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Measurement of mechanical work with a markerless motion capture system was assessed 
for the application of training ‘load’ monitoring. Four tennis players completed an on-court 
fatiguing protocol interspersed with sprint tests, with relationships between reduction in 
sprint velocity and internal and external mechanical work done tested. Repeated measures 
correlations for total and external mechanical work, and external mechanical work 
estimated from centre of mass proxies (pelvis and mid-hip) were comparable and ranged 
from -0.89 to -0.86. Whilst the calculated work done varied greatly between the methods 
(~42% for pelvis), all showed a strong relationship with fatigue and could provide insight 
into a player’s training ‘load’, despite the absolute values being inaccurate. This promising 
tool could be implemented for non-invasive, on-court training ‘load’ monitoring in the field. 
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INTRODUCTION: Monitoring training ‘load’ (a concept referring to the training stimuli 
experienced by an athlete) is an important component of planning and adjusting training and 
competition schedules in many sports. This certainly applies for tennis, which is a physically 
demanding sport, characterised by repetitive high-intensity movements such as multi-
directional sprints, changes of direction and explosive racket strokes. The demanding nature 
and the high injury rates, particularly during tournaments, emphasise the need for training ‘load’ 
monitoring in tennis (Pluim et al., 2006). Previously, we have shown that mechanical work can 
be accurately measured using markerless motion capture (Emmerson et al., 2023). Whilst 
there are many metrics used to quantify training ‘load’, mechanical work has the advantages 
of considering movements of the entire body and the high energetic cost of accelerations and 
changes in direction (Peyré-Tartaruga et al., 2021), which are neglected by other common 
metrics. Mechanical work can be split into external (Wext) (work done to accelerate and raise 
body centre of mass (CoM)) and internal (Wint) (work done to accelerate segments in relation 
to CoM) components and requires measurement of full-body kinematics. Measuring 
mechanical work with markerless motion capture potentially offers a new approach to 
monitoring training ‘load’ in a way that is completely non-invasive to players, as opposed to 
more commonly used wearable technology (e.g. accelerometry). However, the utility of our 
system in the field has not yet been tested. It is also not currently known whether measurement 
of full-body kinematics is indeed required or if a simpler approximation could be sufficient. 
Using a simpler approach would reduce data processing times and allow for a more accessible 
system. This could lead to a video-based tool becoming available to a far wider pool of players 
than is reached by current ‘load’ monitoring technology, with the potential to be used during 
match-play and eventually operating in real-time. 
The first aim of this study is to assess whether our custom markerless motion capture system, 
which has been used successfully in a controlled lab environment, is a suitable tool for 
monitoring training ‘load’ in an applied setting. This will be addressed by using the system to 
measure mechanical work done during a tennis-specific on-court fatiguing protocol and 
associating the work done with a measure of fatigue. The subsequent aim is to determine if 
measuring total mechanical work (Wtot) is necessary or if a simpler, more computationally 
efficient approach is sufficient for this application. The effects of neglecting the internal 
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component of mechanical work and of using a fixed point as a proxy for CoM will be 
investigated. 
 
METHODS: Four tennis players (1.77 ± 0.06 m, 75.4 ± 3.6 kg, 3 male and 1 female) from a 
university tennis team provided written informed consent. They completed an on-court fatiguing 
protocol whilst video data were captured with a custom markerless motion capture system. A 
cycle consisted of three sets of one serve and eight groundstrokes, alternating between 
forehand and backhand sides, with balls dropped into target zones (1.25 m forward from the 
baseline and 1 or 1.5 m in from the tramlines for males or females respectively) at a set 
frequency (one ball every 2 s for males and 2.5 s for females). Between sets, 20 s rest was 
given, which was reduced by 5 s after the fifth and tenth cycles. The third set was immediately 
followed by a maximum effort sprint back-and-forth along the baseline and up the tramline to 
the net. This cycle was repeated with 1-minute rest in-between until players reached volitional 
fatigue. The sprint test was also performed prior to the protocol for a baseline velocity measure. 
Players wore a heart rate (HR) monitor (Polar H10, Polar Electro Oy, Finland) for the duration 
of the protocol. Training impulse (TRIMP) was calculated from HR data using Edwards’ method 
(Edwards, 1993). A high-definition 8-camera system (JAI sp5000c, JAI ltd, Denmark) was used 
to capture the third set only (including sprint) of every cycle due to excessive data saving times. 
The work done in each of the first two sets was assumed to be sufficiently similar to that of the 
captured third set. The system was calibrated using observations of a binary dot matrix and 
the processing of the markerless data followed the workflow presented by Needham et al. 
(2022). Pose estimation with HRNet (Sun et al., 2019) (trained on the COCO-WholeBody 
dataset) was performed for each camera view to find 2D sparse body keypoint locations. 
Detections were associated between viewpoints and reconstructed in 3D space, before a 
bidirectional Kalman smoother was applied to the trajectories. Keypoint trajectories were used 
to drive the motion of a constrained rigid body model in OpenSim. First, the model was scaled 
to the participant using a static calibration trial and segment mass and inertia properties were 
assigned based on de Leva (1996). Inverse kinematics (IK) calculations were then performed 
for each frame of motion to find a global optimisation of pose. The resulting joint angles were 
filtered using a low-pass 4th order Butterworth filter, with a cut-off frequency of 6 Hz. Segment 
kinematics and CoM were calculated in OpenSim and exported for analysis in Python 3.10. 
Mechanical work was calculated in line with the methods of Pavei et al. (2017). Total 
mechanical (kinetic and potential) energy of the CoM was calculated at each timepoint and 
increments and decrements across this energy time-course were summed to give the total 
positive and negative Wext respectively. This was repeated using both the pelvis segment (after 
the IK step) (Wpelvis) and the midpoint of the hip keypoints (after the 3D reconstruction and 
smoothing) (Whips) as proxies for CoM, to give approximations for Wext. Wint was calculated 
using the same approach for the energy time-courses of each limb, which were found by taking 
the total kinetic (rotational and translational) energies of segments relative to CoM and 
summing within limbs. The work done by each limb were summed to give Wint. The reduction 
in the maximum forward CoM velocity reached during each sprint to the net was taken as a 
measure of fatigue. This maximum velocity (as a percentage of the player’s overall maximum) 
was correlated (Pearson’s coefficient) against variations of the mechanical work done, as well 
as the TRIMP, that the player had accumulated up until that point of the protocol. Repeated 
measures correlations, with 95% confidence intervals (CI), were calculated across the players. 
 
RESULTS: The players completed 7.8 ± 3.0 cycles of the fatiguing protocol. Maximum CoM 
forward velocities in the baseline sprint test were 6.2 ± 0.3 m·s-1 with reductions of 1.2 ± 0.2 
m·s-1 across the protocol. Repeated measures correlation between maximum sprint velocity of 
each cycle and the cumulative work done was -0.89 (95% CI: -0.94, -0.78) when considering 
just Wext and -0.88 [-0.94, -0.77] when internal work was included, while using the pelvis 
segment origin and the midpoint of the hip keypoints as CoM proxies yielded values of -0.89 [-
0.94, -0.78] and -0.86 [-0.93, -0.72] respectively (Figure 1). For TRIMP, the correlation with 
sprint velocity reduction was -0.86 [-0.93, -0.74]. Results for negative mechanical work were 
almost identical so have been omitted. 
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Figure 1: Maximum sprint velocity of each cycle against cumulative ‘load’ for each player (with 
Pearson’s r). Repeated measures correlation in bottom left corner. Upper left – Positive Wtot 
(crosses and dashed lines) and positive Wext only (circles and solid lines) (correlations the same 
for both). Upper right – Edwards’ TRIMP. Lower left – positive Wpelvis. Lower right – Positive Whips.  
    

DISCUSSION: During the fatiguing protocol, the positive Wtot done by players showed a strong 
association with reductions in maximum-effort sprint velocity. This relationship is comparable 
to the one observed for Edwards’ TRIMP, a well-established measure of internal ‘load’, which 
showed a slightly weaker correlation (Figure 1). This would suggest that mechanical work 
measured with our custom markerless motion capture system is an appropriate indicator of 
fatigue and as such could be implemented as a method for monitoring training ‘load’. As a 
‘load’ monitoring tool, this has the key advantage of being completely non-invasive to players.  
Calculating Wtot requires kinematics of all body segments and is computationally heavy in 
comparison to other possible metrics, such as distance covered or time in velocity zones. 
Therefore, we sought to determine if a simpler approach to estimating mechanical work could 
be sufficient. The first potential simplification was to use only Wext. Full-body pose estimation 
is still required to accurately estimate CoM location, but energies only need to be calculated 
for CoM and not for every segment. In this study, Wint accounted for approximately a third of 
Wtot so it cannot be neglected if an accurate measurement of mechanical work is required. 
However, the similar correlation when using only Wext suggests that this is still enough to 
provide an estimate of player fatigue (Figure 1) and for the application of monitoring training 
‘load’, Wext  therefore appears sufficient. From a practical perspective, it is also more relatable 
to commonly used metrics and is more understandable to coaches and players. 
If using Wext only is sufficient, the next simplification was to use a fixed point as a proxy for 
CoM, to negate the need for the full markerless processing pipeline used in this work. The 
midpoint of the hip keypoints obtained from pose estimation (after 3D reconstruction and 
smoothing) represents a simpler point to track and could represent CoM close enough for this 
application. Whilst the correlation between sprint velocity and cumulative Whips is still strong (r 
= -0.86), the Whips values are an average of six times greater than Wext (Figure 1). This is due 
to very noisy trajectories of the reconstructed hip keypoints, which highlights the importance of 
the IK step in the markerless pipeline and the current limitations of the 2D pose estimator. Until 
the accuracy of sparse point pose estimation improves, this will continue to be a challenge. 

r = -0.88 (Wtot) 
r = -0.89 (Wext) 

r = -0.89 (Wpelvis) r = -0.86 (Whips) 

r = -0.86 (TRIMP) 
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An alternative CoM proxy examined in this study was the pelvis segment origin (after IK). While 
this still requires the full markerless pipeline, it has been used in this work to represent a generic 
fixed point that could be tracked using other means. The values of Wpelvis also overestimate 
Wext (although considerably more accurate than Whips), with similar values to Wtot (Figure 1). 
Using a fixed point on the body is not a good approximation of CoM due to the dynamic and 
irregular movements performed during tennis. However, this appears to be a consistent 
overestimate, with the correlations observed between sprint velocity and Wpelvis comparable to 
those reported for Wext and Wtot. This could still be considered an appropriate indicator of 
training ‘load’ with the acknowledgment that the values of work are not an accurate 
measurement of the work done by the CoM. This would greatly simplify the tracking process, 
with pose estimation no longer required. Future work should explore alternative computer 
vision techniques to track a fixed point on the player. 
A limitation to this study is the controlled and repeated nature of the protocol, with players 
repeating the same drill, and hence doing approximately the same amount of work, during each 
cycle. The standardised protocol was necessary to handle data capture constraints of the 
markerless motion capture system, with long saving times making it impossible to capture the 
whole protocol without unfeasibly long rest periods. The compromise was to only capture the 
third set of each cycle, with the assumption that the work done in each of the three sets would 
be sufficiently similar. In order to comprehensively determine if the simplifications of neglecting 
Wint and using a CoM proxy for Wext are acceptable, this investigation needs to be repeated 
during open play to allow for a greater variety of movements and intensities. 
 
CONCLUSION: Markerless motion capture can be implemented as a tool for monitoring 
training ‘load’ in tennis, with mechanical work providing a suitable metric that is very strongly 
associated with fatigue. Neglecting the internal work and using a fixed point as a proxy for CoM 
can still allow for an acceptable indication of ‘load’, although this should be verified in open 
play. This would allow for simpler data processing compared to the pipeline presented here, 
without the need for pose estimation and inverse kinematics, which would greatly reduce data 
processing times and increase accessibility. A tool of this nature would allow for non-invasive 
‘load’ monitoring from video data and could be implemented in a range of settings, from training 
to competition. It is also possible that this could eventually be achieved in real-time and even 
from broadcast footage, opening up additional entertainment opportunities. 
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