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The purpose of this study was to provide athletes/coaches with an easy-to-implement 

estimate of the power of standing long jump (SLJ), recognized as an indicator of the ability 

of lower limbs of exert power. To this aim, inertial sensors embedded in smartphones were 

used. A sample group of 150 trained young participants was recruited and asked to perform 

the SLJ task while holding the smartphone. A set of features was identified, based on 

biomechanical knowledge and literature, and then selected through Lasso regression to be 

feed as input of three different optimized machine learning architectures to estimate the 

SLJ power. A Multi-Layer Perceptron Regressor was selected as best performing model 

and showed, in the test phase, a RMSE of 0.37 W/kg. This smartphone-based estimate, if 

compared to an average power of 1.8 W/kg, represents a reasonable approximation. 

KEYWORDS: SLJ, inertial sensors, regression, machine learning, performance.

INTRODUCTION: The standing long jump (SLJ) is a sports-related movement widely used for 
several aims since it entails a dominant horizontal propulsion, often crucial in determining 
performance. Among those aims there is the assessment of anaerobic power (Almuzaini & 
Fleck, 2008; Mann et al., 2021). Despite its wide potential, all these studies were limited to the 
simple and ecological evaluation of the jumped distance (meter-based) and only few studies 
characterized the power of the jump using laboratory instrumentation (Harry et al., 2021; 
Hickox et al., 2016; Mackala et al., 2013; Szerdiová et al., 2012; Wu et al., 2012). Laboratory-
based measures are not applicable in the field and require expert operators.  
As an affordable and practical alternative to commercial inertial measurement units (IMUs) and 
laboratories, applications based on IMUs embedded in smartphones (SPs) are being 
developed to provide coaches with low-cost information on jump performance. These sensors 
were not developed specifically for biomechanical analysis, and do not always satisfy the 
required specifications, such as high sampling frequency or appropriate full-scale range. 
Nevertheless, useful information can be retrieved overcoming these drawbacks through 
predictive approaches. While machine learning (ML) was used to estimate SLJ length (De 
Lazzari et al., 2023), counter-movement jump (CMJ) height (Mascia et al., 2023) and power 
(White et al. 2022), for the estimate of SLJ power a stepwise multiple regression model 
predicting only total power based exclusively on anthropometric features and jumped length 
was proposed (Mann et al. 2021). Data from the jump execution and details along the 
anteroposterior (AP) direction are still lacking. 
The aim of this work is to use IMUs embedded in smartphones to estimate the mean SLJ power 
along the AP direction considering an ML approach, that can be easy used and understood by 
trainers. To this aim, non-categorical biomechanical features related to the jump technique and 
intrinsic anthropometric characteristics are used as tools to train and test selected ML 
architectures, allowing interpretability of the proposed ML solution. Biomechanical variables 
were selected based on two assumptions: i) in the preparation phase, the SLJ vertical 
acceleration is similar to that expressed during a CMJ, since both jumps entail an eccentric 
and a concentric phase, although involving different muscles coordination; ii) in the flight phase, 
the origin of the sensor coordinate system follows a parabolic trajectory. Three ML models 
dedicated to regression analysis were selected, trained, optimized, and tested to this aim. 
 
METHODS: One hundred fifty physically active healthy sports science students were recruited 
as participants (75M, 75F; mean ± SD: age = 22.3 ± 4.7 y; stature = 1.75 ± 0.12 m; mass = 
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67.7 ± 10.9 kg). Individuals who had undergone either lower limb surgery or an injury in the six 
months prior to the experiments were excluded from the study. All participants signed an 
informed consent prior to the tests. The study was approved by the Institutional Review Board. 
Participants were equipped with an SP held horizontal with the screen pointing laterally in their 
right hand (Samsung Galaxy S9+, Samsung Group, Seoul, South Korea; 500 samples/s; full 
scale range: ± 8g; ± 500 deg/s). SP-IMU data were collected using the app Phyphox (Staacks 
et al., 2018), remotely controlled through the laboratory PC. SP-IMU calibration was performed 
before each experimental session. Afterwards, each participant performed a series of 3 SLJ: i) 
keeping the upright position for 3 s with hands on the hips, feet in parallel stance, and heels 
positioned at the zero of a meter tape; ii) jump forward as triggered by a vocal command; iii) 
regain the upright static position and keep it for 3 s. The jump was considered correct if the 
participant kept the equilibrium after landing without additional steps, keeping the feet in the 
parallel stance position and the arms still. Jumps were executed with the left hand on the hip 
and the right one near to the hip while firmly holding still the SP, which was observed to undergo 
negligible rotation from onset to take-off. Participants jumped over a force plate (AMTI, 
Watertown, Massachusetts, USA; 1,000 samples/s; size= 40×40 cm) which allowed to 
calculate the gold-standard mean power in antero-posterior (AP) direction (PAP,mean) using 
Newton’s laws. Power was averaged from the jump onset to take-off. Onset was obtained as 
30 ms prior deviating by 8 times the standard deviation of the static phase; take-off was 
obtained as the first frame such that aV ≤ −g. 
Data preparation of the SP-IMUs considered the following steps: the calibration before each 
experimental session, the correction of their offset and cross-axis sensitivity according to 
(Bergamini et al., 2014) and a subsequent consistent gravity removal. Vertical (aV) and 
anteroposterior (aAP) acceleration components were expressed into a global coordinate system 
under the hypothesis that the SP was kept parallel to the plane of movement, i.e. without yaw 
corrections (Rantalainen et al., 2020), and then considered for further computations after a 
low-pass Butterworth filter at 50 Hz. Vertical (vV) and anteroposterior (vAP) velocities were 
calculated through the numerical integration of the corresponding acceleration signals from the 
onset to the take-off instants. 
Sixty-one features were extracted including age, height, mass of the participant and jump 
length, measured as heel-to-heel distance. The remaining features were extracted from the 
preparation phase of the above-mentioned accelerations and velocities, further segmented into 
eccentric and the concentric subphases in accordance with (Harry et al., 2021; McMahon et 
al., 2018) and similarly to what used for the estimate SLJ length (De Lazzari et al., 2023). 
A final dataset of 450 jumps x 61 features was made available to estimate the dependent 
variable: PAP,mean normalized with respect to the mass of the participant (Pap,mean/mass). This 
dataset was divided into two subsets: 80% (120 subjects, 60 M and 60 F, 360 jumps) was used 
as training set, the remaining 20% (30 subjects, 15 M and 15 F, for a total of 90 jumps) was 
used as test set. This separation was entrusted to a randomization algorithm that provided an 
equal distribution of both males and females in training and test sets. The independency of the 
subsets was granted by allocating examples belonging to the same subject to the same subset. 
Feature reduction was performed through Lasso regularization on the normalized training set 
with α = 0.1 as regularization strength value, to avoid possible multicollinearity among features 
(Tibshirani, 1996). Only the features selected by such a shrinkage were used to develop the 
ML model and imported into JupyterLab for model development. 
The following regressive models were tested, using the related Python functions: 
RandomForestRegressor (RFR), chosen because it’s a simple network that could be 
implemented in a smartphone application; GaussianProcessRegressor (GPR) and 
MLPRegressor (MLPR), chosen as former good solutions to similar problems (De Lazzari et 
al., 2023; Mascia et al., 2023). The three networks were optimized by grid search 
hyperparameter optimization algorithm. To avoid leakage of data and have a robust optimized 
model: (i) the GroupKFold (with K=5) cross-validation was applied during the grid search to 
guarantee the separation of subjects in the folds and (ii) the PowerTransformer function was 
used inside GridSearchCV to correctly normalize every time the subsets in the fold. The 
hyperparameters optimised through GridSearchCV are reported in Table 1. 
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The best hyperparameters were selected using the mean absolute error as criterion. The test 
set was normalized with respect to the values of the training set and then used to make 
predictions. Metrics used to assess the quality of the model were: mean squared error (MSE), 
root mean squared error (RMSE), mean absolute error (MAE) and R2. 
 
Table 1: Screened and optimal values for the selected hyperparameters in GridSearchCV for 
RandomForestRegressor (RFR), GaussianProcessRegressor (GPR), MLPRegressor (MLPR). 

Regressor Hyperparameters Screened Values Optimal values 

RFR 

‘max_features’ 
‘n_estimators’ 
‘criterion’ 

{'sqrt', 'log2', None} 
range(100,300) 
{'squared_error', 'absolute_error', 
'friedman_mse', 'poisson'} 

None 
230 
'poisson' 

GPR ‘kernel’ 
‘alpha’ 
‘optimizer’ 

{RBF, RBF+Constant} 
range(10-13,1-9) 
{‘fmin_l_bfgs_b’, None} 

RBF+2**1 
10-10 
‘fmin_l_bfgs_b’ 

MLPR ‘activation’ 
‘alpha’ 
‘learning_rate’ 
‘solver’ 
‘hidden_layer_sizes’ 

{'identity', 'logistic', 'tanh', 'relu'} 
range(10-8,10-3) 
{'constant','adaptive','invscaling'} 
{'adam', 'sgd'} 
one hidden layer with units with 
range(1,50) 

'identity' 
10-6 
'invscaling' 
'adam' 
49 

 
RESULTS AND DISCUSSION: Pap,mean/mass of the 450 analysed jumps (1.8 ± 0.7 W/kg)  ranged 
from a minimum of 0.34 W/kg to a maximum of 3.79 W/kg, with a jumped distance (1.74 ± 0.33 
m) ranging from 0.86 m to 2.6 m.  
Fifty features out of 61 were selected by Lasso regularization, including the jump’s length, most 
biomechanics features and all the anthropometric ones. They were used as input of the model. 
The optimized hyperparameters are reported in Table 1, while Table 2 summarises the 
performance of the tested models. Consistency between train and test phases of R2 values, 
considered as most informative metric for regression models following (Chicco et al., 2021), 
show that both MLPR and RFR are more stable than GPR. Among the two, the MLPR was as 
selected as best performing model and showed, in the test phase, a RMSE of 0.37 W/kg. This 
smartphone-based estimate, if compared to an average power of 1.8 W/kg, represents a 
reasonable approximation. 
 
Table 2: Metric values obtained during the cross-validation phase (the mean values over the 
folders are reported for each metric) and in the test phase of the three regression models. 

Metric CVmean,RFR TestRFR CVmean,GPR TestGPR CVmean,MLPR TestMLPR 

MSE [(W/kg)2] 0.11 0.15 0.15 0.21 0.11 0.13 

RMSE  [W/kg] 0.33 0.39 0.39 0.46 0.33 0.37 

MAE     [W/kg] 0.26 0.32 0.30 0.37 0.26 0.31 

R2 0.72 0.72 0.64 0.62 0.74 0.74 

 
The quality of the regressor cannot directly be compared to the single one available by Mann 
et al. (2021) which focused only on total power and on a more specific and smaller population, 
58 football players from NCAA Division IA program. While total power remains to be assessed, 
it can in general be speculated that including biomechanical features as inputs to the model 
may lead to improved results. 
The level of physical activity of the selected healthy sports science students ranged from 
recreational to National interest. This range was welcomed as an opportunity to develop a 
model to be applied in several contests. Indeed, based on the test R2 values, the selected 
model can be applied to a wide range of jumped distances and related power. However, further 
analyses are warranted to test if the model could lead to improved estimates if developed 
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separately for different jump lengths or athlete’s expertise. Moreover, only ML regressors were 
included in this preliminary analysis. Improved results could be obtained with different 
architectures. 
 
CONCLUSION: This study identified an opportunity to estimate the mean power along the 
direction of the jump out of the laboratory with an approach understandable by coaches and 
trainers. This solution could lay the basis for an improvement of the performance of athletes 
giving more information about the task, that could be implemented into a smartphone app: 
implementing this solution, an estimate of the power and a relation with key biomechanical 
features could be provided to coaches to improve performance.  
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