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Markerless motion capture systems allow for the estimation of 3D segmental pose of human 
movement without the encumbrance of markers. Therefore, the aim of this study is to 
measure the concurrent validity and reliability of baseball pitching kinematics estimated by 
an in-lab markerless motion capture system. This analysis is based of 100 pitches thrown 
by 18 collegiate baseball pitchers. Discrete kinematic variables varied in their equivalence 
and reliability between systems (mean bias range of 0.04 to -28.4). Kinematic variables in 
the sagittal plane had more agreement between systems than variables in the transverse 
plane. Segment lengths were also comparable between systems. Although markerless 
technology provides ease of collecting biomechanical data in a baseball setting, inter-
system differences do still exist between marker-based systems and markerless systems. 
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INTRODUCTION: Kinematic analysis is an important foundation of clinical and research 
biomechanics. There are various ways in which technology can estimate the 3D segmental 
pose of human movement. However, marker-based motion capture has long been seen as one 
of the most accurate ways to measure joint kinematics and can provide kinematic 
measurements in various biomechanical applications (Windolf et al., 2008). Although marker-
based motion capture is considered to be accurate, specialized training is needed to perform 
adequate kinematic analyses.  
Markerless motion capture technology attempts to address the limitations of marker-based 
motion capture by utilizing trained neural networks to estimate 3D poses of body segments 
during human movement (Mathis et al., 2018). Utilizing markerless technology and solely 
relying on the neural networks to identify joint centres takes away any human error of having 
to place markers on skin. Theia3D (Theia Markerless Inc., Kingston, ON, Canada) is a video-
based example of this type of novel technology and has started to be implemented into clinical 
and research biomechanics labs because of its feasibility (Kanko et al., 2021). 
While Theia3D has started to be implemented into clinical practice, there have been limited 
studies assessing its accuracy when compared to marker-based motion capture. Evidence in 
the literature show that Theia3D has good to excellent agreement with marker-based motion 
capture in most spatiotemporal parameters of gait, but lower limb kinematics had lower 
agreement, especially in the transverse plane (Kanko et al., 2021). 
Biomechanical analysis in high level sports is growing exponentially. Baseball specifically has 
adopted many biomechanical technologies in hopes to optimize performance and identify 
pathomechanics that increase risk of musculoskeletal injuries (Trasolini et al., 2022). While 
marker-based motion capture has historically been used to analyse throwing and hitting 
kinematics, machine-learning markerless technology is becoming more prevalent both in labs 
and on the field. The emergence of this new technology has made collecting data in high level 
environments practical, however, there is limited data in the literature showing the performance 
of these markerless technologies compared to marker-based systems. A recent study 
assessed the agreement between an in-game markerless motion capture system and marker-
based technology in minor league baseball pitchers and showed fair agreement in kinematics 
with some exceptions (Aguinaldo, 2022). However, this analysis was limited to a sample of 3 
players. Therefore, the purpose of this study is to compare the concurrent validity and reliability 
of baseball pitching kinematics estimated by in-lab markerless and marker-based motion 
capture system. 
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METHODS: Eighteen collegiate pitchers (height =1.83 ± 0.5 m, mass = 86 ± 18 kg) threw 10 
fastball pitches off a regulation mound while 3D joint centre estimation and pose was 
concurrently recorded with a 10-camera markerless motion capture system (Qualisys, 
Goteborg, Sweden) utilizing Theia3D (Theia Markerless Inc., Kingston, ON, Canada) and with 
an 8-camera marker-based motion capture system (Qualisys, Goteborg, Sweden) at a 
sampling rate of 300 Hz and 540 p for both systems. Thirty-eight reflective markers were placed 
on the skin of each pitcher according to a link segment rigid-body model (Aguinaldo & 
Chambers, 2009). Positional data, from both systems, for a total of 100 pitches (n = 100, 
minimum of 5 pitches per subject) were smoothed with a fourth-order zero-lag Butterworth filter 
at a cut-off frequency of 18 Hz. Raw data from both systems were processed through the same 
Inverse Kinematic model (Aguinaldo & Chambers, 2009) in Visual3D (C-Motion, Germantown, 
MD) to estimate joint kinematics throughout the entire pitching motion. (C-Motion, 
Germantown, MD). Kinematic waveform data from both systems were statistically compared 
using statistical parametric mapping (SPM) t-tests. Random field theory (RFT) was used to 
define the threshold above which 5% of waveform differences would be produced by random 
data (Pataky et al., 2013). Variables of interest include stride length, stride knee flexion at stride 
foot contact (SFC), hip shoulder separation, max shoulder external rotation, pelvic width, femur 
length, and humerus length. All SPM t-tests were performed in Python utilizing the spm1d 
package. Analyses were performed over the entire pitching motion as well as at different 
phases defined by temporal instances within the pitching motion (Aguinaldo & Nicholson, 
2021). A concordance correlation coefficient (CCC) (Carrasco et al., 2013) was used to assess 
the reliability and equivalence between the markerless and marker-based system at different 
discrete kinematic data points and average segment lengths.  Additionally, to examine the 
agreement between both methods, a modified Bland-Altman analysis was performed with the 
limits of agreement (LoA) estimated using a method that accounts for the variance from 
repeated trials per subject. All data analyses were performed in RStudio at an a priori 
significance level of 0.05 with the simplyagree and cccrm packages. 
 
RESULTS AND DISCUSSION: Discrete kinematic variables varied in their equivalence and 
reliability between systems (Table 1). Both stride length and stride knee flexion showed high 
equivalence and reliability between systems. Stride length had a mean bias of 4 cm and strong 
reliability with a CCC value of 0.93. Similarly, stride knee flexion at SFC had a mean bias of 
5.3 º and a CCC value of 0.86. Consistent with previous literature, the Theia system was both 
equivalent and reliable in the sagittal plane (Figure 1). However, kinematic variables in the 
transverse plane exhibited lower equivalence. Hip shoulder separation had a mean bias of 
14.9 º and lower reliability between systems with a CCC value of 0.27. Maximum shoulder 
external rotation (MER) had the most bias between systems (mean bias = -28.3 º) and low 
reliability (CCC = -0.034). The disagreement between systems in the transverse plane further 
illustrates the results of previous validity studies (Aguinaldo, 2022). The bias between systems 
in the transverse plane should be considered in performance and injury prevention decisions. 

 
Table 1: System means, mean bias, and CCC values for selected kinematic values and segment lengths 

 

Variable Marker 
Mean (SD) 

Theia 
Mean (SD) 

Mean Bias (CI) CCC (CI) 

Stride Length (m) 1.54 (0.13) 1.51 (0.13) 0.04 (0.03 to 0.04) 0.93 (0.87 to 0.96) 

Stride Knee Flexion at 
SFC (deg) 

50.1 (9.0) 46.5 (8.0) 5.27 (3.8 to 6.7) 0.86 (0.81 to 0.89) 

Hip Shoulder 
Separation (deg) 

48.1 (10.1) 31.5 (7.2) 14.9 (11.1 to 18.7) 0.27 (0.16 to 0.37) 

MER (deg) 151.9 (16.4) 177.9 (10.4) -28.3 (-37.6 to -19.0) -0.03 (-0.17 to 0.10) 

Pelvic Width (m) 0.17 (0.01) 0.22 (0.01) -0.04 (-0.01 to -0.04) 0.03 (-0.02 to 0.09) 

Femur Length (m) 0.46 (0.03) 0.44 (0.02) 0.01 (-0.01 to 0.02) -0.24 (-0.48 to 0.04) 

Humerus Length (m) 0.30 (0.02) 0.29 (0.02) 0.01 (-0.03 to 0.03) -0.02 (-0.17 to 0.14) 
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SPM{t} scalar fields further reveal discrepancies between systems in the kinematic variables 
of interest, measured throughout the entire pitching motion (Figure 2). Further analysis of the 
pitching motion highlights phases that might cause additional bias between markerless and 
marker-based systems. A suprathreshold region (p<.05) in the SPM{t} field showed significant 
differences in shoulder rotation of the pitching arm throughout the whole motion (p<0.001). 
Peak differences occurred during the arm-cocking and acceleration phases. While both 
systems showed agreement in the early stride phase and follow-through, peak differences in 
hip shoulder separation also occurred during the arm-cocking and acceleration phases. 
Greater bias during these phases is likely due to the high angular velocities of the movements, 
suggesting that markerless technology might struggle to accurately estimate upper-body 
kinematics during high-velocity movements such as pitching. Therefore, the phase of the 
pitching motion should be considered when evaluating performance and injury risk based on 
markerless motion capture data. 
Mean segment lengths were within 2 cm when estimating femur and humerus length, indicating 
high equivalence between systems (Figure 3). However, although system means were similar 
and mean bias was low, CCC values were extremely low (CCC = -0.24 and -0.02 respectively) 
indicating low reliability. Therefore, system bias varied greatly depending on segment length 
magnitude. Similarly, pelvic width had a very low CCC value (CCC = 0.034) and a higher mean 
bias (mean bias = 4 cm) compared to both femur and humerus length. Discrepancies in pelvic 
width between marker-based and markerless systems could influence lower body kinematics 
in various movements.  

 
 

 

Figure 1: Hip shoulder separation, lead knee flexion, max shoulder external rotation rain plots for each 
system: markered (left) and markerless (right) 

 

Figure 2: Mean ensemble shoulder rotation angle (left) and mean ensemble hip shoulder separation 
angle (right) measured by Theia and marker-based systems throughout pitching motion. SPM{t} fields 
show inter-system differences. 
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Figure 3: Pelvic Width, thigh length, and humeral length for each system: markered (left) and 
markerless (right). 

CONCLUSION: These findings suggest that markerless motion capture technology can 
provide pitching kinematic and segment length measures that are equivalent to those 
measured by a marker-based system depending on the variable being examined and the 
temporal phases of the pitching motion. However, variables in the transverse plane showed 
less equivalence between systems. Segment length means were similar between systems, but 
some inter-system reliability was low. The range of inter-system differences and their 
implications should be accounted for when biomechanically assessing performance and injury 
risk in baseball pitching. Feasibility of markerlessly capturing the pitching motion has important 
implications for progressing the game of baseball from a player performance and health 
standpoint, however, further equivalence analyses and high sampled research are still needed. 
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