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We estimated lower limb sagittal plane joint moments during treadmill running 
using wearable sensors and different commonly used locations. We compared 
outcomes from supervised recurrent neural network machine learning (ML) models 
to criterion values from motion capture and inverse dynamics. The normalised root 
mean squared error between outcomes from the ML model fed with the entire 
wearable dataset (pressure insoles and inertial measurement units at the foot, 
wrist, T10, and sacrum) was 8.9%, 13.5%, and 18.2% for the ankle, knee, and hip 
joint respectively. Removal of any two upper body sensors did not decrease the 
accuracy of the estimations. This work is a springboard to providing biomechanical 
feedback to runners to help improve performance and minimise injury risk.  
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INTRODUCTION: Lower limb joint moments are a biomechanical metric dependent on both 
the body’s position and the forces being applied during the foot-floor interaction. The calculated 
metric has utility for both performance and injury prevention focused feedback. Typically, joint 
moments are calculated using inverse dynamics, where the Newton-Euler equations are 
resolved for each articulated body segment sequentially (Kingma et al. 1996). Usually, lab 
based optical motion capture and force plates are paired to perform inverse dynamics. More 
recently, several studies have attempted to overcome the inherent limitations of lab-based data 
collection, such as expensive equipment, required technical skillset, and extensive collection 
time, by evaluating the effectiveness of training machine learning models from wearable sensor 
data for the estimation of joint moments (Lee et al. 2022).  

Machine learning models seek to leverage many datapoints that contain both an input signal 
and a target output signal, with the goal of modelling an existing underlying relationship. In the 
current context, data from wearable sensor systems serve as the input with joint moments 
output from inverse dynamics being the target output. Mundt et al. (2020) trained a long short 
term memory neural network (LSTM) using simulated inertial measurement unit (IMU) data 
collected from seven anatomical locations to estimate joint moment signals at the ankle, knee, 
and hip during walking. The trained models had an average Normalised Root Mean Squared 
Error (NRMSE) of 14.8%. Whilst this work showcases the possibility of using such an 
approach, a recent survey of 663 runners found that less than 5% of runners currently wear 
‘body-worn’ sensors other than a wrist-based sensor or heart rate monitor (Clermont et al. 
2019). Therefore, the purpose of this study was to not only evaluate how accurately lower limb 
joint moments could be estimated using wearable sensor signals and machine learning, but 
also to identify how the accuracy of the model changed when using wearable sensor setups 
more acceptable for runners daily training.  

METHODS: Data Collection: 20 healthy runners (7 females) with varying levels of experience 
completed a sub maximal running protocol on a split belt instrumented treadmill (Bertec, OH, 
USA; 1000 Hz). All participants wore the NURVV Run system (NURVV, London, UK), made 
up of a pair of insoles with 16 force sensitive resistor pressure sensors under each foot, and 
an IMU attached to the lateral aspect of the left foot. The pressure sensors collected data at 
1000 Hz to ensure accurate identification of foot contact events, but transmitted data at 50 Hz. 
The IMU was securely fastened to the side of the shoe and collected data at 1125 Hz. An 
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additional three IMU’s (Delsys Trigno, Massachusetts, USA), collecting data at 519 Hz, were 
secured to the wrist, T10, and sacrum using double sided tape and Velcro straps. These 
locations were chosen to reflect common commercial wearable locations, such as a running 
watch, chest heart rate monitor, and the waistband of shorts. Twelve Miqus cameras (Qualisys, 
Gothenburg, Sweden) surrounded the treadmill and collected position data from a full body 
reflective marker set. The treadmill protocol (22 minutes of running) was split into three 
sections: flat (1% gradient, 12 min), uphill (6% gradient, 4 min), and downhill (-4% gradient, 6 
min). During the flat and downhill stages, participants ran at their self-selected easy run speed, 
as well as 10% faster and 10% slower than this pace. During the uphill stage participants ran 
at their chosen easy pace and 10% below this. All participants also ran a flat stage at 12 km/h. 

Data Processing: The Delsys API within Qualisys Track Manager allowed synchronous 
collection of Delsys IMU, treadmill force, and marker data. Data from the NURVV system was 
synchronised with the lab systems by correlating the stride times identified from each system, 
further detail of this method can be found in Carter et al. (2023). OpenSim Software (Stanford, 
USA) was used to perform inverse kinematics and then inverse dynamics, with sagittal plane 
hip, knee, and ankle net joint moments extracted. During this processing, both the kinematics 
and force data were filtered with a low pass Butterworth filter with a 10 Hz cut off. All data were 
segmented into contact periods using a thresholding approach (50 N) to identify initial contact 
and toe-off events. These contact periods were then normalised to 101 data points.  

Data Analysis: The deep learning model used to estimate the net joint moment signals was an 
LSTM, a recurrent neural network that is effective for regression tasks on time series data. As 
input, the model took a matrix of size X-by-101, where X represented the number of input 
features. Before input to the model, each feature was converted to z-scores independently, 
using the training means and standard deviations. The bi-directional LSTM layer had a hidden 
size of 256. The LSTM output vector at each time point was then mapped to a single estimated 
joint moment value by passing it through three linear layers of sizes 512, 256, and 128. Once 
repeated for each time point, the estimated joint moment trace was constructed. Dropout layers 
were added before and after the LSTM layer to avoid overfitting to the training set. A 
‘leaky_ReLu’ activation function was applied to the output of the first two linear layers to add 
additional non-linearity to the model. The RMSE between the moment signal output from the 
inverse dynamics processing and the estimated moment signal output from the machine 
learning model was considered the loss value. The loss was calculated across a batch of 16 
samples (foot contacts) and an ADAM optimiser utilised back propagation of the loss through 
the model to update the model parameters in an attempt to minimise RMSE loss. This training 
process was repeated over three epochs.  

A baseline model was created that utilised all available (47) input features: five discrete 
characteristics (ground contact time, runner body mass, running speed, incline, and insole 
length), a time series signal from each of the 16 pressure sensors in the insole, a signal for 
each of the two dimensions of the centre of pressure trace (calculated from the insole), a signal 
for each of the three dimensions from the accelerometer sensor, and a signal for each of the 
three dimensions from the gyroscope sensor from the IMUs located on the shoe, wrist, sacrum, 
and T10. Three alternative models were then compared to this baseline model; the alternative 
models focused more on the practicality of real-world data collection, utilising data from only 
one of the three upper body IMUs (wrist, T10, sacrum). Each model was evaluated using Leave 
One Subject Out validation (LOSO), where the training is repeated as many times as there are 
participants in the dataset. With each repetition a different participant is left in the validation 
set and the remaining participants (19) make up the training set.  

RESULTS AND DISCUSSION: The baseline model trained on all available input features had 
a NRMSE of 8.9 ± 2.2%, 13.5 ± 4.2%, and 18.2 ± 7.4% for the estimation of ankle, knee, and 
hip moments respectively (mean ± standard deviation) (Figure 1B). Across the participant 
population, there was a large level of variation in the accuracy that the baseline model 
achieved, and this pattern was consistent across all three joint moment estimations. Mean 
NRMSE ranged from 3.5% to 19.9% at the ankle, from 6.1% to 26.7% at the knee, and from 
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7.5% to 36.0% at the hip. The order of the participants from most accurate to least accurate 
remained relatively consistent across the three joints estimated. This could suggest that those 
participants that the models consistently performed poorly on had some characteristics within 
their running style that was not well represented in the data from the rest of the participants. 
One approach to try to remediate the model performing poorly on certain participants could be 
simply by expanding the size of the dataset, thus increasing the variation in the training data, 
either with more collected data or even using data synthesis/augmentation.  

The alternative three models that were trained each included only one of the three upper body 
IMU sensors, included with the intention of evaluating how a more realistic commercial sensor 
setup faired in comparison to the baseline model. Across all three joints estimated, a similar 
pattern was seen; the alternative models occasionally negatively impacted estimation accuracy 
within individual participants, but did not considerably decrease mean performance across all 
participants. This suggests that with the current model architecture and training process, a 
more feasible data collection setup would not necessarily be detrimental for the accuracy of 
lower limb joint estimations. Of the three alternative models tested, the model that just used 
sensor data from the NURVV Run system and an IMU at the T10 (location of a heart rate 
monitor) performed best on average, even slightly outperforming the baseline model with mean 
NRMSE of 8.4%, 12.8%, and 16.9% for the ankle, knee, and hip moments respectively.  

Figure 1A. Bars show the mean Normalised Root Mean Squared Error (NRMSE) for knee moment 
estimation displaying each participant and model type independently, calculated as the RMSE / 
the range of the moment values. Error bars show plus one standard deviation.  
Figure 1B. Box and whisker plot showing the average NRMSE across all participants for each of 
the four models. The solid line within each box represents the median error across all 
participants. The box spans from the 25th to the 75th percentile (interquartile range), and the 
whiskers encompass 1.5× the interquartile range. Participants outside of this range are plotted 
as scatter points. 

Figure 2 shows examples of estimated and measured net joint moment signals for three 
independent foot contacts from different participants and during different running conditions. 
These estimations are output from the baseline model. These examples were chosen to 
illustrate the average level of accuracy that could be expected with the models trained in this 
study.  
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Figure 2: A set of measured and estimated sagittal joint moment signals, chosen based on their 
similarity to the mean error across all participants and trials. The black lines show the measured 
moments (from OpenSim), and the dashed green lines are outputs from the trained machine 
learning models. Ankle: P18, 10.9 km/h, flat Knee: P20, 10.0 km/h, uphill Hip: P3, 14.6 km/h, flat 

Tan et al. (2022) recently trained an LSTM model to estimate knee flexion moment during 
walking using data from eight IMU locations, achieving an average NRMSE of 8.9%. 
 
CONCLUSION: An LSTM model can be used to estimate lower limb joint moments during 
treadmill running when using wearable sensor data as input. The accuracy with which the joint 
moments could be estimated varied considerably between participants. The ≤5% accuracy 
achieved on many of the participants, especially for ankle and knee, could be considered a 
promising springboard for further developing the model, expanding the sample, and eventually 
transferring to overground monitoring and then testing outside a lab. However, the current 
version of the models are still suboptimal for a sub-group of participants. Future work should 
look to improve on the generalisability of the model, ensuring a more consistent level of error 
across different participants and running styles. Another finding in this work was that restricting 
the input to data from fewer upper body wearable sensor locations did not considerably reduce 
the accuracy of joint moment estimation. This suggests that a sensor setup more acceptable 
to runners for regular use, such as a shoe-based system and a heart rate monitor, could be as 
effective as more elaborate and “biomechanics oriented” sensor setups that have been used 
in previous validation studies. A future version of this model could be used to provide 
continuous lower limb joint moment data to a much larger pool of runners. Providing runners 
with this feedback within their typical commercial wearable experience can be used to further 
inform the runner’s understanding of their biomechanical load, aiming to reduce their risk of 
injury and maximise training benefit.  
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