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In this study, we aimed to develop a machine learning algorithm to estimate running 
economy. Inertial sensor, heart rate and participant descriptive characteristics were used 
to estimate running economy by training and comparing five different machine learning 
models. Fourteen subjects performed a VO2max running test on a treadmill with four-minute 
stages. Submaximal running speeds (lactate level < 4 mmol/l) were used to train the 
models. The best-performing model was a k-nearest neighbour regressor, which achieved 
average root mean square error of 0.097 ± 0.059 kcal/kg/km and average mean absolute 
percentage error of 8.7 ± 5.8 % compared to ground truth running economy data. Despite 
reasonably accurate running economy estimates, the model is currently not very 
generalisable, probably due to the small dataset used for training. 
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INTRODUCTION: Running economy (RE) is one of the most important determinants of running 
performance (Moore, 2016). RE describes the energy cost at steady-state running velocities 
and can be measured via oxygen consumption (VO2) or energy expenditure (EE) (Van Hooren 
et al., 2024). Despite the importance of RE in running, there is limited understanding of how it 
is affected by spatiotemporal, kinematic, kinetic, and neuromuscular factors (Moore, 2016). 
Daniels (1985) noted that age, sex, air resistance, body temperature, stride length, weight, and 
running experience all contribute to RE. According to a new meta-analysis, running 
biomechanics can explain 4–12% of the between-individual variation in RE (Van Hooren et al., 
2024). However, it is not possible to identify a single most economical running pattern that 
applies to all individuals (Patoz et al., 2022). 
In recent years, novel technologies such as wearable sensors have been used to accurately 
predict several RE-related biomechanical factors (e.g., Ahamed et al., 2019). A general rule 
for prediction tasks is to start with a linear model and if it cannot accurately fit the data, to use 
a non-linear model. Non-linear models may be more suitable for large datasets with a large 
number of data points (observations) and few features (input variables) (Strang et al., 2018). 
In this work, the aim was to estimate RE using a combination of variables derived from 
wearable inertial sensors, heart rate sensor and participant descriptive characteristics. Since 
we had a small dataset, we tested four linear supervised models (linear regression, stochastic 
gradient descent regressor, support vector regression, k-nearest neighbour regressor (KNR)) 
and a neural network (Chen & Billings, 1992) to find the most optimal linear model for RE 
estimation, and to determine whether a more complex non-linear model was needed. 
 
METHODS: Participants with different sport backgrounds and running experience (including 
casual runners) volunteered for this study (62 overall). Here we used data from 14 randomly-
selected participants (22–44-years-old; 7 males) to test five machine learning models. All 
participants were tested in laboratory conditions. Inclusion criteria were being healthy and no 
injuries or chronic disorders that might affect running technique within 6 months of the 
measurements. The weekly number of kilometres run by participants varied between 0–70 km 
(18.1 ± 22.2). Maximal oxygen consumption (VO2max) was 25.8–52.5 ml/kg/min (39.9 ± 6.8). 
Participants classified themselves as novice (4), enthusiast (6), or goal-oriented enthusiast 
runners (4). Nobody described themselves as a competitive runner. 
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Participants visited the laboratory twice: familiarisation session and VO2max test. The 
familiarisation session included running 3x4min with the same equipment as in the VO2max 
test. In the VO2max session, body mass and height were measured, and participants sat quietly 
for two minutes while resting heart rate (HR) was measured (Polar H10; Polar Electro Oy, 
Kempele, Finland). Five inertial sensors (Xsens Dot, Movella, CA, USA) were attached to the 
sacrum, both shanks and both shoes. Sensor data (3-axis acceleration and angular velocity) 
were sampled at 120 Hz via a Bluetooth connected Android mobile phone. A gas analysis 
mask was placed over the participant’s face to measure breath-by-breath VO2 and production 
of carbon dioxide (VCO2) (JAEGER Vyntus CPX; Vyaire Medical Inc., Illinois, USA). Next, a 
five-minute warm-up was performed at self-selected speed. The VO2max test was performed 
with 4-minute stages at 1 % gradient and incremental speeds (+1 km/h after each stage). After 
each stage the treadmill (OJK-1, Telineyhtymä Kotka, Finland) was stopped for 20–40 sec, 
and a fingertip blood sample was taken (Biosen C-Line -lactate analyser; EKF Diagnostic, 
Madgeburg, Germany). The test was continued until the participant chose to stop or couldn’t 
maintain the speed. Participants estimated their weekly running kilometres by answering the 
following question: “On average, how many kilometres do you run in a week?” 
RE was estimated only for submaximal speeds between the aerobic and anaerobic thresholds 
of each participant (Daniels, 1985; Van Hooren et al., 2024). Thresholds were determined 
based on the lactate values measured during the VO2max test. Aerobic threshold was set at 
0.3 mmol/l above the lowest lactate value during the test (Vesterinen et al., 2016). For 
anaerobic threshold (Faude et al., 2009), 4 mmol/l was used for all participants. Across all 
participants, aerobic threshold was 8.9 ± 1.7 km/h and anaerobic threshold was 11.4 ± 1.7 
km/h. Thus, speeds in the range 7–14 km/h were used. Each speed was normalised to the 
speed of anaerobic threshold (Fletcher et al., 2009). In accordance with the findings of Daniels 
(1985) model inputs included speed, sex, age, body mass, height, and weekly running 
kilometres. Resting heart rate (HR) and HR were also used as input variables indicative of 
training status (Buchheit, 2014). To incorporate technique information, we also included 
cadence (Van Hooren et al., 2024) and peak, minimum and standard deviation of 3-axis 
acceleration and 3-axis angular velocity signals of all inertial sensors. The predicted target 
variable was RE expressed as kcal/kg/km. 
To calculate RE, the gas exchange data were first averaged from the last minute of each 
running stage (this method was also used to average HR) (Robergs et al., 2010). Then EE 
(kcal/min) was estimated as: VO2 (l/min)*(1.2064*RER+3.8455), where RER=VCO2/VO2 
(McArdle et al., 2001, pp. 187-200). Finally, RE was calculated as EE*60/body mass/speed. 
Resting HR was calculated by finding the lowest 15 second average during sitting. Acceleration 
and angular velocity signals (one minute from the end of each stage after deleting the last 10 
seconds to avoid errors caused by participants preparing to stop) were filtered using a fourth 
order low-pass Butterworth filter with 16 Hz cut-off frequency. Data were divided into individual 
stride cycles based on right foot initial contact events (IC). The ICs were identified by finding 
peaks in the resultant acceleration using the following rules: a minimum resultant acceleration 
of 50 m/s2 and a minimum duration of 500 ms between estimated consecutive ICs (Donahue 
& Hahn, 2022). The peak, minimum and standard deviation values for each signal and each 
sensor were calculated from the average stride cycle signals. Right and left foot IC’s were used 
to determine cadence (strides/min): number of IC’s-1/duration between first and last IC in 
signal. The average value of right and left foot cadence is reported. 
Python3 with sklearn-library (Pedregosa et al., 2011) was used to build linear models and 
Keras 2.7 deep learning API (Chollet et al. 2015) was used to build a multiple layer neural 
network to estimate RE. Data included 43 observations from 14 participants (2–4 observations 
each, speeds between aerobic and anaerobic thresholds). Data were divided into train and test 
sets using leave-one-subject-out (14 rounds, 14 trained models), so that each participant’s 
data only featured in the train or the test set at one time. Input data were normalised between 
0 and 1 using the MinMaxScaler from Python’s sklearn-library (Pedregosa et al., 2011). After 
manually testing the different hyperparameters, the default options were used for linear 
models. For the neural network, the following parameters were used: optimizer=adam, 
loss=mae, metrics=mae, layers=3, batch sizes=512,512,1, activation=relu. Root mean square 
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error (RMSE) was used to indicate the absolute error of each model and mean absolute 
percentage error (MAPE) was used to indicate relative error. 
 
RESULTS: Across all models, average RMSE and MAPE varied between 0.097–0.203 
kcal/kg/km and 8.7–17.0 % respectively. The lowest RMSE and MAPE were found for KNR, 
with an average RMSE of all leave-one-subject-out submodels (Table 1) of 0.097 ± 0.059 
kcal/kg/km, and average MAPE of 8.7 ± 5.8 %. 
 
Table 1: The accuracy of the separate KNR submodels. For each submodel, 13 participants’ 
data were used for training and one participant’s data for testing. 

Submodel RMSE (kcal/kg/km) MAPE (%) 

1 0.054 ± 0.004 4.7 ± 0.3 
2 0.100 ± 0.030 8.6 ± 2.7 
3 0.114 ± 0.040 10.3 ± 4 
4 0.148 ± 0.062 14.0 ± 6.6 
5 0.201 ± 0.032 15.6 ± 2.3 
6 0.094 ± 0.010 8.9 ± 0.8 
7 0.029 ± 0.017 2.4 ± 1.7 
8 0.047 ± 0.028 3.9 ± 2.9 
9 0.161 ± 0.039 12.9 ± 3.2 
10 0.055 ± 0.021 4.7 ± 2.0 
11 0.062 ± 0.002 6.0 ± 0.1 
12 0.049 ± 0.009 4.6 ± 0.9 
13 0.173 ± 0.041 19.2 ± 5.6 
14 0.063 ± 0.008 6.0 ± 0.8 

 

 
Figure 1: Measured and estimated RE (with the KNR model) for all participants and speeds. 

 
DISCUSSION: KNR was the most accurate of the tested supervised-learning models. 
However, the RMSE and MAPE showed large variation between the different submodels, 
implying that the model cannot yet be generalised across runners of different levels. 
Nonetheless, the average RMSE and model behaviour across different speeds (Figure 1) 
suggest that KNR provides reasonably accurate estimates of RE. 
Compared to using only body mass, the use of RER, speed, and body mass to express RE 
(together with VO2) results in models that are less sensitive to varying speeds and energy 
substrate use. In future, one clear improvement would be to subtract resting or standing energy 
expenditure from the RE values before training the model. During data preprocessing and 
model training, it was evident that small changes in input data affected the accuracy ranking 
of different types of algorithms. This may be because of the simplicity of the tested approaches. 
We also found that alterations made during data preprocessing affected the resulting model 
accuracy, which may indicate overfitting, likely due to the dataset being too small. 
The study includes some limitations. Firstly, since the default options for hyperparameters were 
used, with optimum hyperparameter tuning, the best performing model could change. 
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Predictive models need information about the running speed at anaerobic threshold, which we 
determined at a lactate level of 4 mmol/l. When using 4-minute running stages, it is possible 
that individual maximal steady state lactate levels are higher than 4 mmol/l (Faude et al., 2009). 
In addition, we did not verify whether steady state HR, VO2 and lactate levels were reached at 
all stages that were used to train and test the models. Finally, gas analysis devices inherently 
include some measurement error. These factors may all have contributed to errors in model 
predictions. 
 
CONCLUSION: Considering the small dataset used here, our results suggest that KNR is a 
promising approach for predicting RE when combined with physiological and movement data. 
Although model accuracy was very sensitive to changes in input features, the addition of more 
data may lead to further improvements. From a practical perspective, the developed algorithm 
could potentially be a tool for runners and coaches to estimate RE at constant speeds, allowing 
training to be monitored without expensive equipment. 
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