The ideas homotopy presented– finding holes, mapping a figure

by paths– can still be done in homology, provided one is meticulous with notation. Simplicial

complexes take care of that, housing the details of a shape within its dimension-bound simplices.

Can the same thing could be done to data? It’s a curious suggestion: datasets are already numbers,

aside from qualitative entries. Why view them as a shape just to reconvert them into chains and

groups? This current of thought directs us swiftly toward the goal of topological data analysis.

28

4 Topology in Data Analysis

Topological data analysis first appeared as a discipline just over thirty years ago. The ideas

of singular homology helped Patrizio Frosini look at data in a new light: one where they have

volume, curves, and holes. Singular homology is the broader field which spawned simplicial

homology, and it is still mainly concerned with finding topological invariants in high-dimensional

shapes. Frosini was interested in classifying shapes by their size function, which essentially

found the ‘difference in shape’17 between them. A few peripherally related papers separately

concerning new ways to organize data, homology, and simplicial complexes trickled out in

the late 1990s before the term ‘topological persistence’ appeared in a paper by the esteemed

Edelsbrunner, Letscher, and Zomorodian in 2000. Thus was topological data analysis born,

applying homology theory and size function to computer science and the burgeoning field of

data science. The next decade saw an explosion of interest as fresh minds jumped on the wave of

this new tool.

4.1 Topologizing Data

But the question remains: how exactly is one able to apply these topological investigations

to data and draw useful results? The secret lies in a shift in perpective. Data, even qualitative

data, is organized. Even when it’s dirty, cluttered, inefficient, and half-complete, it is possible to

impose an order and therefore, an orientation.

Consider any dataset, from anywhere: with some cleaning and manipulation, one can

17. Patrizio Frosini, “Measuring Shapes by Size Function,” DOI: https://doi.org/10.1117/12.57059, Intelligent
Robots and Computer Vision X: Algorithms and Techniques (Boston, Massachusetts) 1607 (February 1992).

29

structure it into a dataframe of rows and columns. What remains is a complex relationship

between the information grouped by the columns and stored in the rows. One could view the k

columns as distinct areas of variation, like axes on a graph i.e. dimensions of a figure. It is the

same as an elementary x-y table holding the points needed to plot a graph in R2, simply scaled

up. The rows can be treated as points on a graph embedded in Rn space and each column’s entry

is the row’s value in that corresponding dimension k of Rn. Thus, the data could feasibly be

plotted in this n-dimensional graph as a cloud of points called, with great inspiration, a point

cloud.

Seeing this point cloud as a collection of vertices goes hand in hand with using them to

construct a simplicial complex. One can achieve exactly this by choosing an appropriate metric

by which to measure the points’ relative closeness. Metrics are critical in TDA, as they can be

constructed for any Rn space and are not bound by any dimension in particular. A fitting metric

is as important as choosing how to present the data, as it allows one to tailor what is highlighted

as important or not. In many cases the usual distance metric is sufficient to begin, but some

methods automatically rely on statistically-supported metrics, using probability distribution to

prune outliers or find especially connected points before applying topological tools.18

Building a simplicial complex from the data points naturally builds up a figure around

those points. Now one can feasibly study the multi-dimensional relationships the entries might

have by studying the shape created by them. This shape can be considered a mathematical object

created by data, an object with its own unique structure. It may have gaps, holes, clusters, or

other notable behaviors which group data in relationships spanning the columns of its dataframe.

Relationships between data in one or two columns is a common target in general data analysis, but

18. Brittany T Fasy et al., “Introduction to the R Package TDA,” CMU TopStat Group, January 2024,

30

relationships between different categories can be much harder to find using traditional methods.

TDA can find these relationships where other methods cannot.

If there is a dense cluster in the point cloud, those data entries must be close to each other

in several ways. If there is a gap inhabiting many dimensions, that gap is present in several

different columns of data. Analyzing its shape in this sense is independent of the columns’

scales or proximity in range. It allows one to view all these relationships more efficiently than

comparing pairs of columns to each other in the hope of finding something useful. Successful

attempts to apply TDA have been made in a heavy handful of STEM fields19.20 The potential to

apply it to any field which produces quantitative data is a driving motivation for its development.

TDA is currently in this tinglingly new exploratory stage. There are several approaches to

the question of what aspects of the data’s topology to focus on: finding and studying clusters of

data; using those clusters to find and study the holes in the data instead; reducing the dimension

of the data; and more, highlighting all sorts of other features in the created shape like ridges

and peaks. Each method has multiple ways to present findings as well, but all methods require

a robust and well-chosen metric by which to relate the points. Studying clusters in data is

generally the most straightforward approach. We present a couple of methods in this category to

demonstrate, namely the attractive Mapper algorithm and more pragmatic clustering trees.

19. Jose A. Perea, “A Brief History of Persistence,” DOI: https://doi.org/10.48550/arXiv.1809.03624, ArXiv,
October 2018,

20. Ziyad Oulhaj, Mathieu Carriere, and Bertrand Michel, “Differentiable Mapper for Topological Optimization
of Data Representation,” DOI: https://doi.org/10.48550/arXiv.2402.12854, ArXiv, February 2024,

31

4.2 Mapper

The Mapper algorithm is one of the oldest tools in TDA, being presented in 2007.21 It is a

beautiful example of simple clustering in TDA. It ignores much of the underlying subtlety of the

point cloud unless one focuses on an aspect specifically, and often ignores the sizes of holes, the

density of where the points are gathered, and even the overall shape they create. Mapper instead

utilizes a topological theorem called the Nerve Theorem22 to make a cover of the point cloud.

Discussion is brief here, or we may get too distracted on our way to persistence, but

Figure 15: Mapper’s analysis of diabetes predictors in medical data.

basically Mapper groups a point cloud based on any clustering algorithm one desires. It does not

even require a direction (i.e. orientation) to collect up the data, provided distance between the

points can be measured. By calculating a particular open cover called the nerve of a space X,

one receives a collection of sets which each have overlap to at least one other set in the nerve.

This allows Mapper to treat each set as its own nodule and draw connections between the ones

21. Gurjeet Singh, Facundo Memoli, and Gunnar Carlsson, “Topological Methods for the Analysis of high
Dimensional Data Sets and 3D Object Recognition” (Prague, Czech Republic), September 2007,

22. Singh, Memoli, and Carlsson.

32

which overlap.

What results is a vivid display of nodes and edges as in Figure 15, which displays the

Mapper result of processing diabetes data23 with six dimensions, including risk factors and

diagnoses. The two diverging branches correspond to diabetes I and II, and was even able to

help predict the severity of diabetes as well as type. Mapper has even been used to present data

in an interactive map, where nodules will expand to their own smaller webs when clicked. In

this age of screens instead of paper, such engaging presentations are a classy option when the

situation allows. Currently Mapper is still being refined, and projects as recent as this year have

been published on how to improve the tuning of its parameters and its analytical prowess.24

4.3 Cluster Trees

Clustering trees are an example of focusing on clusters of points, but can also analyze them

based on their statistical probability. To analyze data by its densest clusters, a cluster algorithm

is used for the metric to find which groups measure up to the degree of closeness needed. This is

commonly called the λ -tree approach and the data is split up by its clusters (within clusters, as

the algorithm measures at finer and finer thresholds) from one major ‘stem’ into branches.25 To

analyze the data by a different method, α- and κ-trees consider the statistical approach.26 The

data is reverse-fit into a probability distribution which might reasonably lead to them as a result

by using a statistically-driven metric. That probability distribution guides splitting the data.

23. Singh, Memoli, and Carlsson, “Topological Methods for the Analysis of high Dimensional Data Sets and 3D
Object Recognition.”

24. Oulhaj, Carriere, and Michel, “Differentiable Mapper for Topological Optimization of Data Representation.”
25. Fasy et al., “Introduction to the R Package TDA.”
26. Fasy et al.

33

Figure 16: Cluster tree presenting common words in an author’s works. The left tree analyzes Leonardo
da Vinci; the right, Noam Chomsky.

Whichever method one chooses, the branches in a cluster tree are always those disjoint

subsets of its stem’s group which are different enough to be determined unique. Now the name

cluster tree becomes clear as assessment (of either density or probability) across dimensions

drives the partitioning of the data. This process continues, splitting up the subsequent groups of

data as long as there is reason to do so. Once the whole dataset has been split up in this way, the

data is then assessed for skewing outliers and those ‘leaves’ of the tree diagram are then pruned

off. What is left is an organized display of the data, either by density or by likelihood.

Figure 16 demonstrates this approach processing the words of two very different authors’

works.27 One can see at a glance what keywords are most connected to da Vinci’s works, how

different they are from Chomsky’s, and how the words appear in relation to each other. The

statistics behind clustering are imperative to how the findings will be presented, but this method

has the capability to easily sort data any number of ways.

27. Bhuwan Dhingra and Chaitanya Ahuja, “Statistical Topological Data Analysis,” 30th Conference on Neural
Information Processing Systems, December 2016,

34

4.4 Towards Persistence

We see TDA can clearly be used to analyze data by which points are related in many

ways. It seems one is only limited by one’s imagination: what metric, what threshold, what

presentation? But these still focus on one side of closeness. How about analyzing data by finding

which points are not related in many ways? This leads to persistent homology, the tool we have

been chasing after through these very pages. As one of the primary approaches to TDA28,29

persistent homology utilizes the algebraic topology presented earlier to track down voids in each

dimension.

In addition, it tracks how many consecutive dimensions these voids occupy. A gap in

many dimensions at once between points is a much more significant hole than a gap within only

a couple columns of information. As the specific focus of interest, we will spend more time

with persistent homology than any other TDA tool discussed thus far– so much time, in fact, it

deserves its own section. Before we leave the general study of TDA behind, let us take stock of

its progress so far.

TDA as a whole has yet to become a widespread tool by those working in data science.

Like any other new technology, there are obstacles to maneuver past to refine it to a widely

usable status. One of the first was how to present findings: a brilliant new school of thought is

unlikely to be applied to much if its results are obtuse, or worse, inaccessible. That problem

was solved rather quickly; these days, one has a happy selection from which to choose. Some

are stripped-down, bare bones presentations of dense insights like barcodes or trees, some are

interactive and glitzy like the Mapper algorithm or neural clusters.

28. Frederic Chazal and Bertrand Michel, “Persistent Homology in TDA,” Geometrica, Inria, June 2016,
29. Dmitriy Morozov, A Practical Guide to Persistent Homology, Lawrence Berkeley National Lab, March 2023.

35

The next issue is that of its high learning curve. At the moment, TDA mostly exists as

code one can integrate into a program. That implies one must be familiar with coding, a skill

which has yet to become widespread. In addition, the parameters of these tools can be a bit

overwhelming, and self-directed learning is a challenge indeed (though certainly not impossible).

This has been improved by helpful readme files included with the TDA packages and tutorials

for the more popular tools, which can now be found with a simple search online. It has yet to

become truly user-friendly, although several programs now have TDA packages or bindings to

use them, including C++, R, and Python30.31

TDA also struggles with its outputs: without background in statistics or a similar field, the

results one gets can seem oversimplistic or unremarkable. One must often draw insights from it

and then restructure the results in a different presentation to be clear to a less familiar audience.

This additional processing must accompany TDA for it to be accessible enough to spread to a

wider audience.

TDA’s final major obstacle is its newness. Much of its use has yet to be discovered, and

explaining this exploration to another often feels underwhelming when the other asks, “but how

is it used?” The beginnings of a thing are often small, and growth takes work. TDA is still a

nebulous possibility, finding connections but not the implicit reason of connectedness. When it

becomes more sophisticated, TDA could feasibly replace our current approach to data science,

but it still has a long way to go before the average person will be using it.

30. Fasy et al., “Introduction to the R Package TDA.”
31. Morozov, A Practical Guide to Persistent Homology.

36

5 Persistent Homology

We have waded through all sorts of related knowledge to rest, for a moment, upon this

sandbar called persistent homology, or persistence for short. Even in its most abstract realiza-

tions, persistence is less than 80 years old and has been theorized far more than utilized. The

thought process is this: if homology groups measure voids, is there insight to be drawn from

voids which punch through many dimensions rather than just one or two? If a void persists

through many dimensions, it must affect the points in multiple dimensions as well, making it

more impactful than a flat, one-dimensional hole.

Persistence takes everything a reader had to swim through to get to this point and takes it

one step farther, integrating it together in a sophisticated TDA approach capable of not just find-

ing holes, but measuring the relative sizes of those holes. Homotopy theory is how one articulates

this idea, homology groups translate that articulation into possibility, and simplicial homology

changes that possibility into a concrete plan of attack. Now we bring persistence into reality

by translating the steps into code and utilizing the computational power of our modern technology.

5.1 Filtration

To write a program to achieve homology group computations up to any dimension we

desire, we must structure our data impeccably. The higher dimensional faces must be build

from its lower ones, relying on a robust metric to determine which lower faces are within the

distance threshold needed to connect. A specific type of simplicial complex, called a filtration,

37

will accomplish this. The succinct definition from Ghrist follows.32

A filtration of a complex K is a nested sequence of subcomplexes:

/0⊂ F1K ⊂ F2K...⊂ Fn−1K ⊂ FnK = K where FiK is nonempty and distinct.

Each FiK will be strictly contained in the i+ 1 complex, F1K always contains all data

points in the point cloud– the vertices of the shape being built– and the largest subcomplex

FnK must be identical to the final complex K itself. This filtration can be inductively built as

demonstrated in the popular Vietoris-Rips complex, which is naturally a filtration by its structure

if one repeatedly increases the distance parameter ε . The Vietoris-Rips complex approaches a

dataset with the Euclidean distance metric and builds the shape by connecting faces which are

within the distance ε to each other. The formal definition of a Vietoris-Rips complex follows.33

A Vietoris-Rips complex R(X, ε) consists of simplices with vertices in

X = x1,x2, ...,xn ⊂ Rd and diameter at most ε .

This ε starts very small, and the resulting ‘bare-bones’ complex is just the set of points

themselves: F1K. This process is then repeated after increasing ε until the complex changes; now

some edges are possible, perhaps even some faces. This resulting complex is F2K. The process

repeats, growing ε with each iteration, and one can intuitively tell the resulting complexes are

coarser and coarser representations of the shape being built, as shown below. Each complex will

be contained in the simplicial complexes which came before it until ε is large enough to contain

every possible face: this is FnK, or K itself. Structuring a data set as a filtration makes it possible

to build the shape inductively and to collect more detailed ‘pictures’ of it in the form of these

larger complexes.

32. Ghrist, Foundations of Topological Data Analysis.
33. Fasy et al., “Introduction to the R Package TDA.”

38

Figure 17: Persistence in action: the distance threshold creates and kills holes as it grows.

Building a filtration allows one to find the data’s homology groups algorithmically by

calculating them in the final resultant complex K. However, the real uniqueness of persistence

is in the ability to compare homology groups of the entire filtration. By calculating homology

groups in each subcomplex Fi(K), one can see when the structure is coarse enough for a void to

appear, and when it becomes too coarse for that void to continue to exist. Figure 17 illustrates

this simply: in the first subcomplex when the distance threshold is very low, the central hole has

yet to be measured. All we can ‘see’ in the homology groups is a bunch of disconnected pieces.

As the distance threshold grows, the points are connected and the central hole can be measured

and found. The gaps between points also disappear. As the threshold continues to increase, there

will be a complex where the central hole is filled in, and the homology groups will no longer

‘see’ it either.

Calculating homology groups of the entire filtration tells a story about the shape. By

comparing corresponding homology groups between subcomplexes, one can watch voids being

born, only to die out later in coarser subcomplexes. This birth-and-death relationship is at the

core of persistence. It highlights the biggest gaps in data, ones which persist through many

iterations of the shape (hence the name) and over great lengths, not just blips.

39

Now the way to code this behavior becomes clear. A program can inductively build a

filtration from a dataset, then calculate the homology groups at each level. The first subcomplex

which shows a gap between data– a new generator in a homology group– gets marked as the

birth of that gap, and when that distance between points is closed in a subsequent subcomplex, it

marks it as a death of the gap. Gaps which are born early in the filtration and die late, like the

central hole in Figure 17, persist much longer than those with a shorter lifespan, like the many

gaps between the points.

5.2 Presentations

There are as many ways to represent one’s findings as it is to investigate to find them

and persistence is no exception. We feature three different presentations for the findings of

persistence here for context.

A barcode is the initial, and most rudimentary, way to present persistent homology’s

findings. This is not to say it is not effective. There is only one axis of information, displayed

horizontally: time. This keeps the diagram simple and immediately legible. Each void is

represented as a line color-coded to the homology group in which it is contained; each begins

at the time code of its birth and ends when it dies. This simple presentation allows the most

significant voids to jump out, as the longest lines are the voids which live the longest through

the filtration. Consider Figure 18.34 The longest black line is the single generator of the zeroth

homology group (indicating it is one broadly connected piece) and the red line is the first

homology void, i.e. the hole in the center. It can sometimes be difficult to determine which

34. Fasy et al., “Introduction to the R Package TDA.”

40

voids are significant, though, as it is left completely to the viewer. As the data’s shape gets more

complicated, one can see how several voids with similar lifespans yet differering time codes or

dimensions could be challenging to analyze. To correct for this, the data can be further processed

and presented in a KDE diagram.

Figure 18: A circle of points and its corresponding barcode.

A kernel density estimate, or KDE diagram, is a standard presentation for persistence.

It includes a statistical confidence band which helps eliminate short-lived gaps. Any points or

symbols outside that confidence band are the significant ones, born early and dying late. To

clearly present this, the birth and death times of a void are each considered a separate axis and

each void is plotted as a point in R2. This is more sophisticated, but less efficient than the

barcode, as half the graph’s area goes unused by design. Notice in Figure 19 how the symbols

representing voids vary based on which homology group contains the void: here, black dots are

generators of the zeroth homology group and red triangles belong to the first homology group.

There is one significant element in the zeroth group (one connected piece) and one significant

element in the first group (the hole in the center). This matches perfectly with the insights we

drew from the barcode (as one would hope, analyzing the same figure).

41

Despite its popularity, the KDE diagram is not without its drawbacks. In this presentation,

it is impossible for a void to appear in the lower right. Since both axes use the same scale,

a void appearing there would imply it is born after it dies. Sometimes researchers choose to

present an altered form of the KDE diagram where the graph is rotated. The central x = y line is

adjusted to be the x-axis, and therefore the tallest points on the graph will be the longest-lived

voids. However, the classic KDE diagram is the most popular choice by far. The confidence

band included allows one to simply find the symbols outside the band and as the most likely

significant voids. Of course, one must choose an appropriate confidence interval to make the

best use of this. We will revisit the KDE diagram in greater detail in the following section.

Figure 19: A circle of points has only a couple significant features in a KDE diagram.

A persistence silhouette (and its landscape) displays the same information, further pro-

cessed. Most researchers are satisfied with the KDE diagram, so these are less popular, but in

the right hands they have a niche use. One makes a persistence landscape from a rotated KDE

diagram by doing away with the confidence interval and treating the points of one homology

group as the unique vertices in isoceles triangles, all grounded on the x-axis. This series of little

mountain peaks are then pruned, with all lesser triangles (the ones completely engulfed by larger

42

ones) omitted. What remains is a single jagged line which creates the landscape we see. This

removes any voids which are born and die in the shadow of a looming, larger void, and is a

simple way to remove insignificant gaps.

To make a silhouette, as in Figure 20,35 these remaining points (the peaks of the mountains)

are each modeled with a pair of linear equations, combined characteristically in a piecewise func-

tion. These functions are then processed through a “power-weighted silhouette”36 function. This

silhouette furthers the distance between significant and insignificant points using a smoothing

parameter– if there are several similar lifespans of gaps, the silhouette will be fairly level and

show many ‘most significant’ points, but if there are few points of significance, they will be

inflated as large peaks in a more dampened skyline.

Figure 20: A persistent landscape and its corresponding silhouette.

There are other ways to present findings in persistence, and the number of choices is

growing by the year. Different parameters for metrics and statistical significances, like the k

Nearest Neighbor density estimator, exist depending on one’s objectives. Variations on presenting

35. Fasy et al., “Introduction to the R Package TDA.”
36. Fasy et al.

43

the data abound, from simple cluster labels to even further processed representations like mean

landscapes with confidence bands.37 There are too many to showcase here, as our focus is on

choosing a reliable method with which to discuss our findings, and it is time to leave the many

options TDA offers us behind. The KDE diagram with a confidence band is a tried-and-true

choice to present persistence, so the following section uses this exclusively. Any reader ought

to be well equipped now to venture farther into the ocean of abounding data, including the few

samples offered in this exploration.

37. Fasy et al., “Introduction to the R Package TDA.”

44

6 Datasets

We are ready to swim on our own: the knowledge gained thus far buoys us with confidence

to explore data and see what persistence might show us. The data manipulation software R offers

a package specifically for topological data analysis, neatly called TDA.

6.1 The TDA Package

Developed in 202138 and updated as recently as January of this year, the package TDA

allows one to calculate persistent homology and density clustering, then represent them in a

variety of ways. Density clustering can be represented in a cluster tree and is possible with only

the TDA package, but persistent homology requires the use of an additional package. Thankfully,

it includes an interface for some C++ libraries which contain the function for persistent homology,

and of these we elected to use the Dionysus library.

Thus armed, one can direct R to analyze data– after some basic cleaning. It is prudent

to normalize the data to begin; the underlying features will still be present and it is easier to

fit parameters within functions to the data itself. This is not a necessary step and many of the

following examples are not normalized, but it can help tame the unpredictable nature of real

world data and is suggested in such cases. Once the data is prepared and parameters set, it

is ready to be put through three small blocks of code, illustrated in Figure 21: the gridDiag

function, the bootstrapBand function, and a tailored plot function.

38. Fasy et al., “Introduction to the R Package TDA.”

45

10 Y <- df

11 lim <- c(0, 100)

12 by = 1

13

14 margin <- seq(from = lim[1], to = lim[2], by = by)

15 Grid <- expand.grid(margin, margin, margin, ...)

16

17 h <- .3

18 by <- 1

19 Xlim < c(-1, 1.1);

20 Ylim <- c(-1, 1.1) ;

21 Zlim <- c(-1.5, 1. 5) ...

22

23 DiagGrid <- gridDiag(

24 X = Y, FUN = kde, h = 0.3, lim = cbind(Xlim, Ylim, Zlim, ...), by = by,

25 sublevel = FALSE, library = "Dionysus", location = TRUE,

26 printProgress = FALSE)

27

28 band <- bootstrapBand(

29 X = Y, FUN = kde, Grid = Grid,

30 B = 75, parallel = FALSE, alpha = 0.05, h = h)

31

32 plot(

33 DiagGrid[["diagram"]],

34 band = 1 * band[["width"]],

35 main = "KDE Diagram")

Figure 21: R code for generating KDE diagrams of datasets.

After assigning the intended data to the oft-more easily referenced variable Y, one can see

several parameters are needed to be carefully chosen before being able to run the functions. Lines

14 and 15 set a grid of points as a framework to hold the data. Thus, the repeated margins within

expand.grid must match the dimension of the data. Line 17’s h is a smoothing parameter

which controls how granular the findings will be treated and is set to the suggested value of

0.3.39 The by below it is a step parameter and the limits through Line 21 set the domain for each

column of data (hence why it is helpful to normalize data, especially if one may need to run

many different sets through).

39. Fasy et al., “Introduction to the R Package TDA.”

46

The first proper algorithm gridDiag follows. After setting both the data (Y) and the

function (constructing a KDE diagram) to be used, the lim argument’s dimension must necessarily

match that of the data as it sets the range for each dimension using the referenced limits. This

gridDiag algorithm is what calculates the persistent homology and compiles every void in every

filtration of the data set. The by determines the fineness of the filtration itself– how much the

distance threshold increases per iteration– and the library argument calls whichever supplemental

C++ library is being used. The rest of the inputs are options one can include, such as recording

the location of where voids are born and die, and whether to communicate the progress toward

completion while the function is running or not.

The next algorithm bootstrapBand calculates an extremely important confidence band

which, in the KDE diagram, rests atop the Birth = Death line of x= y (see Fig. 19, 22, etc). It does

this by calculating the distance between the KDE results from a random subsampled collection

of points in Y and those of the entire set. By doing this many times, bootstrapBand collects a

large bank of points it can trim to the desired level of confidence; the statistically-determined

outliers are then used to determine the height of the band it constructs. This pink band, when

plotted, cuts off the relatively insignificant homology points. Its parameter field begins the same

way, with the data to be used, the function being evaluated, and the space the data inhabits (Y,

kde, and Grid respectively), and the tunable parameters follow. B determines the number of

iterations bootstrapBand runs, which determines the sample size of this confidence calculation.

The higher B is, the longer this algorithm takes, but it gains a larger sample size from which to

determine outliers. The alpha sets the confidence level; with an alpha = 0.05, this will calcu-

late at 95% confidence. This bootstrapBand algorithm is the most computationally expensive

of the three and takes exponentially more memory to run as one increases the dimensions of data

47

being processed.

The final algorithm, plot, graphs a desired set of points in a two-dimensional space and

is an intrinsic feature of R. We instruct it to plot the results of gridDiag (named DiagGrid on

Line 23 for easier referencing) and include a band the width bootstrapBand suggests (named

band on Line 28 for the same reason). The last parameter, main, merely gives the graph a label.

Thus, plot will graph the marked homology group generators, or voids, by when they were born

and when they died. This natural comparison displays nicely on an x-y graph, and finally we see

our completed KDE diagram.

6.2 Deciphering KDE Diagrams

Now more rigorous investigation of persistence in action is warranted. Reason instructs

one to trust it, but without personal experience, faith in something abstract can be a tall order.

Instead, let us apply it to some known examples to gain some familiarity. Once it has revealed its

mannerisms to us, perhaps real-world data will be an easier fish to catch.

Figure 22: A classic cardioid and its KDE diagram.

48

Consider the cardioid shown in Figure 22 and its corresponding KDE diagram; the diagram

suggests there are two major pieces to the figure and it holds two holes in R2. Notice how much

closer one H1 point (denoted by black dots) is to the confidence band than the other; this suggests

the separation detected between these two pieces is nearly insignificant. By comparing it to

the graph of the cardioid itself, we see it is likely picking up the outside circle and inside heart,

and the connection between them is missed– as in, the general subsampling of points in the

bootstrapBand algorithm did not sample the connecting point between the pieces enough to

determine the void read by the filtration there to be insignificant.

This KDE diagram had its iteration parameter B set to only 1, so its mistake may be easily

remedied. If the B is increased, that second H1 point is much closer to the confidence band, but

still technically gets missed– and the calculation takes more time and processing power. By

adjusting this parameter a bit more, one discovers a ‘sweet spot’ between speed and accuracy for

B.

Figure 23: Time Versus Accuracy. B = 75 took 25 seconds to generate. B = 150 took 45 seconds.

49

Figure 24: B = 300 took close to two minutes to generate; B = 700 took nearly five minutes.

Figures 23 and 24 display KDE diagrams of the same cardioid, but with B values of 75,

150, 300, and 700. As B increases, the diagrams do become more accurate, but not enough to

completely overcome that oversight, and each needs more time to compute than the last. In fact,

there is little discernable difference, if any, between the the last three of these plots. When the

shape being analyzed is completely visible, it is easy enough to recognize points close to the

border as belonging on the other side of the line. This skepticism ought to be carried forward;

each point’s distance from the confidence band is as important as the number of points outside

of it. Otherwise, this analysis seems to communicate its findings rather accurately on a simple

model.

Now, the process of persistence is supposedly a robust manner of analyzing data, but how is

it robust? A reliable place to begin is determining if it is independent of affine transformations in

Rn, where any data might be plotted and analyzed. If so, the patterns and underlying topological

features should be picked up despite the perspective from which one views them. Recall an

affine transformation, or motion, is any transformation which necessarily preserves distances.

50

Any motion can be described as a composition of four basic ones: translations and rotations

(the direct motions), and reflections and glides (indirect, or orientation-reversing motions). The

core of persistence, building a filtration between the given points, derives directly from distance

between points. This is enough to show any motions on a dataset should result in the same

filtrations from a given distance threshold, and so the same diagrams, as the original dataset.

Let us examine the KDE diagrams of the cardioid when it has been so transformed to

reinforce our confidence. A reflection reverses the shape’s orientation, which causes significant

change, so it seems as good a place to start as any. Figure 25 displays a reflected cardioid and its

resultant KDE diagram. The diagrams are exactly the same. Figure 26 takes this one step further

by reflecting, then rotating, the cardioid. Again, the diagrams match.

Figure 25: The reflected cardioid. Its KDE diagram is identical to the one in Figure 22.

Just changing the orientation of a shape (by changing the perspective on the points beneath

it) does nothing to alter the underlying features like connectedness and holes. The other two

types of motions have the same lack of effect: translations obviously do not change the distance

between the points, only the relative placement the entire set is from the origin. Glides are

a special composition of a translation and a reflection, both of which have no impact on this

51

Figure 26: The rotated and reflected cardioid and its matching KDE diagram.

analysis. Thus we confirm motions do nothing to change persistence, so any direction from

which we approach this analysis is viable.

This enigmatic tool is becoming clearer. What if we analyze a new shape, one which

is visually different but has the same types of holes? Perhaps epicycloids of other sizes can

further inform us on how persistence speaks. Figures 27, 28, and 29 display three, five, and seven

petaled epicycloids with their correspoinding KDE diagrams. These were all processed with B =

100 and h = 0.3. Unlike the cardioid, these need a bit more scrutiny before revealing their secrets.

Figure 27: A three-petaled epicycloid and its KDE diagram.

52

The three petaled cycloid, for example, clearly has one connected piece with four two-

dimensional holes in it, but its KDE diagram seems to think it is in multiple pieces and only

has one two-dimensional hole. The cardioid’s KDE had a difficult time sampling that single

connecting point between the two major pieces; this may have the same obstacle, but three-fold.

It may read this shape as three separated pieces, whose corresponding generators all die at the

same time– making it one shape represented by the first clear H1 point. It is a difficult thing to

tell for certain, but the single H2 point certainly represents the large hole in the middle of the

figure. The rest, just beneath the border of the bootstrap band, likely track the smaller holes and

were ultimately deemed insignificant by the confidence test. Again, points close to the boundary

(on whichever side) may be background players in the structure of their shape.

Thus intrigued by the teachings a new shape had to give, we proceed to the five petaled

Figure 28: A five-petaled epicycloid and its KDE diagram.

cardioid in earnest. It looks at first to be disappointingly simple, but a careful eye will notice the

odd shape of the highest-valued H1 point. It is, in fact, two H1 points on top of one another. It

brings another useful insight to light– the idea of multiplicity. Multiple holes could be born and

die at near exactly the same times, resulting in more holes hiding in plain sight. In Figure 27,

53

there are three visible H1 points above the confidence band, but perhaps that is the minimum

number of significant points. There could be more of the same type, all being born and dying

at the same time. This KDE diagram hints at the symmetry of these epicycloids: clearly the

corresponding shape has one connected piece (as the most removed H1 point suggests), but is

made up of several radially-symmetric pieces. One can conclude the layered H1 points in its

KDE diagram denote the many petals.

The single H2 triangle is perhaps the more interesting feature– or, more notably, its lack of

cohorts. If one expects a similar result to the three-petaled epicycloid, these many insignificant,

yet observed, points are missing. By comparing figures, one notices the corresponding holes in

the five-petaled figure are smaller with a shorter radial width. It is likely the distance threshold

was not fine enough to pick these up as the neighborhoods around each sampled point grew; by

the time the points might be connected to show a hole, the neighborhoods were big enough to

connect across the shorter width as well. Perhaps we know enough of KDE’s mannerisms now

to loosely predict the result of a seven-petaled epicycloid.

The KDE of the seven-petaled cycloid is not wildly unusual– a good sign, as it shows

Figure 29: A seven-petaled epicycloid and its KDE diagram.

54

some predictions can be made for it. The single H2 point is expected at this point; the other

holes in this figure are even smaller than the last and were similarly missed. Like the rest, the

single removed H1 point informs on its connectedness and the linear H1 points suggest it has

at least two pieces which fade away into that lasting, removed point. The H1 point within the

confidence band is actually at least two, only visible if the figure is enlarged significantly. While

one can understand the result when comparing it with the figure, this is not terribly useful when

exploring unknown data. It is possible adjusting the smoothing parameter h may improve the

accuracy. Figure 30 displays two more KDE diagrams of the seven-petaled cycloid with h values

lower than the usual 0.3, keeping B and other parameters the same.

The results seem significantly different at first, until all three diagrams are compared.

Figure 30: Lowering the h parameter expands what the program considers significant.

The major features are consistent between them: the left-most H1 and H2 points remain the same,

and a string of H1 points around the Death = 0.12 mark hint at the many symmetric pieces of the

cycloid. More noticeable are the extra features included in results using lower h values. They

have not sprung from nowhere, but were always there, lurking. The gridDiag function just

determined them too insignificant to include.

55

h= 0.1 displays the most features– perhaps it displays too many. It claims there are at

least 8 significant H1 points aside from the most enduring one, which is clearly too many (even

if by just a small amount). It claims there are at least four extra H2 holes as well. While being

admittedly more accurate there, it is poor practice to trade one type of accuracy for another unless

it is directly more useful. h= 0.2 is closer to the mark, but not by much. The only difference is a

couple more H1 points which eventually disappear. Noting two or four temporary pieces in a

seven-petaled cycloid makes little difference, which adds support to why h= 0.3 is the standard

smoothing parameter. This may make a difference in other data, but that is left to a case-by-case

basis.

6.3 Noise

We have considered how to read KDE diagrams and its hidden nuances; it is often not

easy, nor straightforward, but it is enough in these early stages to know it is reporting something

of use. How resistant is it to noise? All the marks which fall within the confidence band are

considered topologically insignificant; in other words, noise relative to the other features which

stand out more. But what about analyzing intentionally noisy data to test its resistance?

Let us compare the results after processing a three column dataset of a cleanly-plotted

trefoil (Figure 31) and a noisy trefoil (Figure 32) in R3. R Studio plots many two-dimensional

perspectives of a three-dimensional image when it has no three-dimensional visualization li-

braries installed. For example, the top center and left center images display the trefoil from the

xy-plane at different orientations: first on the xy-plane, then on the yx-plane. On the right are the

56

Figure 31: A clean trefoil and its KDE diagram.

Figure 32: A noisy trefoil and its KDE diagram.

now-familiar KDE diagrams; one can see the noise cluttering up the integrity of the shape in

Figure 32. Notice the representation here takes the names of each column– V1, V2, and V3– as

the names of the dimensions. When implementing this tool on real-world data, one could easily

display the names of their columns in the center for reference.

Both KDE diagrams give the same end result, which is heartening, but the outcast outliers

57

reveal how close they came to failing. In the clean trefoil, there are a couple H1 points which

stand out, and very close to the origin there is an H3 hole. In the noisy trefoil, no H3 holes

are found, but several H2 holes are. Also, the H1 points are much livelier than their clean-cut

counterparts in Figure 31. In this simple example the end result is the same, but the noise had a

clear impact of the quality of the diagram. It reinforces the good habit of cleaning one’s data

well, especially using real-world data (which is always more chaotic than a generated dataset).

6.4 Data in the Wild

Now we leave any safety of grounded, prescient knowledge and search for a real-world

dataset to explore. We kick off toward the deeper waters where all sorts of beastly datasets lurk

in repositories across the internet, waiting to be found and scrutinized. The website Kaggle, in

particular, proudly hosts many kinds of datasets suitable for projects.40 At the beginning of this

endeavor, a dataset concerning Turkish music and its statistics was chosen as the real-world set

to explore.41 The rest of this section discusses our findings after applying TDA to this dataset.

The Turkish music dataset, now referred to as the Turkish set, contains 400 pieces of music

grouped by emotion with fifty statistics to compare, including energy, fluctuation, brightness, and

roughness means. The emotions– happy, sad, relaxed, and angry– offer a potentially excellent

structure to test persistence’s strengths in categorization and noting anomalous clusters in data.

Surely different moods of music have some difference in their statistics. With fifty parameters,

it would be difficult to check except by tedious traditional means, but TDA may be able to find

40. Joakim Arvidsson, Turkish Music Emotion, Kaggle, Attribution 4.0 International (CC BY 4.0), October 2023.
41. Mehmet Bilal Er, Turkish Music Emotion, UCI Machine Learning Repository, DOI:

https://doi.org/10.24432/C5JG93, 2023.

58

those differences for us.

The original aim for this dataset was to introduce a curated subset which contained only

the relaxed and angry pieces. By selecting the most polarized moods of music, perhaps TDA

could separate them by mood if given a random selection. Additionally, if it received a subset

containing mostly one mood, we predicted it would be able to notice which points were the other

mood (the anomalies). Perhaps we could even dip our toes into the machine learning space. If

we feed our program a curated training subset of the Turkish set and teach it the responses we

expect to see by adjusting parameters, we could then feed it a randomized subset of the Turkish

set to see if it has learned enough to accurately analyze the subset without adjustment.

Before we were able to test this, we first had to clean the data. Each column’s range of

values differed wildly, but otherwise the Turkish set was clean and organized. The only tidying

we did was normalizing it so each column’s range was contained in the interval [0,1]; this made

it much easier to adjust parameters in the code. After selecting only the angry and relaxed music

pieces, we stripped the mood column to remove TDA’s ability to classify the entries directly by

that parameter. If it could classify data by finding deeper gaps and patterns, it would not need to

be told their moods in advance.

Once we had a tidy dataframe (by using several commands in the popular tidyverse

library), we downsampled it to seventy percent. The remaining thirty percent would be reserved

as a blind test, if we had the time. The resultant 140 x 50 dataframe, called train for ease, was

the subset we explored. The remaining hopeful test data was not used, and from here on the

train set is what is referenced when we say ‘the data.’

We began by testing just two columns of the data. After troubleshooting the usual

beginning errors in any new program, we received results. They were uninteresting, but confirmed

59

Figure 33: KDE diagrams of curated two-column and three-column subsets, respectively.

TDA’s readiness to handle more. Three columns took longer to compute, but had no further issues

and was similarly dull. Feeling confident, we jumped ahead to ten columns and were promptly

met with a session-terminating error. Truncating the sample size (number of rows) did nothing

to fix it. By running several tests at lower dimensions, we discovered an obstacle which put

our original plan far out of reach: the increasing computational price. Three columns could be

processed by less than 1 gigabyte of RAM, but four columns took about 11 gigabytes. Trying to

process five columns showed us the limit of our abilities: it asked for nearly 4 terabytes of RAM.

This price did not change, no matter how few points we directed it to process. We were unable to

accomodate such a vast demand and decided to pivot our aims.

The entirety of the data held a full fifty columns of data, which we now know to be

laughably expensive to compute all at once. Instead, we explored this music data as much as

possible with the time and tools we had. With four columns as our ceiling, we processed the data

in sections to see if any consecutive statistics held relationships worth noting. The results were

inconclusive; all were nearly featureless, with the only difference between them being the size of

their confidence bands. This may speak to the level of uniformity in the density of each section,

60

but gives no significant feedback.

The preliminary tests were run at the usual h = 0.3 parameter. A sample of tests were

repeated at h = 0.1 to ensure features were not being smoothed over, with the same results.

Unfortunately, we were unable to find any subset, curated or random, which returned any

significant features aside from the single H0 point. Recall that point suggests the filtration

process found one ‘connected’ point cloud, an evenness in proximity which has no notable gaps

or holes.

Perhaps the Turkish set was a poor choice. Perhaps there really are no holes, or they

are hiding in higher dimensions than we can reach. The exploration was valuable in its own

right. We had no reference for the limit of this tool, hence the naive choice of a fifty column

dataset, and we explored that on both a personal machine and a cluster server. The size limit was

the same for both due to the exponential nature of the processing demand. The set remains an

interesting data science challenge with many other possible approaches. One could curate pieces

with extreme values in a particular column, artificially creating a gap, and see if TDA finds any

other related gaps or features. One could add a for loop to test all possible combinations of four

column subsets, giving every possible chance to find significant features. One could plot linear

regressions of columns and select those which have more or less correlation to each other. Any

of these may coax some more answers out of the data, if there are any to be found.

We came to a somewhat anticlimactic end, but it was not without educational merit. TDA

can not only be used by any aspiring data explorer, it is changing as we speak. Its last update

came eight weeks ago as of this date and its creators have been active in the TDA sphere for a

decade with no sign of stopping. Resources abound for persistent homology, including similar

61

TDA libraries available in other languages like Python and C++.42 The Turkish set is not a

failure. It is merely an unfinished project.

42. Morozov, A Practical Guide to Persistent Homology.

62

7 Conclusion

As a practice, TDA has several different tools in development and has been applied

successfully to the fields of medicine, multivariate time series analysis, sensor networks, genomic

studies, and more43 in its short history. Using it in tandem with machine learning to help train

artificial intelligence models is still a hotbed of research activity.44 In the age of ‘Big Data,’ such

a tool is very useful indeed. Nearly everything can be recorded in data at this point. If a sort

of order can be formed upon it, TDA can filtrate and analyze it, and that includes qualitative

data. Indexing the qualitative traits gives an order to them and they can be treated like any other

dimension of space. Even continuous material like sound files can be stratified by large-scale

sampling or extracting features, like the Turkish set exhibited.

TDA’s close link to machine learning offers another ocean of possibility. Artificial

intelligence has radically changed the landscape of our society and has become the biggest

technological advancement since the internet. Pure math got little recognition for its contributions

compared to computer and data sciences until TDA came along. Now, previous obstacles for

artificial intelligence like object recognition (both overhead45 and in 3D464748) are seeing rapid

progress thanks to the workings of TDA.

Communities and research groups have sprung up all over within the last decade to jump

on this bandwagon and make use of its more abstract (and often more generalizeable) concepts.

43. Perea, “A Brief History of Persistence.”
44. Frederic Chazal and Bertrand Michel, “An Introduction to Topological Data Analysis: Fundamental and

Practical Aspects for Data Scientists,” Hosted by Cornell University, ArXiv, February 2021,
45. John Roach, “Topology, Algebra, and Geometry Give Math Respect in Data Science,” November 2023,
46. Chazal and Michel, “Persistent Homology in TDA.”
47. Singh, Memoli, and Carlsson, “Topological Methods for the Analysis of high Dimensional Data Sets and 3D

Object Recognition.”
48. Wasserman, Topological Data Analysis.

63

The Topology, Algebra, and Geometry in Data Science community, for example,49 encourages

newcomers and mathematicians alike to explore TDA and is going strong after being founded

in 2022. The Banff International Research Station is hosting a week-long workshop in Alberta

on Representation Theory and Topological Data Analysis starting in April.50 This trend is only

gaining momentum as artificial intelligence becomes more sophisticated and demands a similar

increase in its education.

There are some who think TDA is a flash in the pan.51 Its practical application has yet

to be proven and the obsacles may prove too much for it. Some avenues are already losing

support, as seen in Mapper’s removal from The Comprehensive R Archive Network due to lack

of maintenance. But for as many naysayers, there are two more TDA enthusiasts ready to help

it succeed. Though warranted, skepticism ought to serve as further motivation to prove TDA’s

possibilities as a useful technological advancement. What the future holds for TDA is murky to

all but the most informed, but with its rapidly changing landscape, things could be completely

different in as little as a decade from now.

49. Roach, “Topology, Algebra, and Geometry Give Math Respect in Data Science.”
50. Banff International Research Station, Representation Theory and Topological Data Analysis (24w5241),

Cornell University, Attribution 4.0 International (CC BY 4.0), 2023.
51. Wasserman, Topological Data Analysis.

64

REFERENCES

Arvidsson, Joakim. Turkish Music Emotion. Kaggle. Attribution 4.0 International (CC BY 4.0),
October 2023.

Brown, Ronald. “Modelling and Computing Homotopy Types: I.” Hosted by Cornell University,
ArXiv, September 2022.

Chazal, Frederic, and Bertrand Michel. “An Introduction to Topological Data Analysis: Fun-
damental and Practical Aspects for Data Scientists.” Hosted by Cornell University, ArXiv,
February 2021.

. “Persistent Homology in TDA.” Geometrica, Inria, June 2016.

Dhingra, Bhuwan, and Chaitanya Ahuja. “Statistical Topological Data Analysis.” 30th Confer-
ence on Neural Information Processing Systems, December 2016.

Edelsbrunner, Herbert, and John Harer. Computational Topology: An Introduction. 177–208.
Departments of Computer Science and Mathematics. Durham, North Carolina: Duke
University, 2010.

Er, Mehmet Bilal. Turkish Music Emotion. UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5JG93, 2023.

Fasy, Brittany T, Jisu Kim, Fabrizio Lecci, Clement Maria, David L. Millman, and Vincent
Rouvreau. “Introduction to the R Package TDA.” CMU TopStat Group, January 2024.

Frosini, Patrizio. “Measuring Shapes by Size Function.” DOI: https://doi.org/10.1117/12.57059,
Intelligent Robots and Computer Vision X: Algorithms and Techniques (Boston, Mas-
sachusetts) 1607 (February 1992).

Ghrist, Robert. Foundations of Topological Data Analysis. YouTube, July 2023.

Hatcher, Allen. Algebraic Topology. New York, New York: Cambridge University Press, 2002.

Jagadeesan, Ravi, and Luke Sciarappa. Simplicial Homology. MIT Mathematics. Fourth Annual
MIT Primes Conference, May 2014.

Morozov, Dmitriy. A Practical Guide to Persistent Homology. Lawrence Berkeley National Lab,
March 2023.

Oulhaj, Ziyad, Mathieu Carriere, and Bertrand Michel. “Differentiable Mapper for Topological
Optimization of Data Representation.” DOI: https://doi.org/10.48550/arXiv.2402.12854,
ArXiv, February 2024.

Perea, Jose A. “A Brief History of Persistence.” DOI: https://doi.org/10.48550/arXiv.1809.03624,
ArXiv, October 2018.

Roach, John. “Topology, Algebra, and Geometry Give Math Respect in Data Science,” November
2023.

65

Singh, Gurjeet, Facundo Memoli, and Gunnar Carlsson. “Topological Methods for the Analysis
of high Dimensional Data Sets and 3D Object Recognition” (Prague, Czech Republic),
September 2007.

Station, Banff International Research. Representation Theory and Topological Data Analysis
(24w5241). Cornell University. Attribution 4.0 International (CC BY 4.0), 2023.

Toda, Hiroshi. Composition Methods in Homotopy Groups of Spheres. ISBN 0-691-09586-8.
Princeton University Press, 1962.

Wasserman, Larry. Topological Data Analysis. Department of Statistics. Pittsburgh, Pennsylva-
nia: Carnegie Mellon University, 2016.

Wildberger, NJ. Algebraic Topology: a Beginner’s Course. YouTube. University of New South
Wales. Sydney, Australia, 2012.

66

	Plumbing the Depths of the Shallow End: Exploring Persistent Homology Using Small Data
	Recommended Citation

	List of Figures
	Symbols and Abbreviations
	Introduction
	Homotopy
	The Fundamental Group
	Larger Dimensions

	Homology
	Simplicial Homology
	The Boundary Function
	Homology Groups

	Topology in Data Analysis
	Topologizing Data
	Mapper
	Cluster Trees
	Towards Persistence

	Persistent Homology
	Filtration
	Presentations

	Datasets
	The TDA Package
	Deciphering KDE Diagrams
	Noise
	Data in the Wild

	Conclusion
	References

