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We aim to predict running movements from motor control principles. Specifically, the central 
nervous system minimizes an objective related to energy efficiency when planning 
movements. We replicate this minimization in optimal control problems to create running 
simulations that predict running movements in new situations. Here, we will introduce how 
we create predictive simulations using optimal control, and we show how we used these to 
gain insight into the effect of running shoe midsole properties on running movements. We 
show that we can successfully predict the change in metabolic cost between different shoe 
conditions, but that our outcomes are limited when balance is important. Furthermore, we 
show that metabolic cost changed even though the kinematic and kinetic changes were 
small. Finally, we discuss some future directions of this simulation approach. 

KEYWORDS: optimal control, effort minimization, running shoes, gait simulations.

INTRODUCTION: Predictions of human movement can improve our ability to prevent injuries 
and maximize performance, since we can get insights into the effect of a specific intervention 
without requiring time-consuming and potentially harmful human experiments. However, these 
predictions are challenging since human dynamics are highly redundant, both on the muscle 
and on the skeletal level. Therefore, we have to find the correct movement out of the many 
different options that exist. In humans, this choice is made through motor control by the central 
nervous system. Therefore, we have to replicate the central nervous system’s approach to 
movement planning and execution, which we have to replicate. The central nervous system 
plans movements by optimizing an objective (Bertram & Ruina, 2001). For walking and running, 
this objective is related to energy or effort minimization, but it can vary between individuals and 
tasks (Mombaur & Clever, 2017). 
By replicating this optimization digitally using optimal control, we can predict movements. 
Optimal control finds simulations (i.e., the control input and resulting movement) that minimize 
an objective for a dynamic model. We have previously used optimal control on musculoskeletal 
dynamics models to investigate the effect of ankle exoskeletons on walking movements (Weiss 
et al., 2024) and the effect of running shoe midsole properties on running movements 
(Dorschky et al., 2019; Nitschke et al., 2021; Wang et al., 2023), among others.  
Here, we will give an overview of how we have used motor control principles to predict sports 
movements, specifically running. We have investigated the effect of running shoe materials on 
energy efficiency and running movements, since a small increase in energy efficiency can 
change the outcome of the competition especially in marathon running. Specifically, we have 
retrospectively investigated if we can predict the metabolic cost reduction of a soft midsole 
material, we have investigated the contributions of the midsole energy return and stiffness 
separately, and we have investigated the effect of stack height at the same time as an 
experimental investigation. 
 
METHODS: We solve optimal control problems to predict human movement, to replicate the 
movement planning process of the central nervous system. When we simulate walking and 
running, we create simulations by solving the following optimal control problem: 

minimize 𝐽(𝑥, 𝑢, 𝑡) = ∫ 𝑐(𝑥(𝑡), 𝑢(𝑡))d𝑡
𝑇

𝑡=0

 (1) 
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subject to 𝑓(𝑥(𝑡), 𝑥̇(𝑡), 𝑢(𝑡)) = 0 (2) 

 𝑥(𝑇) = 𝑥(0) + 𝑣𝑇𝑥ℎ𝑜𝑟(0) (3) 
 
where 𝐽(𝑥, 𝑢, 𝑡) is the objective, 𝑇 the movement duration, 𝑣 the movement speed, 𝑥(𝑡) the 

system’s state at time 𝑡 and 𝑢(𝑡) its input, and 𝑐(𝑥(𝑡), 𝑢(𝑡)) the cost function that is evaluated 

at each time point. 𝑓(𝑥(𝑡), 𝑥̇(𝑡), 𝑢(𝑡)) represents the musculoskeletal dynamics including a 

ground contact model, and 𝑥ℎ𝑜𝑟 the states which require a horizontal translation. 
The dynamics are defined by the musculoskeletal model and the contact model that describes 
the interaction between the model (i.e., the feet) and the ground. For straight walking and 
running, it is sufficient to use a sagittal plane musculoskeletal dynamics model, since most 
movement happens in the sagittal plane. We have used a model with 9 degrees of freedom: 
the position and orientation of the trunk, as well as a hip angle, a knee angle, and an ankle 
angle for each leg. This skeletal model is operated by eight Hill-type muscles in each leg, 
consisting of a contractile element to represent active muscle fibre, a series elastic element to 
represent the tendon and other passive tissues connected in series, and a parallel elastic 
element to represent the passive tissues connected in parallel to the active muscle fibre 
(Dorschky et al., 2019). The ground contact model includes the running shoe midsole 
properties, such as the softness and energy return of the material. The model’s equations are 
based on dynamic loading tests on shoe samples. The model determines the ground reaction 
force from the midsole deformation and deformation rate (Dorschky et al., 2019).  We also 
include the stack height in the location of the contact points with respect to the ankle joint. 
To predict running movements, we use a cost function that consist of two main terms: tracking 
of typical joint angles and ground reaction forces and effort minimization. For running, we have 
used a publicly available dataset of male runners (Fukuchi et al., 2017). We minimize effort by 
minimizing the square of muscle stimulation. The weighting between these terms depends on 
the exact problem that is solved and the available data. We weigh the tracking objective with 
respect to the effort objective. If the variance of the tracking data is known, it is also used in 
the weighting, such that data points with a large variance are tracked less strictly than data 
points with small variance. The size of the variance also depends on whether it is a variance 
of a single participant or if it is across participants.  
Here, we present how we have used this simulation approach to investigate the effect of 
running shoe midsole properties on metabolic cost, kinematics, and kinetics of running. 
Specifically, we investigated (1) the decrease in metabolic cost when using a soft midsole 
material compared to ethylene-vinyl acetate (EVA), (2) the effect of the soft material’s softness 
and energy return on metabolic cost separately, and (3) the effect of a change in stack height.  
 
RESULTS: In our first study, we investigated if we could predict the decrease in metabolic cost 
of a soft midsole material compared to EVA. The predicted reduction in metabolic cost was 
0.7% (Dorschky et al., 2019), which was similar to the 1.2% reduction in oxygen consumption 
that was measured in an overground running experiment (Worobets et al., 2014). 
In our second study, we separately investigated the increased softness and increased energy 
return of the soft midsole material used in study one. We found that the increased softness 
yielded a six times larger decrease in metabolic cost than the increased energy return. The 
effect was additive when combining both (Nitschke et al., 2021). 
In our third study, we investigated if we could accurately predict changes in running due to an 
increase in stack height. We accurately predicted metabolic cost changes of shoes with a stack 
height of 40 mm and 45 mm compared to a shoe with 35 mm stack height, but we could not 
accurately predict the metabolic cost change for a 50 mm stack height (Wang et al., 2023).  
When analysing movement kinematics and kinetics, we often found only small changes. Figure 
1 shows that running kinematics between a reference midsole material and one that has 
increased softness cannot be distinguished (Nitschke et al., 2021). We found similar small 
differences when simulating running with different stack heights. Though the changes were 
smaller than in the experiment, we predicted the trends of the changes in ankle kinematics and 
kinetics, and knee kinetics correctly (Wang et al., 2023). 
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Figure 1: Stick figures of two simulations with different midsole materials. 

 
DISCUSSION: We found that we can use principles of motor control to predict changes in 
running movements, by replicating the optimization performed by the central nervous system 
when planning and executing movements. We showed that we could predict the effect of 
running shoe midsole properties on metabolic cost, kinematics, and kinetics of running. We 
were not able to predict the change in metabolic cost accurately for shoes with a large stack 
height, which we suspect to be related to the deterministic nature of the simulations. Because 
the simulations are deterministic, we cannot use simulations to investigate balance, which is 
relevant for larger stack heights. This limitation should be kept in mind when simulations are 
used to investigate injury prevention, where unexpected movements could be relevant. Still, 
simulations provide an important advantage over experiments, since they allow us to 
investigate interventions, such as new shoes or other devices and muscle strength training, 
without requiring prototypes or a human experimental study.  
An important open question is the accuracy that is required to make useful prediction from 
simulations. The required accuracy is dependent on the question that is answered. Therefore, 
it is important that predictive simulations are properly validated for each application, such that 
it is known for which applications they can be used with confidence. Generally, we are able to 
predict trends of changes well, but not absolute values. For example, we were able to predict 
the trends in kinematic and kinetic changes (Wang et al., 2023), even though the absolute 
peaks differed. This result shows that we could use simulations to predict an increase in, e.g., 
the peak knee moment, but we cannot predict the value of the peak knee moment.  
Currently, our simulations are not purely predictive, because we require a tracking term in our 
predictions. Recordings of typical movements are always available, and, even though a bias 
might be introduced, the tracking term increases realism and variation between simulations, 
similar to movement variation between runners. The tracking term can be explained in two 
ways. The first way is that it represents an objective of the central nervous system to look 
“normal”, which is an objective that seems important for humans. For example, looking normal 
is important for prosthesis users (Plettenburg, 1998). The second way to explain this term is 
that it adds prior information to the optimization to help it find the correct solution. There will 
always be a gap between simulation and reality due to the assumptions and simplifications in 
the musculoskeletal model and the differences between a central nervous system optimization 
and a computer optimization. The tracking term is one way to account for these differences 
and help the optimization find the correct solution. Instead of adding a tracking term, walking 
simulations have also been created by using a hand-crafted movement objective (Falisse et 
al., 2019). We advise to use this approach when locomotion principles are investigated, since 
then the possible bias from the tracking term might lead to incorrect insights.  
While we have mainly focused on predictions of periodic movements like walking and running, 
we have recently also used optimal control simulations to investigate other movements, such 
as cutting movements (Nitschke et al., 2023). Such movements are relevant when investigating 
approaches for injury prevention through simulations, for example by investigating if 
strengthening a certain muscle will lead to a safer movement technique. Furthermore, we can 
use simulations as a safe approach to simulate movements that lead to an injury. One 
important aspect of movements on a sports field, such as a cutting movement, is that the 
central nervous system’s objective might not be energy minimization, since for a cut, the goal 
is to put a defender on the wrong foot, while another objective could be to change direction as 
fast as possible. Therefore, we should update the objective for these movements. For example, 
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inverse optimal control (Mombaur & Clever, 2017), in which the objective is found based on 
experimental recordings, could be used to find an objective for cutting movements. 
There is a huge potential of using simulations for individual predictions. Then, running shoes 
and other wearable devices could be optimized for each individual based on their body 
parameters and running goals, while also individualized training programs could be created to 
improve movement technique and prevent injuries. So far, we have made generalized 
predictions, over an average population of runners. Recently, we have started investigating 
individual predictions for exoskeleton walking, but found that we were not able to predict 
individual changes, even when the general effect was predicted correctly (Weiss et al., 2024). 
Therefore, we need to further explore how we can improve accuracy on an individual level. To 
do so, we should investigate both aspects of the simulations that are representative of a 
person, which are the movement objective and the musculoskeletal body parameters. It is 
known that movement objectives vary between individuals (Mombaur & Clever, 2017), while 
also different people have, e.g., different weight distributions and muscle strength.  
 
CONCLUSION: We conclude that we can use motor control principles to predict sports 
movements. We created running simulations by solving optimal control problems that replicate 
the central nervous system’s optimization for movement planning and execution. Using these 
simulations, we predicted the effect of running shoe midsole properties on running metabolic 
cost, kinematics, and kinetics. We identified a limitation, since we are currently not able to 
account for balance in our simulations. Future directions include predictions of other sports 
movements to aid injury prevention, for example during cutting movements, and personalized 
predictions, to enable shoes and other wearable devices to be optimized for individual athletes. 
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