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Elite collegiate runners are susceptible to sustaining lower extremity stress related injuries. 
Ground reaction forces (GRFs) were analyzed to understand differences in mechanical 
loading at steady state 5.5 and 7 min/mile paces. We hypothesized GRF magnitudes would 
increase with speed while horizontal GRFs during braking would be unique to each 
participant. GRFs, inertial measurement units, and high speed video were collected during 
outdoor over ground running. Group differences were observed that were not always 
significant within participant. As speed increased, average horizontal GRF during braking 
(-0.25 to -0.29 BWs) decreased while peak vertical GRF increased (2.75 to 2.91 BWs). The 
unique pattern of the sagittal plane resultant GRF orientation was maintained during initial 
braking phase which may indicate this orientation is a nervous system control priority.  
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INTRODUCTION: Elite runners at the collegiate level are particularly susceptible to running 
related injuries. Endurance athletes are a specifically vulnerable population for sustaining 
lower extremity stress fractures which have incidence rates ranging from 3.9-31.3% depending 
on the sport (Bennell et al., 1996; Snyder et al., 2006). Lower extremity fractures typically occur 
in the tibia or metatarsal, but femur and pelvis fractures also occur frequently (Koenig et al., 
2008; Nusselt et al., 2010; Tenforde et al., 2018). Our overarching aim is to determine how 
mechanical loading experienced during running at different paces affects mechanical loading 
experienced by the lower extremity to indicate the likelihood of an individual developing an 
injury. This study sought to validate a novel outdoor data collection environment to quantify 
loads in realistic running environments and characterize differences in reaction force-time 
characteristics experienced by individual collegiate mid-distance female runners at different 
speeds. We hypothesized that GRF magnitudes would increase, foot contact duration would 
decrease with speed, the percent of contact time spent in braking would remain the same, and 
that the orientation of the resultant reaction force in the sagittal plane would become more 
vertical with speed. 
 
METHODS: Female collegiate and post-collegiate National Collegiate Athletic Association 
Division I runners (n=8) volunteered and provided informed consent in accordance with the 
institutional review board. Participants ran at steady state 7 and 5.5 minutes per mile (3.83 m 
s-1 and 4.92 m s-1) on a level track wearing the shoes they typically wear during training. 
Photoelectric cells (Brower Timing Systems Draper, UT USA) were placed 10 feet (3.048 m) 
apart on either side of the force platform at hip height approximating center of mass to ensure 
trials were within 11% of the selected speeds.  Two portable 0.6 m x 0.4 m, 3D force plates 
(Kistler, Amherst, NY, USA Type 9286BA) were oriented end to end along the runway to avoid 
tendencies to target the force plates. Ground reaction forces were measured (1200 Hz) for 10 
foot contacts on each leg at two speeds. Kinematic data were acquired using inertial 
measurement units (500 Hz, APDM, Portland, OR) and high speed video (240Hz, Panasonic 
GH5S Osaka, Japan).  
Contact time was defined as the period of time when vertical GRF first exceeded (initial 
contact) and was less than (final contact) 16 N (Munro et al., 1987). Braking duration was 
defined from initial contact to the time when the anterior-poster GRF shifted from braking 
(posterior directed reaction force) to propulsion phase (0 crossing) and is expressed as a 
percent of total contact time. GRFs measured during contact were used to characterize 
horizontal and vertical components of the reaction force and changes in CM velocities. The 
angle of the resultant force in the sagittal plane throughout the stance phase was defined as 



the angle of the resultant GRF projected into the sagittal plane (vertical defined as 0°). The 
“initial” contact phase was defined as the instance on the force time curve where the last local 
minimum occurs before the GRF angle consistently increases to a positive value during 
propulsion. A percentile bootstrap method for medians was used to test for group differences. 
Pairwise differences within participant were tested using mean percentile bootstrapping 
methods and were adjusted using the Benjamini-Hochberg method (Wilcox, 2017).  

Table 1: Summary table of major findings. Stance time and anterior-posterior GRF findings, 
S.D. indicated in parentheses. * Indicates statistically significant results. 

 Contact 
Time 
(ms) 

Braking 
Duration 

(% Contact 
Time) 

Peak 
GRFVERT 

(BW) 

Avg 
GRFHORIZ 
during 

Braking 

(BW) 

ΔVelVERT 

during 
Contact 

(m/s) 

ΔVelHORIZ 

during 
Braking 

(m/s) 

3.83 m/s 
(7 min/mi) 

208 (15) 49 (2) 2.74 (0.21) -0.25 (0.04) 1.35 (0.19) -0.24 (0.03) 

4.92 m/s 
(5.5 min/mi) 

179 (15) 48 (2) 2.91 (0.25) -0.29 (0.05) 1.41 (0.17) -0.24 (0.04) 

Group 
Significance 

(p < 0.001)* (p = 0.723) (p < 0.001)* (p < 0.001)* (p = 0.199)  (p = 0.829) 

 
RESULTS: Contact duration significantly decreased with increases in speed. Significant 
differences in contact duration were observed between speeds for the group and each 
individual runner (Table 1). As a group, no significant differences in percent time in braking 
phase were seen across speeds (Table 1). Within-participant comparisons of braking phase 
duration between speeds indicated 6 of 8 participants also exhibited no significant differences.  
As a group, participants experienced significantly greater peak vertical GRFs and average 
horizontal GRFs during braking when running at the faster pace (Table 1). Within-participant 
analysis revealed 6 of the 8 participants experienced greater peak vertical GRFs at the faster 
pace and 7 of the 8 participants experienced greater average horizontal GRFs during braking 
at the faster pace (Fig 1, 2). 

  

Figure 1: Comparison of the peak vertical GRF 
during contact by trial for each participant 
across speeds and normalized to body weight 
(BW). * Indicates significant differences 
within participant across speeds. 

Figure 2: Comparison of the average 
horizontal GRF during the braking phase by 
trial for each participant across speeds and 
normalized to body weight (BW). Negative 
values indicate a posteriorly directed GRF. 
 * Indicates significant differences within 
participant across speeds. 
 

As a group and within-participant, no significant differences in change in horizontal CM velocity 
during braking were observed between speeds (Table 1).  This indicates that as steady state 
running speed increases, the velocity lost during the braking phase is not changing within 
participant. As a group, no significant differences in change in vertical CM velocity during 
contact were observed between speeds although 5 of 8 participants experienced greater 
changes in vertical CM velocity at the faster pace. The representative trials show how contact 
time decreased, peak vertical GRF increased, and braking duration remained the same (Fig 
3).  



 

 
 
Figure 4: Comparison of GRF orientation in 
the sagittal plane for two exemplar 
participants during contact where 0° 
corresponds to vertical orientation of the 
resultant vector. The resultant force angle in 
the sagittal plane for all left foot trials at 7 
min pace (black) and 5.5 min pace (blue) 
demonstrate consistency across trials within 
and between speeds. Initial phase indicated 
by the region proceeding the vertical line. 

Figure 3: Comparison of two representative 
trials for Participant 6 at 3.8 m/s (black) and 
4.9 m/s (blue). (Top)  Filmstrips show the GRF 
(green) in the sagittal plane relative to the 
participant. Numbers 1-5 correspond to 
takeoff, minimum A-P force, zero crossing of 
the A-P force, maximum of the A-P force, and 
takeoff, respectively. (Middle) Orientation of 
force angle relative to vertical during contact. 
(Bottom) Component forces during contact in 
BW units. 

 
Finally, the results of this study show that the orientation of the reaction force during the initial 
phase did not change within subject as speed increased (Fig 4). This phenomenon can be 
seen in the consistency of the GRF orientation in the sagittal plane for multiple trials (Fig 4). 
The two participants demonstrate different GRF orientation patterns during the initial phase 
but are internally consistent between speeds. Amount of time spent in the initial phase did not 
change despite the increase in speed as indicated by the placement of the grey vertical line 
(Fig 4).The consistency of the resultant force angle in the sagittal plane during the initial phase 
indicates forces in the anterior-posterior (A-P) and vertical directions are increasing 
proportionally with speed. Therefore, changes in the vertical and anterior-posterior GRF 
between speeds are due to the magnitude of forces rather than orientation during the initial 
phase. 
 
DISCUSSION: To better understand how runner-specific mechanical loading differs at different 
training paces, reaction forces experienced during multiple running cycles performed outside 
on the track were analyzed and compared within participant. The participants in this study 
exhibited shorter contact times and greater peak vertical GRFs which were consistent with 



previous findings (Kipp et al., 2018; Munro et al., 1987). As a group, contact duration 
decreased with speed while peak vertical ground reaction force and average horizontal 
reaction force during braking increased. Not all participants exhibited significant differences 
observed for the group.  Orientation of the GRF in the sagittal plane was unique to each 
participant but the pattern remained the same within individual during the initial phase 
regardless of speed. These preliminary results suggest maintaining reaction force orientation 
during initial foot contact may reflect nervous system control priorities across speed.  
Changes in CM vertical velocity between speeds were not found to be significantly different 
indicating that oscillations of the CM within participant may not change with speed. 
Interestingly, the magnitude of the braking impulse normalized by body mass was not found to 
be significantly different between speeds yet when normalized by braking phase duration, the 
average horizontal GRF experienced increased with speed. The orientation of the GRF in the 
sagittal plane was internally consistent within participants across speed suggesting increases 
in GRF with speed occurs proportionally in the vertical and horizontal directions. Increasing 
sample size and further validation of lower extremity segment kinematic data will further 
elucidate how GRF magnitudes and orientation affect mechanical load distribution across the 
lower extremity of individuals when running. Extending this research will aid to help screen and 
prevent stress related injuries in endurance athletes. This work demonstrates the value of in-
field studies where athletes train and experience regular loading conditions. 
 
CONCLUSION:  
Consistent with running research conducted in a lab and on an instrumented treadmill, contact 
duration decreased while peak vertical GRF and average horizontal GRF during braking 
increased with speed. Not all participants exhibited significant differences observed for the 
group. The internal consistency of the orientation of the GRF in the sagittal plane within 
subjects during the initial phase of contact provides insight to advance understanding of 
nervous system control priorities while navigating landing during steady state running. This 
field-based research approach provides avenues for characterizing mechanical loading during 
running and to screen and prevent stress related lower extremity injuries in endurance athletes. 
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