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This study aimed to estimate lower-limb joint- and tendon loads during treadmill running by 
combining artificial IMU (artIMU) data of four virtually placed sensors on the shanks and 
feet with a self-organising neural network approach. To achieve this, we simulated IMU 
(artIMU) data from marker trajectories of 28 runners, running at 2.5, 3.5, and 4.5 m/s on a 
treadmill. A Kohonen self-organising map was trained with the artIMU data, and the joint 
and tendon loading was reconstructed as the hidden variables of the network. A leave-one-
subject-out cross-validation resulted in a good to excellent estimation accuracy (R2 > 0.87 
and nRMSE <16%) with an exception for the hip joint reaction force. This approach will 
allow for longitudinal in-field estimation of joint and tendon loading in the future to better 
monitor and understand running-related injuries.  
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INTRODUCTION: Recreational running offers numerous health benefits, but lower limb injuries 
are common among runners (Videbæk et al., 2015). Understanding and addressing the cause 
of injuries is crucial for enhancing overall well-being. The most frequent injuries include medial 
tibial stress syndrome, Achilles tendinopathy, plantar fasciopathy, and patellofemoral pain 
(Willwacher et al., 2022). Biomechanical risk factors like joint moments and impact-related 
variables contribute to these injuries, but controversies on the precise nature of the associated 
biomechanical loading mechanisms persist (Gruber, 2023; Schmida et al., 2022). Although 
there is common agreement that most running-related injuries are due to overuse and thus 
best assessed during longitudinal studies on data collected within the runners’ natural 
environment, most studies are laboratory-based (Willwacher et al., 2022). However, 
advancements in sensor technology, specifically body-worn sensors like inertial measurement 
units (IMUs), enable measuring running biomechanics outside the laboratory. While IMUs 
show promise, challenges remain, such as the inability to directly quantify the loading of 
structures, and joint and tendon kinetics outside the lab. Researchers are thus exploring 
solutions, including machine learning algorithms, to estimate kinetics from kinematics or IMU 
data. Nevertheless, although supervised learning algorithms yield high accuracy (Johnson et 
al., 2021; Pogson et al., 2020; Wouda et al., 2018), they require separate training for each 
variable. This study, therefore, focuses on overcoming practical and methodological limitations 
by estimating biomechanical load metrics at a joint- and tendon-specific level during running. 
An unsupervised learning approach, employing Kohonen's self-organising maps (SOMs) is 
explored for estimating biomechanical loads from IMU data. We hypothesize that a SOM can 
estimate loading across different musculoskeletal levels, after being trained with data from only 
a small number of IMU sensors.  

METHODS: The publicly available dataset of Fukuchi et al. (2017), containing marker 
trajectories and 3D ground reaction force (GRF) of 28 recreational runners during treadmill 
running at 2.5, 3.5, and 4.5 m/s was used. Marker trajectories and GRF were filtered at 15 Hz 
and 50 Hz respectively using a 2nd order low-pass Butterworth filter. All data were then further 
processed with the OpenSim API (version 4.3, SimTK, Stanford, USA) for MATLAB.  
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A generic musculoskeletal model (Bedo et al., 2020) was adjusted by removing all the upper-
body segments to provide a modified lower-limb and pelvis model. Static trials for each runner 
were used to scale the model to the runner’s dimensions. Muscle-tendon forces were estimated 
by minimising the sum of the squared muscle activations using Static Optimization. Hip, knee 
(medial and lateral) and ankle joint contact forces were calculated using Joint Reaction 
Analysis. Patellar and Achilles tendon forces were calculated as the sum of the quadriceps 
(vastus lateralis, medialis, intermedius, and rectus femoris) or calf (gastrocnemius lateralis, 
medialis, and soleus) muscle-tendon forces respectively. All forces were normalised to each 
runner’s body weight. Time series data for each stride of the right leg were identified by using 
a 50 N GRF threshold for touchdown and take-off.  
To generate four artificial IMUs (artIMU) virtually positioned on the shanks and feet, the 3D 
marker trajectories of the lower limbs were utilized. First, the joint origins were defined 
according to the ISB recommendations for the pelvis and ankle joint centre (Wu et al., 2002), 
the definition of Harrington et al. (Harrington et al., 2007) for the hip and according to Pennock 
and Clark for the knee joint centre (Pennock & Clark, 1990). Using the joint origins, the segment 
coordinate systems of the segments were defined and translated into quaternions. Finally, the 
artIMU sensor positions and orientations were differentiated into 3D accelerations and angular 
velocities. For each participant, ten ground contact phases were extracted and used as input 
data to the Kohonen self-organizing map. 
To train an unsupervised learning Kohonen self-organizing map (MATLAB R2023a, SOM 

Toolbox V 2.1 (Vesanto, 2000)), a matrix, containing the 3D accelerations and angular 

velocities of the artIMUs of ten ground contacts per athlete for the three different speeds [30830 

(28 participants x 10 trials of different length x 3 speeds) x 24 (4 artIMUs x 3 channels of 

accelerations and 3 angular velocities)] was constructed. The initial connection weights of the 

neurons were set by the first two principal components of each input dataset (Kohonen, 2001). 

We aimed to estimate the progression of the patellar and Achilles tendon forces, and the 

vertical hip, medial and lateral knee and ankle joint reaction forces of the stance leg as the 

hidden variables. After training, each of the 30830 input vectors is associated with one of the 

neurons of the SOM. As the network reduces the dimensionality of the input matrix, each 

neuron is associated with several of the input vectors. The sample number of the set of input 

vectors and their Euclidean distances (quantization error, QE) from each neuron's codebook 

vector was calculated by the som_bmus function. Subsequently, the values of the hidden 

variables at the given sample numbers for each neuron were extracted and the weighted 

average based on the QE was calculated. The larger the QE between the vector and the 

neuron, the lower the contribution of the value of the hidden variable to the final estimated 

hidden variable. By doing so, the hidden variables corresponding to each neuron could be 

reconstructed. To validate the network, a leave-one-out subject cross-validation was 

performed. To avoid leakage the data was split on a participant level. The accuracy of the 

model’s estimation was assessed using the R² and the nRMSE between the estimated test 

data and the measured data of the test set. R² values between 0.3 – 0.5 were considered low, 

between 0.5 – 0.7 moderate, between 0.7 – 0.9 as good and above 0.9 as excellent. 

RESULTS: Estimating the forces of the patellar and Achilles tendons resulted in an excellent 
accuracy with R2 of 0.91 - 0.94 and nRMSE values of 11.79 – 17.09% respectively (Table 1). 
The peak tendon forces are underestimated for the higher speeds (Figure 1). 
The estimation accuracy for the medial and lateral knee joint reaction forces and the ankle joint 
reaction force was good to excellent with R2 values ranging between 0.82 and 0.93 and 
nRMSEs between 13.28 and 21.22%. The accuracy for the hip joint reaction force in 
comparison was lower and achieved R2 values of 0.49 – 0.66 and nRMSEs of 24.57 – 27.71% 
(Table 1). Accuracy was also running-speed dependent with decreasing accuracies at higher 
running speeds. The prediction accuracy for the medial knee joint showed lower nRMSEs than 
for the lateral side (13.28- 13.81 and 15.46 – 21.22% respectively, Table 1). As for the other 
hidden variables, the peak joint reaction forces were underestimated for the higher speeds. 

193

42nd International Society of Biomechanics in Sports Conference, Salzburg, Austria: July 15-19, 2024

https://commons.nmu.edu/isbs/vol42/iss1/255



Table 1: Estimation accuracy (mean ± SD) indicated by the R² and the nRMSE (%) for the test 
split for the different hidden variables across the three running speeds. 

 Tendon Forces Joint Reaction Forces 

R2 Patellar Achilles Hip Knee (medial) Knee (lateral) Ankle 

2.5 m/s 0.91 ± 0.04 0.94 ± 0.02 0.66 ± 0.14 0.90 ± 0.04 0.82 ± 0.10 0.93 ± 0.02 
3.5 m/s 0.93 ± 0.03 0.93 ± 0.02 0.56 ± 0.16 0.89 ± 0.03 0.86 ± 0.07 0.93 ± 0.02 
4.5 m/s 0.93 ± 0.03 0.91 ± 0.03 0.49 ± 0.16 0.88 ± 0.04 0.87 ± 0.06 0.92 ± 0.02 

nRMSE (%)      
2.5 m/s 17.09 ± 9.311 13.08 ± 4.72 24.57 ± 7.10 13.75 ± 3.63 21.22 ± 12.00 14.19 ± 5.58 
3.5 m/s 13.91 ± 5.881 11.79 ± 4.38 27.28 ± 8.65 13.28 ± 2.58 16.72 ± 6.79 13.31 ± 3.91 
4.5 m/s 13.15 ± 4.477 12.44 ± 4.21 27.71 ± 8.20 13.81 ± 2.56 15.46 ± 4.38 13.46 ± 3.60 

DISCUSSION: The presented 
results of this study show that 
using a self-organising 
Kohonen neural network trained 
with IMU data from only four 
artIMUs attached to the shanks 
and feet is sufficient to estimate 
joint loading and tendon forces. 
Notably, these estimations are 
based on data that were not 
presented to the SOM during its 
training. The network reduced 
the high-dimensional input data 
from 30830 x 24 to 880 x 24, 
thereby extracting 880 distinct 
states of the movement, each 
belonging to one of the SOM 
neurons. Assigning the joint and 
tendon loadings to these states 
allowed us to estimate the 
progression of joint and tendon 
loads. The average estimation accuracies were R2 = 0.90 (range 0.82 – 0.94) for all but one 
variable (hip joint reaction force). To our knowledge, there is only one other study that has 
estimated tendon loads during running from wearable IMUs (Rasmussen et al., 2023). The 
estimation of tendon forces was of higher accuracy with our approach when compared to the 
supervised approach presented by Rasmussen et al. (R2: 0.92 vs 0.49 for the Achilles tendon 
and 0.92 vs 0.90 for the patellar tendon). However, they achieved their results by using a wrist-
worn IMU only. 
The source of most running-related injuries is overuse or frequent overloading of soft tissue 

structures. As with many injury assessment attempts from other sportive disciplines, studies 

often lack longitudinal field data to base their research on due to the lack of loads that cannot 

be measured in the field. The presented system's minimal setup - four IMUs and a smartphone 

- facilitates large-scale longitudinal data collection. Real-time processing and feedback to 

runners are feasible, enabling monitoring of biomechanical load changes. Tracking the 

increase of joint loading, could be implemented on portable devices to warn runners when 

loading exceeds safe levels. Researchers and clinicians could benefit from the longitudinal 

data collection that makes it more likely to detect the onset of an overuse injury and the related 

risk factors. While the presented results are promising, limitations need to be addressed. From 

the accuracy distributions (Figure 1) it became apparent, that the model still needs to improve 

to be generalisable across conditions and participants. The study, conducted with 28 

participants, may not cover diverse running populations, and further assessments across 

speeds and cohorts are required. 

Figure 1: Average progression of the patellar and Achilles 
tendon forces. Blue: Ground truth, red: estimated tendon 
forces of the test split. Mean tendon forces at 2.5 m/s (solid 
lines), 3.5 m/s (dashed lines) and 4.5 m/s (dashed-dotted 
lines). Violin plots for the R2 (primary vertical axis) and nRMSE 
(secondary vertical axis) for all three running speeds. 
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CONCLUSION: Kohonen's self-organising maps (SOMs) demonstrate promising results in 
accurately estimating musculoskeletal loads from artIMUs. This neural network is fast and 
requires minimal computational power, which makes it suitable for smartphone or smartwatch 
usage. Future studies must validate its applicability in overground running with real IMUs. The 
strong agreement between ground truth and estimated data for joint and tendon loadings 
facilitates prospective studies to identify or confirm running-related injury risk factors. For 
athletes and coaches, this approach allows precise monitoring of injury-relevant signals during 
training and competition without invasive or costly equipment. 
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