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This case study aims to compare a low-cost inertial sensor prototype (JY61 IMU + ESP8266 
MCU designed for real-time non-proprietary data streaming over Wi-Fi) with a high-end 
mobile (iPhone 13 Pro Max) using Matlab pedometer algorithm. Preliminary experiments 
used data collected at 100 Hz including 20, 50, and 100 steps on a partially carpeted and 
partially hard floor surface with the test subject wearing high heels and tennis shoes. The 
error comparison between the sensor (0–1%) and high-end mobile (0–2%) suggests that 
the sensor can be used as a privacy-preserving pedometer which is smaller, lighter and a 
low-cost alternative to mobile sensors. The experimental framework developed for 
advanced pedometer personalisation is applicable in education, gate pattern analysis and 
other sensor advancements for sport equipment and wearable technology applications.  
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INTRODUCTION: Advancements in 5G data communication progressing towards 6G 
technology and scalable big-data analytical healthcare platforms are aimed towards the next 
generation of IoT technologies integrating real-time data streaming from biomedical devices, 
mobiles, wearables, and inertial sensors (Štufi et al, 2020, Feng et al, 2023). Although 
wearable technology for sport performance, health, and activity monitoring is also improving 
and becoming increasingly accessible and convenient, there are still limitations and challenges 
associated with proprietary technologies including mobile sensors and applications. For the 
biomechanics community and sports practitioners, some limitations on generating new 
knowledge from raw data can be associated with the need for privacy preservation, and non-
proprietary technology integration control with access to raw data and data streaming. As part 
of incremental research and development of the non-proprietary, low-cost (< $25), inertial 
sensor prototype (JY61 IMU with ESP8266 MCU), this case study aims to: (1) answer “can the 
sensor prototype be used as a pedometer?”; (2) produce an experimental framework to 
advance a decade old Matlab (R2014a – R2023b) open-source pedometer algorithm with 
additional functions and parameters that can be personalised; and (3) provide 
recommendations to aid the research and development of the latest generation of inertial 
sensors capable of high-rate data streaming tested on 100 Hz (10 ms sampling intervals).  
 
METHODS: As part of cyclic and incremental design prototyping, the evaluation of the inertial 
sensor here is in the context of pedometer use for activity monitoring. The methodology 
involves boundary testing to: (1) compare errors between the sensor prototype and a high-end 
mobile device; (2) identify potential issues associated with the need for pedometer technology 
personalisation; and (3) provide recommendations from the experimental work conducted. The 
Matlab pedometer algorithm (MathWorks, n.d.) was chosen as it was designed to work on 
general population with low computational cost and on a range of older mobile sensors. For 
identified boundary test cases, algorithm improvements criteria included the same 
experimental settings for both devices, including the sampling rate of 100 Hz. 
For the experimental data collection protocol, the authors used a surface area with carpet and 
hard floor, where the participant (co-author, 158 cm, 42 Kg), walked 20, 50, and 100 steps 
wearing high heels and then tennis shoes. The sensor prototype was attached to the mobile 
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using two-sided adhesive tape and held in the pocket (Figure 1). Throughout the data collection 
process, the sensor prototype and a mobile (iPhone 13 Pro Max) were used simultaneously to 
record acceleration data in the XYZ axes. The acceleration data from both devices were 
imported into Matlab for further data analysis.  
 

 

 

Mobile: iPhone 13 Pro Max 
Size: 78.1 mm x 160.8 mm x 7.65 mm 
Weight: 240 grams  
 

Added weight to the mobile (sensor + battery weight): ~ 29 grams 
Total weight (mobile + sensor + battery + adhesive): ~ 280 grams 

 

Inertial sensor prototype (version 2):  
JY61 IMU module with ESP8266 Microcontroller 
JY61 (accelerometer range: ±16 g, angular velocity: ±2000°/s) 
Size: 29.3 mm x 34.6 mm x 15 mm 
Weight: 6.7 grams 

Battery (operation autonomy min. 10 hours): 3.7 V, 1200 mAh  
Size: 54 mm x 34 mm x 5.7 mm 
Weight: 22 grams 

Sensor + Battery size: 54 mm x 34 mm x 22 mm   

 

Figure 1: Experimental settings and equipment.  

 
The produced framework (Figure 2) shows a general approach to a single iteration of source 
code analysis with visualisation of intermediate results in support of data-driven optimisation 
and evaluation of advanced features. Each iteration involved verification, performance logging, 
and analysis of enabled/disabled changes in parameter settings. Hence, the process involved 
multiple programme iterations, recording parameters and functions to be optimised for: (1) 
maximising algorithm performance (i.e. pedometer accuracy, while minimising errors); and (2) 
real-time accelerometer data stream processing (e.g. by prioritising low-computational costs). 
Note that the framework is also designed to be applicable to follow-up research contexts as 
well as with minimal changes, to related contexts involving high-frame rates signal processing 
desired for sport performance, rehabilitation and equipment research and development.  
 
RESULTS: Comparing the original vs. advanced algorithms’ performance on Table 1, there 
are noticeable similarities between the sensor (IMU) and mobile (Mob.) data sources.  
 
Table 1: Pedometer algorithm comparisons on mobile and sensor acceleration data (100 Hz): 
Original (O) vs Advanced (A) algorithm settings using conceptual framework (Figure 2). 

 

Original 
or Adv*).  
Settings 

Shoes: 
Tennis or     
High heels 

Test 
Steps 

Steps 
Detected 
via IMU  

Steps 
Diffe-
rence 

IMU 
Error 

Steps 
Detected 
via Mob. 

Steps 
Diffe-
rence 

Mob. 
Error 

O T   20   43   23 115%   53   33 165%  
O H   20   44   24 120%   45   25 125% 
O T   50   87   37   74%   85   35   70% 
O H   50 131   81 162% 128   78 156% 
O T 100 153   53   53% 180   80   80% 
O H 100 256 156 156% 280 180 180% 
A T, H 20, 50   20, 50     0     0% 20, 50 0     0% 
A T, H 20, 50   20, 50     0     0% 20, 50 0     0% 
A T, H 20, 50   20, 50     0     0% 20, 50 0     0% 
A T 100   100     0     0% 98 -2  -2%**) 
A H 100  101     1     1% 100 0     0% 

*)  Advanced algorithm settings: 0.9 Standard Deviations (STD); Max. 4 steps/second.  
**) If applied additionally, 5-point ‘moving mean’ data smoothing the error was -1%. 
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Figure 2(a) depicts the processing data flow diagram, combining the original algorithm 
(MathWorks, n.d.) highlighted in orange. The hexagonal shapes indicate advanced aspects 
with individual empirical evaluations as optional processing steps. Figure 2(b) shows a visual 
comparison of intermediate processing steps for the sensor prototype and mobile data with 
‘Step Threshold’ as adaptive decision boundary supporting step count modelling and analysis. 
Note that the open-source MatWorks algorithm with its code is also accessible via the Matlab 
command: openExample('matlabmobile/CountingStepsByCapturingAccelerationDataExample'). 
Applying the same common settings optimised for all experiments and real-time computing 
demands had a similar effect on both data sources. Figure 2(b) shows that the sensor and 
mobile XYZ orientations were not aligned, but the magnitude and signal patterns were similar, 
and both showed a recurring gait pattern revealing a personal movement ‘signature’.  As 
expected, for the original pedometer algorithm, wearing high heels showed the highest 
acceleration peaks (including potential outliers) and error rates compared to soft, rubberised 
tennis shoes (Table 1). Hence, the high-end iPhone and sensor prototype can both be used 
as a 100 Hz pedometer, relying on the advanced variation of Matlab algorithm with 
personalised settings. 
 

 
 

Figure 2:  Conceptual framework for pedometer algorithm improvements and visual modelling.  
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DISCUSSION: Regarding technology integration aspects, the acceleration data from the 
Matlab mobile app (in MAT format) had to be recorded in MathWorks’ cloud, so the use of 
offshore third parties/proprietary cloud data collection and sharing of personal information was 
unavoidable. The raw motion data detected from IMU, however, were transferred in real time 
(and in human-readable CSV text format) to the laptop via Wi-Fi range using a multi-platform 
application developed in Java, intended to be improved and shared as open-source.  
The IMU sensor and software design for real-time data streaming over Wi-Fi is inspired by the 
Arduino open-source initiative (https://www.arduino.cc), which involves the sharing of pre-made 
electronic devices and wiring diagrams with source code demos that are conjointly intended 
for hobbyists, IoT enthusiasts and industry professionals seeking to accelerate the pace of 
science, research, and technological advancements (Cameron, 2020). After evaluating the 
sensor prototype and its software, the next two sensor versions were made-to-order for 
production on printed circuit board (PCB). 
While both mobile and IMU sensor achieved similar error rates (sensor: 0-1% and mobile: 0-
2%), the ‘fit-for-purpose’ Arduino design philosophy as open-source, low-cost, ‘good-enough’, 
rapid prototyping are favoured for privacy preservation and avoiding dependence on 
proprietary data transfer via third party cloud services. The experimental results indicate that 
the major algorithm improvement was not in data smoothing and filtering, but in adding the 
parameter of maximum number of steps per second to Matlab findpeaks() function and in 

optimising the standard deviation threshold (for personalisation and fine tuning the ratio of false 
positives and false negatives), which are also computationally less demanding for the intended 
applications of the sensor design for real-time data streaming. Hence, although data filtering 
and smoothing were beneficial during the parameter optimisation, it was not needed for the 
final algorithm solution. With a view to advancing the original Matlab pedometer algorithm for 
step counting that is inclusive of the past decade’s mobile technology (based on 15–30 Hz 
sapling), higher sampling rates are expected to create new research opportunities for 
quantifying movements and pattern discovery, including for locomotor activities e.g. 
pathomechanics and gait parameters estimation, real-time human motion modelling and 
analysis (HMMA), and anomaly detection associated with rehabilitation.  
 
CONCLUSION: The low-cost inertial sensor prototype (JY61 IMU with ESP8266 MCU, version 
2), enabling real-time data streaming (100 samples/second, in human-readable CSV format) 
to a personal computer over Wi-Fi, can be used as a substitute for a high-end mobile phone 
(iPhone 13 Pro Max) for activity monitoring and advanced personalised pedometer use.  
The produced advanced pedometer algorithm with its framework (Figure 2) for visual modelling 
and data analysis can aid parameter optimisation to accelerate scientific progress, facilitate 
learning, and, with minor modification, be transferrable to sport sensors, rehabilitation, and 
wearable equipment design contexts. For biomechanists and healthcare professionals, 
transparent design approaches empower end-users to keep control over their data, preserving 
privacy and security, by using non-proprietary and open-source technology integration. 

REFERENCES 
Cameron, N. (2020). Electronics projects with the ESP8266 and ESP32: Building web pages, 
applications, and WiFi enabled devices. Apress. ISBN-10:1484263359. 
Feng, C., Bačić, B., & Li, W. (2023, 20 Nov.). Transforming healthcare with IoT streaming: Towards 
open-source IMU sensors for activity monitoring. The Digital Pulse: Transforming Healthcare - NZ IoT 
Alliance. (2023, November 20). New Zealand IoT Alliance. https://iotalliance.org.nz/event/the-digital-
pulse-transforming-healthcare/  
MathWorks. (n.d.). Counting steps by capturing acceleration data from your mobile 
device. https://au.mathworks.com/help/matlabmobile/ug/counting-steps-by-capturing-acceleration-data.html 
Štufi, M., Bačić, B., & Stoimenov, L. (2020). Big data analytics and processing platform in Czech 
Republic healthcare. Applied Sciences, 10 (5), 1705. https://doi.org/10.3390/app10051705. 

63

42nd International Society of Biomechanics in Sports Conference, Salzburg, Austria: July 15-19, 2024

https://commons.nmu.edu/isbs/vol42/iss1/28

https://www.arduino.cc/
https://iotalliance.org.nz/event/the-digital-pulse-transforming-healthcare/
https://iotalliance.org.nz/event/the-digital-pulse-transforming-healthcare/
https://au.mathworks.com/help/matlabmobile/ug/counting-steps-by-capturing-acceleration-data.html
https://doi.org/10.3390/app10051705

	tmp.1709537116.pdf.gqOwy

