MANIPULATING IMPLEMENT WEIGHT DURING WARMUP TO IMPROVE SHOT PUT PERFORMANCE

Leah Klein, David Graham, Justin Whitten, Katie McKibben, Megan Peach, James Becker
Department of Health and Human Development, Montana State University, Bozeman MT, USA

The purpose of this study was to evaluate kinematics and kinetics of the shot put when participants warmup using standard, overweight, or underweight implements. Ten collegiate shot putters warmed up using regulation, heavy, or light implements then completed six maximal effort competition throws. Whole body kinematics and ground reaction forces were recorded on each throw. Consistent with the literature, throw distance was significantly further after warming up with the heavy implement (p = .002). However, there were no differences in critical kinematic factors or ground reaction forces between conditions. While using overweight implements during warmup improves shot put performance, the mechanism by which this occurs is not through altering the critical factors or forces produced during the throw.

KEYWORDS: Shotput, post activation potentiation, kinematics, forces

INTRODUCTION: The shot put is a commonly contested Athletics event. For rotational shotput in particular, previous studies have identified several kinematic parameters which are appear critical for performance including: pelvis-torso separation at rear foot touch down (RFTD), rear leg hip and knee flexion at RFTD, and peak pelvis angular velocity between RFTD and Release (REL) (Kato et al., 201; Lipovsek et al., 2011; Schofield et al., 2022; Young & Li, 2005). However, few studies identify technical or training interventions coaches could implement to improve performance on these factors. One possibility is to leverage the phenomena of post activation potentiation (PAP), the idea that a muscle’s contractile history can enhance its production of force (Esformes et al., 2011). Performing explosive movements such as heavy Olympic lifts or short sprints prior to throwing can yield significant improvements in subsequent shot put performance (Dolan et al., 2017; Terzis et al., 2012). While suitable for training, these exercises are not feasible for competition environments. Instead, athletes could manipulate implement weight, using overweight implements during warmup to induce PAP. This approach has been shown to improve performance in over-the-head backward shot throws (Judge et al., 2016), and weight throws (Bellar et al., 2012; Judge et al., 2010). While these studies highlight the practical benefits of using overweight implements during warmup, they do not address the underlying mechanisms. Therefore, the purpose of this study was to investigate how manipulating implement weight during warm up affects the kinematics and kinetics of shot put throwing. We hypothesized that throw distance would increase following a warmup with overweight implements and that increased throw distance would be accompanied by increased pelvis-torso separation at RFTD, rear leg hip and knee flexion at RFTD, greater pelvis angular velocity between RFTD and REL, and increases in the ground reaction forces applied by the athlete.

METHODS: Ten collegiate rotational shot putters (6 males, 4 females) participated in this study (Table 1). Data was collected on three non-consecutive days. Each day, participants performed a self-selected 15-minute general warm-up followed by three warm-up throws and six maximal effort competition throws. All competition throws were performed using regulation implements (men: 7.26 kg, women: 4.00 kg). Implement weight during warm-up throws varied across days, using regulation implements on day one, and then in randomized order, either overweight (men: 8.16 kg, women: 4.53 kg) or underweight (men: 6.35 kg, women: 3.00 kg) implements on days two and three. To simulate a competition environment, time between warm up and competition throws was 5-minutes, with an additional 3-minutes of rest between each competition throw.
Whole body kinematics were recorded using 16-inertial sensors (IMU, MVN Link System, Xsens Technologies B.V, Enschede, Netherlands). Each sensor integrates a tri-axial accelerometer, gyroscope, and magnetometer, internally sampling at 1000 Hz, and set to export data at 120 Hz. Sensors were placed on the dorsal feet, lateral shank and thighs, mid-posterior pelvis, middle of the scapular spines, lateral upper arm and forearm, posterior hand, sternum, and posterior head. Ground reaction forces were also recorded at 120 Hz using a custom throwing circle containing two force plates (dimensions: 1.016 x 0.762 m, manufacturer: AMTI, Waltham MA, USA) embedded and flush with the floor of the circle. Plates were spaced such that during the delivery of the implement the front and rear feet were on different plates. Collection of ground reaction forces and kinematics were synchronized.

Throwing distance was measured with a tape measure and the three furthest trials of competition throws for baseline (BASE), post-heavy (PH), and post-light (PL) conditions were used for data analysis. Temporal events RFTD, front foot touch down (FFTD), and REL were identified visually in the Xsens MVN Biomech Studio software. IMU sensor signals were then fused using the Xsens proprietary Kalman filter and joint angles calculated using a Y-X-Z Cardan sequence corresponding to rotations about the medio-lateral, anterior-posterior, and axial axes. Sensor orientations and joint angles were exported to Matlab (Mathworks, Natick MA, USA) where orientations of the pelvis and sternum sensors were converted from Euler angles to rotational matrices and the orientation of the pelvis relative to the torso (sternum) calculated. The critical kinematic factors of pelvis-torso separation, rear leg hip and knee flexion at RFTD, and peak pelvis angular velocity around the axial axis between RFTD and REL were then identified. Ground reaction forces were filtered using low pass Butterworth filters with a 50 Hz cutoff in Matlab. For both the front and rear feet the peak force, impulse, and peak rate of force development from time of foot touch down (either RFTD or FFTD, respectively) through REL were calculated and normalized to the sum of body and implement weight.

Within participants, dependent variables from the three throws in each condition were averaged. A 2 (sex) x 3 (condition) mixed analysis of variance was used to evaluate differences between conditions, with an alpha of .05 used to indicate statistical significance. To aid in interpretation effect sizes (Cohen’s d) were calculated for all significant pair-wise comparisons, and interpreted in the ranges of <0.2 small, 0.4 – 0.6 moderate, > 0.8 large. All statistics were performed using Statistical Package for the Social Sciences (SPSS ver. 29, IBM Corp, Armonk NY, USA).

RESULTS: None of the dependent variables displayed significant sex-by-condition interactions or main effects of sex. Mean throw distances and participant kinematics are shown in Table 2. There was a significant main effect of weight for throw distance (F_{2,16} = 4.123, p = .036), with participants throwing further in the PH than the BASE (p = .002, d = .306). There were no significant differences between conditions for any of the kinematic measures. Ground reaction force variables are shown in Table 3. There were no significant differences between conditions for any of the ground reaction force variables.

DISCUSSION: The main finding of this study, in support of our hypothesis and consistent with previous results (Bellar et al., 2012; Judge et al., 2010, 2016), was that warming up with an overweight implement improves shot put throw distance in collegiate athletes. Contrary to our hypothesis, the increased throw distance was not accompanied by changes in critical kinematic factors or increases in ground reaction forces. This suggests other parameters in the throw may have changed. These may include the release parameters of the implement like the
The combined effects of increased phosphorylation of myosin and increased motor unit recruitment rates of PAP. PAP results from the mechanistic properties of PAP. PAP results from the combined effects of increased phosphorylation of myosin and increased motor unit recruitment rates (Downey et al., 2022; Evetovich et al., 2015). Terzis et
al. (2003) demonstrated that earlier onset of triceps brachii activation was associated with better shot put performance. It is possible the PAP stimulus provided by using the overweight implements resulted in greater motor unit recruitment speeds in the triceps brachii, or other muscles, thereby allowing them to generate forces faster or at a more optimal time in the throw. Future studies using EMG on both upper and lower extremities are required to investigate this hypothesis.

CONCLUSION: The use of an overweight implement for warmup throwing which ends approximately 5-minutes prior to starting competition improves rotational shot put throw distance without changing critical kinematic factors or ground reaction forces of the throw. Since competition rules allow athletes to weigh in heavier implements for warmups, the use of this strategy could be one way for athletes or coaches to improve performance.

REFERENCES

