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The purpose of this study was to identify the main muscle contributions across a battery of 
different tasks commonly used to evaluate an athlete’s readiness to return to sport after 
anterior cruciate ligament injury (ACL) and following ACL reconstruction. These injuries are 
mostly related to landing and change of direction movements and, due to its high incidence, 
efforts must be made to better understand the knee soft tissue mechanisms during these 
types of tasks. Data from a single athlete were analysed for this study. Scaled generic 
musculoskeletal models, consisting of 12 segments, 23 degrees of freedom and 92 
musculotendon actuators were used in OpenSim. The quadriceps were the main 
contributors to ground reaction forces along the anterior/posterior direction, and, aided by 
the soleus and gastrocnemii, counteracted most of the effects applied by gravity along the 
vertical direction. The main contributors to the ground reaction forces during all the tasks 
are the same muscles that are intimately related to ACL loading, thus making these tasks 
useful for injury rehabilitation programs.  
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INTRODUCTION: Non-contact knee injuries are a common occurrence in the world of 
professional sports, with anterior cruciate ligament (ACL) injuries being common and some of 
the ones with a more challenging recovery period (H, Shahrbanian, & Khoshroo, 2018). 
Following injury, the athletes tend to undergo ACL reconstruction (ACLR)  via a surgical 
procedure (Hughes, Musco, Caine, & Howe, 2020). Albeit, after surgery, there is no common 
ground on which measures are the most related to a player’s readiness to return to sport (King 
et al., 2018). Biomechanical analyses of landing tasks have been used to study the 
effectiveness of injury prevention protocols and the impact of rehabilitation after ACL 
reconstruction (Harper, Cohen, Rhodes, Carling, & Kiely, 2021; Nasseri et al., 2021). Also, the 
use of biomechanical variables instead of performance variables has been shown to provide 
more complete knowledge on RTP than other variables studied in previous studies (King et al., 
2021). Research also shows that subjects, after ACLR, might present abnormal biomechanics 
that is closely related to lower muscle strength and alterations in knee kinematics (Badawy et 
al., 2022). These changes in muscle forces following ACLR are observed not only in muscles 
that span the knee joint, but also in other muscles spanning the hip and ankle joints (Petersen, 
Taheri, Forkel, & Zantop, 2014). Previous studies also found that, besides the knee-spanning 
muscles, also important non-knee spanning muscles (e.g. soleus) contribute to ACL loading 
(Mokhtarzadeh et al., 2013). In addition to this, ACL injury prevention programmes are shown 
to have a positive effect on the vertical ground reaction forces, albeit correct technique whilst 
performing several jumping tasks is necessary  (Padua & DiStefano, 2009). Therefore, 
understanding lower extremity muscle contributions to the ground reaction forces may provide 
insight to improving ACL injury prevention protocols.  
The main goal of this work was the comparison of different tasks concerning their muscle 
contributions to the ground reaction forces. With this work, we aim to characterize the different 
movements implemented in this experimental design in terms of the potential contribution of 
such muscles. 
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METHODS: One subject (188.6 cm and 94.4 kg), who underwent ACLR in the right lower limb, 
participated in this study and gave his written informed consent before the beginning of the 
study. Biomechanical data were collected using a ten-camera motion analysis system (200 Hz; 
Bonita-B10, Vicon, UK), synchronized with two force platforms (1000 Hz BP400600, AMTI, 
USA) recording the positions of 42 reflective markers. The marker setup included the Plug-in 
Gait model and the 6 Degrees of Freedom models simultaneously, and a full description of the 
marker set is given in (Scott, Robinson, & Daniels, 2020). After a warm-up, the participant 
completed a testing battery consisting of bilateral and unilateral countermovement and drop 
jump tasks, and anticipated and unanticipated change of direction tasks. A full description of 
the testing protocol is given in (King et al., 2018). 
Marker trajectory and force data were filtered using a fourth-order zero-lag Butterworth filter 
(cut-off frequency 15 Hz). The Inverse kinematics problem was solved as a global optimization 
problem. Muscle forces and contributions were attained through OpenSim (Delp et al., 2007). 
A 12 segment, 29 degrees of freedom musculoskeletal model was used to create the 
simulation. The model was manually scaled to match each subject’s anthropometry using 
previously attained scale factors for the model segments. A residual reduction algorithm (RRA) 
step was implemented to minimize errors related to kinematic inconsistencies and modelling 
assumptions. The adjusted model and kinematic data were used for estimating muscle forces 
during the different movements using the Computed Muscle Control (CMC) optimization 
method (Thelen & Anderson, 2006). CMC uses a proportional derivative controller to provide 
kinematics feedback to adjust model position during the simulation and accounts for the muscle 
force-length–velocity properties. Based on the CMC results, an induced acceleration analysis 
was performed, allowing the mathematical prediction of the mechanical contribution of each 
individual muscle force obtained to the ground reaction forces. A rolling constraint without 
slipping was inserted in this analysis to substitute the interaction of the musculoskeletal model 
with the surrounding environment (Hamner, Seth, Steele, & Delp, 2013). A full description of 
this final step is given in (Mateus, Ferrer-Roca, João, & Veloso, 2020). 
.  
RESULTS: The main mean individual muscle contributions to the ground reaction forces for 
all the tasks performed are presented in Figure 1. Only the portions of the tasks where the 
subject was in contact with the force plate were considered for this section. 
 
DISCUSSION: This work aimed to estimate individual muscle contributions to the ground 
reaction forces, via a musculoskeletal modelling approach. The main contributing muscles to 
the ground reaction forces are the ones that are commonly related to ACL loading (Peel, 
Schroeder, & Weinhandl, 2021). This work presents an innovative approach to better 
understand neuromuscular function after ACLR so that injury rehabilitation programmes are 
more robust. 
All the movements produced upwards directed ground reaction forces along with the vertical 
directions, with single leg movements generating larger forces. Along with the 
anterior/posterior and mediolateral directions, only the anticipated and unanticipated cutting 
tasks produced relevant forces, being posteriorly and medially directed.  Especially during the 
anticipated and unanticipated cutting tasks, it is possible to observe that, whilst performing the 
previously mentioned movements with the healthy lower limb, larger ground reaction forces 
are produced, when compared to the ACLR lower limb, thus concluding that, after ACLR, 
discrepancies between lower limbs arise, which in accordance to the work of (King et al., 2018). 
Similar observations were found during gait, in the work of (Mantashloo, Letafatkar, & Moradi, 
2020). 
Along the anterior/posterior direction, the quadriceps were the main contributors during all the 
tasks, providing support against and braking the body forward momentum, counteracted by 
muscle contributions from the soleus, gastrocnemii, and hamstrings, possibly preventing the 
anterior translation of the tibia. During anticipated and unanticipated cutting tasks, gluteus 
maximus also produced relevant contributions to the anterior/posterior ground reaction forces, 
which may be explained by its role in stabilizing trunk motion. Similar findings were observed 
in different movements, such as a forward braking and backward acceleration task (Mateus et 

420

40th International Society of Biomechanics in Sports Conference, Liverpool, UK: July 19-23, 2022

https://commons.nmu.edu/isbs/vol40/iss1/100



al., 2020).  Along the vertical direction, the quadriceps, along with the soleus, gastrocnemii, 
and gluteus maximus, work to support the body against the effect of gravity.  These 
contributions are counteracted by the tibialis anterior and the hamstrings, albeit during 
anticipated and unanticipated cutting tasks, the hamstrings work along with the main knee 
extensors and ankle plantar flexors to further support the body against gravity. This differs from 
the findings of  (Maniar, Schache, Cole, & Opar, 2019), where muscle contributions to the 
ground reaction forces during a sidestep cutting task were estimated, and the hamstrings 
produced no contribution to the vertical ground reaction forces. Although a plausible 
explanation to this stems from different musculoskeletal and foot-ground contact models being 
implemented in both works, the findings from our work warrant further research on the 
hamstrings’ role during anticipated and unanticipated cutting tasks in professional athletes. 
Along the mediolateral direction, muscles mostly showed larger contributions during planned 
and unplanned cutting tasks. Muscles like the gluteus medius, quadriceps, soleus and 
gastrocnemii acted to direct the centre-of-mass  towards the course of 
travel through their contribution to the mediolateral GRF. These findings are per the ones 
found in (Maniar et al., 2019). 
  

 
Figure 1: Main muscle contributors to the ground reaction forces along all three directions. Mean 
muscle contributions are given in N/Kg. Anterior (+)/Posterior(-); Upward(+)/Downward(-
);Lateral(+)/Medial(-). DL – Double leg; SL – Single leg; CMJ - countermovement jump; DJ – Drop 
Jump; SideStepCut – Planned sidestep cut; IndecCut – Unplanned sidestep cut.  
 
CONCLUSION: This work identified individual muscle contributions to the ground reaction 
forces, where the main contributors are also the main muscles acting to load the ACL, however 
these contributions are shown to be dependent on the type of task performed, and require 
further work with a larger sample size to better understand how muscles contribute to the 
ground reaction force during each task. Nonetheless, it gives us confidence in the 
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implementation of such tasks in testing and recovery protocols with the intent of revealing 
potential ACL limitations in professional athletes. 
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