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This study presents a marker-less vision system that measures joint angles of table tennis 
players and relates them to the moment in which the racket hits the ball. AI plays a key role 
in the present setup: human body skeletonization is executed by the Mediapipe framework 
and a custom trained YOLOv8 network is used to track the position of the ball. The system 
was tested on ten male participants using two GoPro Hero 10 cameras, placed in front and 
on the right side the players. Intraclass correlation coefficient was used to compare the joint 
angles measured from the two cameras, suggesting that performing a weighted average of 
the measured angles is necessary to increase the reliability of the system.  
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INTRODUCTION: Motion analysis in sport offers valuable insights into how to improve 
technique, prevent injuries and enhance performances for athletes of all levels. Nowadays, the 
most common solutions to collect motion analysis data are marker-based motion capture 
systems (Rigozzi et al., 2023; Xu, 2024) and inertial measurements units (IMU) (Keskinoğlu et 
al., 2023). The review presented by (Rigozzi et al., 2023) focuses on racket sports, where 
motion analysis is used to compare similarities and differences of players at different playing 
levels, to evaluate variability in racket, upper limb and joint movement patterns and to describe 
movement differences associated with different ball spin levels. In particular, in table tennis, 
motion analysis is relevant to understand how the upper body joint angles change when the 
racket hits the ball according to the different ball speed and rotations (i.e. during forehand and 
backhand topspin strokes) (Wong et al., 2020). Several studies explore this topic using data 
provided by IMUs or marker-based vision systems (Bańkosz & Winiarski, 2017, 2020; Xia et 
al., 2020). The setups of both of them are expensive and require the subject to wear markers 
or sensors that require field work and, however small, can limit movements and affect 
performance evaluation. Tracking the human body movement in a completely non-intrusive 
way and without any additional cost is possible through the use marker-less based vision 
system, such as Mediapipe Pose (Bazarevsky et al., 2020), an AI-based framework provided 
by Google, able to recognize 33 body landmarks on the RGB image and infer their coordinates 
in the real world reference, as shown in Figure 2. The reliability and validity of Mediapipe is 
proven by (Latreche et al., 2023), which uses intraclass correlation coefficient (ICC) (Fisher, 
1925) to compare the joint angles measured by Mediapipe with respect to those obtained by a 

 
Figure 1: Flow Chart of the algorithm applied to identify the joint angles position at the 

moment of impact. In italics the operations, in roman the data 
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manual goniometer. The current paper describes the architecture of a marker-less based vision 
system for motion analysis in table tennis. The primary objective of the project is evaluating 
the feasibility of the setup, which focuses on the easy-to-use principle aiming to ease the field 
work for coaches and to remove burden to athletes. The setup consists of only two cameras 
collecting videos that are then elaborated by two AI based algorithms: the human body 
skeletonization (executed by Mediapipe) and the ball position tracking performed by a custom-
made vision system based on YOLOv8 (Terven & Cordova-Esparza, 2023). 
 
METHODS: Ten male participants (23.6 ± 4.8 years, 172.2 ± 3.6 cm, 60.3 ± 10.3 kg) were 
recruited for the study. Prior to participation, all individuals provided a consent form approved 
by the Research Ethics Committee of the Faculty of Design at Kyushu University (approval 
number: 541). All participants were provided with the same table tennis racket, the Butterfly 
Stayer 2000 (Tamasu Co., Ltd., Japan), and used standard 40 mm Tigora table tennis training 
balls. Participants were tasked with successfully returning the ball to the opposite court. They 
were allowed to choose between forehand and backhand strokes for their returns. Each 
participant was required to complete 10 sets, with each set comprising 12 ball serves delivered 
by a table tennis training machine (CTR-18S, Sakurai Co., Ltd., Japan). The participants 
performed a synchronization movement waving their arm at the beginning and the end of every 
recording session to facilitate the synchronization of the two videos using cross-correlation. 
The system was conceived to work in a gym environment. The tests were conducted in normal 
training conditions without any specific light condition to facilitate ball recognition or body 
tracking. The only requirement for the camera is to frame the face of the participant to facilitate 
Mediapipe in the skeletonization phase. Two GoPro Hero 10 cameras, collecting frames at 240 
Hz, were placed in the front and on the right side of the participants at approximately 1 m. 
A custom-made algorithm, briefly illustrated in Figure 1, was used to measure the joint angles, 
angular speeds and accelerations and to correlate them to the moment of impact between 
racket and ball. First of all, the position of the ball was tracked using the videos collected by 
the camera on the right side of the participant. The xy position of the ball were obtained by a 
custom-made vision system based on YOLOv8 (Terven & Cordova-Esparza, 2023) 
architecture. The x-coordinate was used to define a linear polygonal chain using Windowed 
Linear Least Squares Method. A vertex of the chain (where the slope inverts) indicated that 
the ball changed direction. This moment was considered as the moment of impact with the 
racket. Secondly, the human body skeletonization was obtained using the videos collected by 
both the cameras. The positions of the landmarks in real world coordinates obtained by 
Mediapipe were moved in a new reference frame, as shown in Figure 2, placed in the middle 
hip of the player, with v-axis pointing upward, w-axis pointing to the right and u-axis on the 
common line perpendicular to the v-axis and w-axis, as suggested in (Wu et al., 2005). It was 
consequently possible to compute the angles listed in Table I for the data obtained by the 
camera placed on the front and on the right side of the 
participant. When the distance between the landmarks defining 
the angle decreased, the angular value was different from the 
expected one. Consequently, the accuracy of the angular 
values was sensitive to the orientation and the distance of the 
player with respect to the camera, which changed during the 
execution of the movements. Therefore, the final angular value 
was obtained using a weighted average. The weights were 
computed as the minimum of the distances (expressed in 
pixels) between the two couples of landmarks defining the 
angle, as shown in the equation that follows. 

𝑤 = min(√(𝑥𝑎 − 𝑥𝑏)
2 + (𝑦𝑎 − 𝑦𝑏)

2, √(𝑥𝑏 − 𝑥𝑐)
2 + (𝑦𝑏 − 𝑦𝑐)

2) 

Once computed the joint angular position, the signals were 
averaged over time with a sliding window of amplitude 0.2 s. 
Next, intraclass correlation coefficient (ICC) (Fisher, 1925) was 
used to assess the consistency between parameters computed 

 
Figure 2: Reference frame 
placed in the middle hip. In 
brown the right side of the 

participant, in green the 
left side of the participant 
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by front camera and right side camera. This evaluation was crucial for determining the accuracy 
of angle representation and assessing the necessity of implementing a weighted average for 
improved precision. 
 
RESULTS and DISCUSSION: Since the current stage of the project only aimed to assess the 
feasibility of the system and not its validation, no ground truth data was collected. The ICC 
values, computed using all the data points available in the 100 tests (10 tests for 10 
participants) for a total of 1366894 data points, are shown in Table II. Comparing these values 
for the right and left sides of the body, the ICC is higher for the right side of the body. This can 
be justified considering that the cameras were placed in front and on the right side of the 
participant and not on the left side, therefore the left side angles were more difficult to be 
detected. Values of ICC lower the 0.81 suggest that the use of the weighted average is 
necessary. Figure 3 shows the right shoulder angle when executing five times a flexion 
extension in the sagittal plane for the full range of motion. In the first three times (from 55 s to 
60 s), the participant was looking at the front camera, showing his side to the camera placed 
on his right (as shown in the two pictures on the left). The low peaks of the side weights (green 
line in the bottom graph, highlighted in green) happened when the arm-torso angle is close to 
90°, namely the moment in which the landmarks of the elbow and the shoulder are seen 
superimposed by the camera placed on the side. In the last two times (from 61 s to 64 s) the 
participant was in an intermediate position, as shown in the two pictures on the right. 
Consequently, the peaks are present for both the weights signal. Lastly, in the yellow zoom, it 
is possible to appreciate the effects of the weighted average: since the weight for the side 
camera (in green in the bottom graph) is higher, the average angular value is closer to the one 
of the side camera (in green inside the yellow zoom). 
 
CONCLUSION: The proposed solution, not requiring any equipment worn by the participant, 
allows the implementation of an easy-to-use setup, reducing the field work for coaches and the 
burden to athletes. In practical applications, the current system could be used for studies such 
as those presented in (Rigozzi et al., 2023), where the focus is towards the joint movement 
patterns and the movement differences associated with different ball spin levels. The use of 

 
Figure 3: Comparison and weights of flexion extension angle of the right shoulder in the 

sagittal plane when executing five times the movement for the full range of motion 

Table I: Angles computed with projection plane and landmarks used. “Landmarks right” and 
“Landmarks left” refer to the landmarks placed on the right and left side of human body 

Projection 
Plane 

Landmarks 
right 

Landmarks 
left 

Refers to 

UV 24-12-14 23-11-13 angle between arm and torso on sagittal plane 
VW 24-12-14 23-11-13 angle between arm and torso on frontal plane 
UW 11-12-14 12-11-13 angle between arm and torso on transverse plane 

UVW 12-14-16 11-13-15 elbow flexion extension 
UV 12-24-26 11-23-25 angle between leg and torso on sagittal plane 
VW 12-24-26 11-23-25 angle between leg and torso on frontal plane 

UVW 24-26-28 23-25-27 knee flexion extension 
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two cameras allows to compute a weighted average of the angles. The next step of the study 
is the metrological validation of the measured angles. Investigating the addition of cameras 
placed either on top of the participant or on its left to enhance accuracy might be interesting. 
Lastly, Mediapipe Pose provides a “visibility” parameter associated with each joint, that might 
be used in the computation of the weights.  
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Table II: Intraclass correlation coefficients according to right and left side of the participant 

Refers to ICC [Right] ICC [Left]  

angle between arm and torso on sagittal plane 0.65 0.63 

angle between arm and torso on frontal plane 0.68 0.54 
angle between arm and torso on transverse plane 0.19 -0.04 

elbow flexion extension 0.59 0.54 
angle between leg and torso on sagittal plane 0.46 0.21 
angle between leg and torso on frontal plane 0.23 0.13 

knee flexion extension -0.33 -0.49 
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