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Field-based methods to assess external kinetics are essential for regular biomechanical 
monitoring. The aim of this study was to examine the accuracy of ground reaction forces 
(GRF) estimated from segmental kinematics, measured with a markerless motion-capture 
system (OpenCap) during jumping. Full-body segmental kinematics were recorded for 
fifteen athletes during countermovement, squat, and drop jumps, and used to estimate 
vertical GRFs with a mechanics-based method. Across jumps, bias and limits of agreement 
were acceptable (<15%) for 23 and 22 GRF variables, respectively. Within-athlete changes 
between arm-swing or leg-dominance conditions were adequately detected for multiple 
GRF variables. These findings show that a low-cost markerless motion-capture system 
(OpenCap) may be used to estimate and assess force variables of interest in field settings. 
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INTRODUCTION: Performance testing and injury-risk screening are important components of 
athlete monitoring (Thornton et al., 2019). Both performance and injury-risk assessments 
typically involve the examination of loading patterns during controlled jumping movements 
(e.g., countermovement or drop jumps), to facilitate sport-specific decision-making. Although 
such assessments have traditionally been performed in biomechanics laboratories, using 
motion-capture systems and force platforms, this lab-based approach can be costly, time-
consuming and limits the frequency of athlete screening. Alternative solutions, such as portable 
force platforms, can be used as low-cost options for regular assessment of ground reaction 
forces (GRFs) in the field, but do not allow for evaluating and monitoring kinematics. Low-cost 
and field-viable methods that can simultaneously measure GRFs and whole-body kinematics, 
are, therefore, desirable to further enhance field-based biomechanical assessments (Verheul 
et al., 2020). 
Markerless motion-capture technologies (e.g., OpenCap, Theia 3D) offer a viable alternative 
to traditional marker-based systems to collect whole-body kinematics non-invasively. Recent 
work has shown that machine-learning approaches can estimate GRF profiles during sports 
movements from motion-capture data (Johnson et al., 2018; Mundt et al., 2023). However, 
examining the underlying kinematics that contribute to the GRF profiles estimated from 
machine learning is not straightforward. Mechanics-based methods, in which the direct 
relationship between kinematics and kinetics is used (e.g., F=m∙a), are thus preferable to allow 
for examining the kinematic-kinetic relationship (Verheul et al., 2019). However, if markerless 
measured kinematics can be used to accurately estimate GRFs with such a mechanics-based 
approach is currently unknown.  
A mechanics-based method to estimate GRFs from markerless motion-capture data during 
jumping movements can 1) provide a low-cost alternative to jump testing with force platforms, 
and 2) provide additional kinematic information to identify performance- and/or injury-related 
parameters. The aim of this study was, therefore, to validate the accuracy and usability of GRF 
profiles estimated from segmental kinematics, measured with a low-cost markerless motion-
capture system, during common jumping movements. 
 
  

958

42nd International Society of Biomechanics in Sports Conference, Salzburg, Austria: July 15-19, 2024

Published by NMU Commons, 2024



METHODS: Fifteen injury-free recreational athletes from various sports backgrounds 
participated in this study (nine males, six females; age 22.4 ± 3.6 yrs; height 1.75 ± 0.07 m; 
body mass 77.9 ± 12.6 kg). Athletes performed countermovement jumps, squat jumps, bilateral 
drop jumps, and unilateral drop jumps (dominant and non-dominant leg) – i.e., common 
performance testing and injury-risk screening jump movements. Each jump was performed 
three times under two conditions, either with or without an arm swing.  
Full-body kinematics were recorded in OpenCap (Uhlrich et al., 2023; v.0.2) sampling at 240 
Hz and a ground-embedded force platform (Kistler 9287CA, Kistler, Switzerland) sampling at 
1000 Hz recorded GRFs. The OpenCap setup consisted of three tripod-mounted iPads (iPad 
Pro, Apple, USA) placed around the jump collection area (at ~3.5 m). Videos were recorded, 
uploaded, synchronised, and processed in the online OpenCap server. Full-body three-
dimensional kinematics were determined using the standard OpenPose pose-estimation model 
and twenty-two-segment full-body musculoskeletal model (Lai et al., 2017). OpenCap data, 
including inverse kinematics results and athlete-specific model properties, were downloaded 
and exported to MATLAB (R2022a, MathWorks, USA) for processing and analysis. 
Vertical positions of each segment centre of mass were filtered at 4 Hz, using a 2nd-order 
lowpass Butterworth filter, before double differentiating with respect to time, to calculate the 
vertical segmental accelerations. The product of vertical accelerations and masses 
(percentage of total body mass) for each of the twenty-two segments were then summed to 
estimate the total vertical GRF profile (Verheul et al, 2019), according to: 
 

𝐺𝑅𝐹𝑣 =∑𝑚𝑗 ∙ (𝑎𝑣,𝑗 + 𝑔)

22

𝑗=1

 

in which 𝐺𝑅𝐹𝑣 is the vertical GRF estimated from segmental kinematics, 𝑚𝑗 and 𝑎𝑣,𝑗 are the 

mass and vertical acceleration of each segment j respectively, and g is the gravitational 
acceleration (9.81 m∙s-2). Force variables that are commonly used to assess performance, 
fatigue, or injury risk (Bishop et al., 2022), were extracted from the measured and estimated 
GRF profiles, and used for validation purposes. Relevant force variables were determined for 
the propulsive and landing phases (duration, peak/mean force, impulse, time to take-
off/stabilisation), and the jump (flight time and jump height). 
Bias and limits of agreement were calculated as a percentage difference from the measured 
GRF values, to assess agreement and interchangeability (Bland and Altman, 2010), 
categorised as: 1) good accuracy for regular performance or injury monitoring (<5%); 2) 
sufficiently accurate, likely to provide valuable performance or injury feedback, but caution 
warranted (5-15%); 3) unlikely to be sufficiently accurate for reliable testing and screening 
purposes (>15%). In addition, the within-athlete changes between arm-swing conditions and 
leg dominance were compared for selected GRF variables with a bias <15% – both for 
measured and estimated values. A between-condition change was defined as a difference 
larger than the limits of agreement for a GRF variable. If a between-condition change was 
found for the measured but not the estimated values, this was deemed a false negative. If no 
between-condition change was found in the measured GRF variable, but estimated values did 
show a change, this was deemed a false positive. 
 
RESULTS: After visual inspection of the OpenCap videos a total of 34/450 trials (7.6%) were 
discarded due to poor OpenCap inverse kinematics results (e.g., physiological impossible 
orientations of segments). Hence, a total of 416 trials were included in the analysis.  
A total of six and seventeen GRF variables were estimated with a bias <5% or 5-15% 
respectively (Figure 1). Limits of agreement were <5% for three variables, and 5-15% for 
nineteen variables across movements. 
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Figure 1: Bias and limits of agreement between measured and estimated vertical ground reaction 
force variables for four jumping movements. Circles/green, squares/amber, and triangles/red 
represent respective bias/limits of agreement of <5%, 5-15%, or >15%.  
 
For the selected force variables with a bias <15%, estimated values adequately described the 
direction of change (i.e., increases or decreases) between arm-swing or leg-dominance 
conditions. Between-condition changes were correctly estimated with OpenCap for 87-93% 
(countermovement jumps) and 80-93% (unilateral drop jumps) of the participants (Table 1). 
 

Table 1: Within-athlete changes between jumping conditions for six selected GRF variables 

Countermovement jumps Unilateral drop jumps 

propulsive phase – impulse 87% (1FP; 1FN) 1st landing – impulse 93% (1FN) 
propulsive phase – mean 
force 

93% (1FN) 2nd landing – duration 80% (1FP; 2FN) 

time to take-off 87% (1FP; 1FN) time to stabilise 93% (1FP) 

Percentage of true within-athlete changes detected. FP=false positive, FN= false negative. 
 
DISCUSSION: In this study, we show that an acceptable accuracy level can be achieved for 

GRF variables estimated from markerless-measured segmental kinematics, across different 

jumps. We show that several estimated force variables can adequately detect within-athlete 

changes in force variables between arm-swing conditions or leg dominance.  

Across jumps, bias or limits of agreement were <15% for, respectively, 58% and 55% of all 

GRF variables. Especially propulsive phase characteristics of the countermovement and squat 

jumps were estimated most accurately (Figure 1). Since the propulsive phase is often used for 

performance and fatigue assessments (Bishop et al., 2022) the presented method may best 

suit those purposes. Together with previous work that used markerless kinematics to estimate 

GRFs for jumping (Colyer et al., 2023), these results are promising for the implementation of 

markerless motion capture in everyday athlete-monitoring practice. Improvements in capturing 

high-frequency GRF variables (e.g., landing force) can further enhance overall accuracy. 
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We found that markerless estimated force variables could assess changes within athletes 
between slight adjustments in jumping conditions (arm swing or leg dominance) for most 
athletes (Table 1). This ability to detect subtle within-athlete changes is essential for the 
method to be usable for screening and monitoring purposes. For example, subtle alterations 
in force output during the propulsive phase or increased limb asymmetry in the ability to 
stabilise after a landing can be important indicators of performance and potential risk of injury 
(Young et al., 1995). Our results, therefore, indicate that GRF variables estimated from 
OpenCap can form a viable alternative to force platforms for assessing changes in 
performance, fatigue, or injury risk.  
We examined several force variables that are of interest for monitoring performance or injury 
risk. Further analysis of other GRF characteristics can be performed, depending on individual 
requirements. Moreover, the presented method allows for analysing force together with 
underlying segmental kinematics. Depending on the body part of interest, individual segmental 
contributions to the GRF can be analysed and movement alterations related to relevant GRF 
characteristics can be identified. Since OpenCap is part of a modelling framework (OpenSim), 
this approach also allows for estimating muscle and joint-specific loads (e.g., joint moments, 
muscle-tendon forces). Together these abilities provide novel opportunities for low-cost field-
based assessments of biomechanical loading across the levels of the musculoskeletal system. 
 
CONCLUSION: This study shows that several GRF variables can be estimated with 
acceptable limits of accuracy and can effectively reveal the within-athlete changes in GRF 
variables between jumping conditions. Markerless motion capture with OpenCap can thus be 
used to estimate GRF profiles during common jumping movements and monitor force variables 
of interest efficiently, regularly, and extensively in field settings. 
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