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The purpose of this study was to compare the performance of a 2D video-based markerless 
motion capture system to a conventional marker-based approach during a counter 
movement jump (CMJ). Twenty-three healthy participants performed CMJ while data were 
collected simultaneously via a marker-based (Oqus) and a 2D video-based motion capture 
system (Miqus, both: Qualisys AB, Gothenburg, Sweden). The 2D video data was further 
processed using Theia3D (Theia Markerless Inc.), both sets of data were analysed 
concurrently in Visual3D (C-motion, Inc). Excellent agreement between systems with ICCs 
>0.988 exists for Jump height  (mean average error of 0.35 cm) and ankle and knee sagittal 
plane angles (RMS differences < 5°). The hip joint showed higher differences with an 
average RMSD of 16.9° but maintained a strong correlation of 0.885.  
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INTRODUCTION: In performance and rehabilitation diagnostics assessing dynamic 
movements such as jumps (e.g. counter-movement jumps (CMJ), drop jumps), squats, or 
running can provide important information for clinicians, coaches and athletes.  Parameters of 
interest can vary from basic performance variables such as jump height or running speed, up 
to detailed analysis of kinetic and kinematic variables using motion capture to assess 
technique and performance. The most common method for accurate measurement of three-
dimensional movement is marker-based motion capture. While these systems are referred to 
as the current gold standard, they are equipment- and cost-intensive, require laboratory set-
up, operator expertise and markers being attached to the participant (e.g. Mundermann, 
Corazza, & Andriacchi, 2006).  
Attaching the markers to the participants however might interfere with the natural movement 
of participant or is sometimes not possible (e.g. during competition). Therefore, markerless 
approaches to measure human movement have been developed and include manual tracking 
of joint positions of two-dimensional (2D) video data, shape recognition, visual hull detection, 
and depth sensor-based hull detection. However, these approaches are time-consuming and 
might be operator dependent (e.g. manual tracking), and information on the validity of the latter 
two systems during dynamic tasks is limited (e.g. Kotsifaki, Whiteley, & Hansen, 2018; Stone 
et al., 2013).  
Several different approaches to automated 2D video-based markerless motion capture have 
been developed and implemented to varying levels of success, with one such approach being 
feature recognition (Cronin, Rantalainen, Ahtiainen, Hynynen, & Waller, 2019). Feature 
recognition employs deep learning techniques such as neural networks to identify and track 
specific anatomical landmarks in single or successive photographic images. This process 
allows the pose of human subjects to be estimated based on the positions of the tracked 
anatomical landmarks throughout a movement. Theia3D (Theia Markerless Inc., Kingston, ON) 
is one such software that uses feature recognition to perform 3D pose estimation. However, 
the performance of this system relative to a marker-based system in estimating 3D pose during 
dynamic functional tasks has yet to be tested. Therefore, the aim of this study was to compare 
the performance measures of a countermovement jump (CMJ) when measured using the 
markerless and marker-based motion capture systems. 
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METHODS: Twenty-three recreationally active participants (13♀, 10♂, 21.1±1.9 yrs, 1.78 ± 
0.09 m 71.2 ± 11.2 kg) performed a test battery consisting of gait, CMJ, single- and double-
legged DJ, squats, and jogging. This paper will focus on the CMJ. Participants performed three 
maximal effort CMJ on a force plate (AMTI Inc., Watertown, MA) installed in a treadmill (due 
to setup reasons including gait &running tasks, which all were collected in the same volume), 
while motion capture data were collected synchronously at 85 Hz using a seven-camera 
marker-based system (Qualisys 3+, Qualisys AB, Gothenburg, Sweden) and an eight-camera 
2D video-based system (Miqus, Qualisys AB, Gothenburg, Sweden). The trajectories of the 
retroreflective markers placed on relevant anatomical landmarks of the subjects’ body were 
tracked using Qualisys Track Manager and exported for further analysis in Visual3D (C-Motion 
Inc., Germantown, MD). The 2D video data were processed by Theia3D (Theia Markerless, 
Inc., Kingston, Ontario), a software that uses deep convolutional neural networks to perform 
feature recognition on photographic images in order to identify anatomical landmarks and 
estimate human pose in 3D. The neural networks are trained on a dataset of over 500,000 
images sourced from a proprietary dataset and the Microsoft COCO dataset (Lin et al., 2014), 
and include images of humans in a wide variety of settings, clothing, and performing various 
activities. The 3D pose estimates of each body segment were exported as 4x4 pose matrices 
from Theia3D for further analysis in Visual3D. In Visual3D, two skeletal models with identically-
defined body segments and inverse kinematic constraints (knee 2 DoF: extension/flexion, 
varus/valgus) were created which independently tracked human motion using either the 
labelled marker trajectories (marker-based system) or the 4x4 body segment pose matrices 
(markerless system). These models were applied to all CMJ trials from all participants. The 
following events were detected throughout the duration of each CMJ trial: standing (first 0.5 s 
of trial), start (first downwards movement of the centre of mass), deepest squat (minimum 
height of right hip joint centre) and landing (force > 20 N). The jump height achieved during 
each trial was calculated as the difference in the vertical position of the marker-based hip joint 
centre between standing and its maximum vertical position during the jump. For each 
participant the CMJ trial with the highest jump was taken for further analysis. Jump height, 
lower limb flexion angles, and the distance between the corresponding lower limb joint centre 
positions were compared between the marker-based and markerless systems. Bland-Altman 
and violin plots were used to compare jump height measurements and knee flexion angle 
measurements at the deepest squat event, from both systems. The difference between the 
lower limb joint position estimates from both systems was measured using the root-mean-
square of the 3D distance (RMSD) between the corresponding joints across the jump task 
(beginning of the counter movement to landing), and the mean RMSD was calculated across 
all subjects. The lower limb joint flexion angles measured by the two systems were compared 
using the root-mean-square of the difference (RMSD) and the intraclass correlation coefficient 
(ICCA-1) between the angles from the two systems throughout the duration of each jump.  
 
RESULTS: The jump heights measured independently by the marker-based and markerless 
motion capture systems were found to have a very high level of agreement, with a mean 
average error of 0.35 cm and an ICC of 0.996 (Figure 1A). No relationship was visually 
observed between the mean of the jump height measurements and the difference in jump 
height measurements. The violin plot shows the sample distribution of jump heights measured 
by both systems, demonstrating the visually identical sample distributions and median jump 
heights for both systems (Figure 1A). 
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Figure 1: System differences via Bland-Altman plots and sample distributions via violin plots 

(green line: median) for (A) jump height, and (B) knee flexion angle at minimum hip joint height, 
measured by both motion capture systems.  

 

The knee flexion angles measured by both systems at the deepest squat event were found to 
differ by less than 4° on average, as indicated by the bias of -3.86° (Figure 1B). The violin plots 
of the measured knee flexion angle at this event from both systems show that the markerless 
system measured a visually less normal sample distribution, with a slightly more flexed knee 
angle position of 3° between the sample medians. The differences in the lower limb joint 
position estimates between both systems were measured as the RMSD between 
corresponding joint centres. The differences and correlations in the ankle, knee, and hip flexion 
angles between the systems throughout the jump task and across all subjects are summarized 
using the RMSD and ICCA-1 (Table 1).  
 

Table 1: Mean 3D joint position estimate RMSD during jumping task across all 23 subjects. 

 
3D Joint Position 

RMSD [cm, mean (std)] 

Joint Flexion Angle 

RMSD  
[deg, mean (std)] 

ICCA-1  
 

Ankle 3.03 (0.01) 4.04 (1.61) 0.988  

Knee 1.95 (0.01) 5.26 (1.72) 0.988  

Hip 3.05 (0.01) 16.9 (4.77) 0.885  

 

The differences in the ankle and knee flexion angles were found to be approximately 5° or 
lower throughout the jump task for all subjects. The hip joint flexion angle was found to have a 
significantly higher average difference of nearly 17°.  
 
DISCUSSION: This is the first study to evaluate an automatic 2D video-based markerless 
motion capture approach using a convolutional neural network for the dynamic movement task 
represented by a CMJ. The CMJ places high demands on the algorithm, as 1) in the position 
where the jump height is calculated the person is in an almost fully extended position, which 
increases the difficulty for the algorithm to detect the features needed for foot, shank and thigh 
segments identification and 2) the counter movement itself, where occlusions of especially the 
hip occur due to the forward lean of the trunk and crouching position. Comparison to the 
reliability of similar measures from other markerless systems is difficult due to the novelty of 
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the approach, the limited amount of studies using a dynamic jump task and the evaluation of 
different parameters in other studies. From the field of depth-sensors Kotsifaki et al. (2018) 
reported ICC values above 0.80 for the sagittal shin and thigh segment angles, 0.38 for the 
ankle, with a bias of 6.9° [limits of agreement -3.3 – 17.1] for the hip flexion and -2.6° [limits of 
agreement -9.2-4.4] for knee flexion during a modified CMJ using a dual Kinetic system. Stone 
et al. (2013) investigated vertical drop jumps using the Kinect system and reported ICCs above 
0.7 for valgus and frontal plane knee kinematics. The ICCs of this study demonstrate excellent 
agreement correlations (ICC >0.885) between the marker-based and markerless approach for 
the jump height and the flexion angles of the hip, knee and ankle averaged over the jump. The 
jump heights measured using the markerless system were on average 0.35 cm higher than 
those from the marker-based system, and the joint flexion angles were found to differ by <5.3° 
at the knee and <4° at the ankle over the course of the CMJ task. The hip angle measurements 
were found to have an average RMSD of 17° yet a strong average ICC of 0.885, which possibly 
indicate that the hip joint angles may measure similar hip flexion patterns but have isolated 
differences peaks or relatively constant offsets between systems. Therefore, the current 
iteration of the pelvis segment definition in the markerless system was identified as currently 
inadequate to measure the pelvis movement during a CMJ. This issue is currently being 
addressed by Theia Markerless Inc., with an imminent new release that promises to improve 
the pelvis pose estimation. The identified joint centres differ in 3D space including all 
movement directions by less than 3.1 cm for the hip and ankle joints, and 2.0 cm for the knee 
joint. These joint position estimate differences directly affect the other kinematic measures 
compared in this work, yet the close agreement of those measures indicate their effect is 
limited. These effects including frontal plane movements are currently being examined in 
greater depth.  
 
CONCLUSION: This study indicates that this markerless motion capture system can measure 
jump height, ankle and knee flexion angles, and lower limb joint positions during a dynamic 
CMJ with high agreement to an accepted marker-based system. The current version of this 
software provides flexion angles that differ by less than 5.3° at the knee and ankle. The pelvis 
pose estimation resulted in higher differences in the hip flexion angle, an issue that is currently 
being addressed. These results generally seem promising for the measurement of CMJ 
parameters without the need of marker placement.  
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