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This perspective article explores concepts for how sensory information is utilized by the 
neuromuscular system for the correction of ongoing movements within the sports domain, 
highlighting its significance for movement stability, accuracy, precision, injury prevention, 
and performance enhancement. This paper aims to introduce a simplified model for 
feedback control and discusses implications of this model and approaches for experimental 
corroboration.  
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INTRODUCTION: Many important questions in sports biomechanics—e.g., about stability, 
precision and accuracy of movement, about injury mechanisms and injury prevention, or about 
performance and performance improvement—involve a fundamental understanding of how the 
neuromuscular system controls movement. In the last decades, the neurosciences have made 
substantial progress in the development of tangible motor control theories. One such theory is 
the Optimal Feedback Control Theory (OFCT) (Todorov & Jordan, 2002), which, on the one 
hand, interprets the control of human motion as an optimization problem, and on the other 
hand, provides a model for how sensory feedback information can be utilized for the control 
and corrections of ongoing movements. However, to date, only very few studies in the sports 
sciences are based on or explore this theory (van Andel et al., 2021). 
The aim of the current perspective article is to synthesize a simplified model derived from 
OFCT and related concepts, illustrating how sensory feedback could be utilized to control and 
correct ongoing movements in the context of sports—i.e., in highly automatized and skilled 
movements, which are the result of extensive practice. Some implications of this model for 
sports related movements are discussed, as well as experimental approaches and findings 
that support the suggested perspective.   
 
MODEL: Some of the defining papers on OFCT were presented by Todorov & Jordan (2002) 
and Todorov (2004). For the context of skilled or automated movements as in sports, van Andel 
and colleagues present a control model schematic with two loops (Figure 1 in (van Andel et 
al., 2021)). The coordination loop programs the optimal feedback controller and sets the 
boundary conditions for each movement. It thus defines the movement task and produces the 
necessary motor commands for its execution (van Andel et al., 2021). The function of the 
second loop, the control loop, is to utilize sensory feedback information for the correction of 
ongoing movements. Key component of this secondary loop is the state estimator, whose 
function is the focus of the current paper. The schematic in Figure 1 shows both loops with the 
state estimator (grey box) expanded to include representations of internal mechanisms.  
The state estimator receives as input the afferent sensory information about the state of the 
body (biomechanical system) provided by the various sensory systems. It also receives a copy 
of the outgoing motor commands (“efference copy”), from which it calculates an internal model, 
i.e. a neural simulation of the biomechanical system and of its future states (Wolpert, 
Ghahramani, & Jordan, 1995). In the control of ongoing movements, the internal model allows 
for predicting the sensory signals associated with predicted future states (Wolpert et al., 1995). 
The comparison of incoming sensory information (Figure 1, yellow box in the state estimator) 
with the predicted sensory signals (left green box) allows for fast recognition of deviations in 
the movement execution (Crevecoeur & Scott, 2014).        
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In sports, movements become highly automatized and skilled through extensive practice and 
learning (Wolpert, Diedrichsen, & Flanagan, 2011). For automated movements the internal 
model does not only produce predictions of expected sensory states for the correct movement 
execution, but it has also learned to anticipate typical deviations from the correct movement 
execution. For those deviations that require correction, the state estimator can then prepare a 
signature sensory pattern that identifies the deviation (Figure 1, green boxes on the right), 
together with motor command modifications (blue circles), that correct for this deviation. If the 
comparison between sensory deviation signature and the incoming afferent sensory 
information is positive, then the pre-prepared motor command modifications launch 
immediately to correct the deviation (Figure 1, fourth deviation pattern). In other words, for 
automatized movement, the motor control system creates repertoires of expected sensory 
states coupled with pre-prepared corrective motor command modifiers.  
 

 
 
Figure 1: A schematic for the coordination and control loops in the OFCT. The key component 
of the control loop is the state estimator, which receives an efference copy of the outgoing motor 
commands and creates an internal model of expected sensory states. The processing of sensory 
information is then reduced to a comparison of incoming sensory signals with the expected 
sensory patterns calculated from the efference copy. In automated or skilled movements, the 
state estimator has also learned what sensory patterns would signify a known deviation from the 
intended movement and has established corrective motor commands, pre-prepared for 
immediate launch when its associated sensory signature is recognized in the incoming afferent 
sensory information.     
 
An important feature of this model is, that the repertoire of expected deviations is build up from 
distinct deviation patterns coupled with specific motor command modifiers. This model thus 
predicts the Minimum Intervention Principle (Todorov & Jordan, 2002) stating that motor 
variability is only corrected if the variability compromises the underlying task: only deviations 
that require correction are added to the repertoire of anticipated deviation patterns. Deviations 
not requiring immediate correction are not represented and thus not corrected.    
Also other motor control phenomena can be deducted from this property of the model, e.g. the 
specificity of balance training (Giboin, Gruber, & Kramer, 2015; Kümmel, Kramer, Giboin, & 
Gruber, 2016): the training of a specific balance task creates and refines the repertoire of 
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characteristic sensory signatures and their corresponding motor corrections, both of whom are 
situation specific. The more another task deviates from the trained situation, the less applicable 
are the sensory signatures and their corrections, leading to poor transfer. 
One experimental example where the corrective motor commands no longer fit to sensory 
deviation patterns is the so-called “reverse-steering bicycle” (Hoedlmoser et al., 2015; Serrano 
et al., 2020), a bicycle where a set of gears in the steering tube produces opposite steering 
effects (steering to the right will turn the front wheel to the left and vice versa). Without 
extensive practice it is impossible to ride this bicycle in a stable manner. Interpreted according 
to the proposed model, this is a case where the sensory patterns for imbalances are still valid, 
but corrective motor commands that involve steering produce the wrong movement.    
 
EXPERIMENTAL APPROACHES to support the proposed model need to first consider, what 
variables would be most suitable to find effects of such corrective feedback interventions. 
Thereto, it should be recognized that the internal model, expected sensory states and 
anticipated deviation patterns are likely representing the whole biomechanical system. It would 
be impractical and inefficient for the motor control system to establish such control mechanisms 
for individual degrees of freedom. Consequently, whole body representations rather than 
variables representing, for example, only single joint angles, should be analysed. In the 
author’s opinion, Principal Movements (PMs), i.e. kinematic synergies obtained from a principal 
component analysis of body posture data (Federolf, 2016), are particularly well suited as they 
offer a set of variables that characterize the movement of the whole biomechanical system 
(Federolf, Tecante, & Nigg, 2012).  
Another aspect to consider is under which circumstances the effects of such a control 
mechanism become apparent. Quasi-static balance exercises (for example, two-leg quiet 
stances and one-leg stances) are particularly relevant, as the primary motor task in these 
situations is to maintain stability. In these scenarios, the ratio between movements generated 
through primary motor commands compared to those triggered by corrective motor commands 
favours the latter, especially in comparison to dynamic movements.  
Actions by the State Estimator, according to this model, correct recognized deviations in 
movement, drawing on discrepancies between expected and actual sensory feedback. These 
corrective actions can be understood as discrete responses to specific errors, impacting the 
continuity of movement trajectories. Consequently, they likely influence the smoothness of 
these trajectories, with greater smoothness indicating more efficient control and fewer 
necessary corrections. Therefore, measures of movement smoothness, such as jerk metrics 
or trajectory variability, are plausible variables for detecting changes in control loop activity. 
Equally suitable are non-linear measures of temporal variability, such as entropy and the 
Lyapunov exponent for cyclic dynamic movements.  
Many results of the author’s research group can be interpreted in accordance with this model. 
For example, we studied one-leg postural control differences between standing on the 
dominant versus the non-dominant leg (Promsri, Haid, & Federolf, 2018). Laterality is the result 
of different functional specializations of the left and right brain hemispheres, in other words, we 
compare two similar but not identical controllers. We analysed how tightly the movements of 
PMs are controlled. Interpreted through the lens of our proposed model, we might predict that 
differences in controller or limb characteristics will lead to different movement deviation 
characteristics. In other words, which and how frequently specific motor corrections get 
triggered differs between the two legs. These specific correction patterns will project onto 
specific PMs, and consequently, the smoothness of some PM-control characteristics will 
increase while that of others will decrease. Conversely, if the differences in movement 
smoothness were not due to feedback response adjustments but rather to inherent limb 
characteristics (such as muscle strength differences) or disparities in the main controller, one 
would anticipate uniform changes—either general increases or decreases in movement 
smoothness. Given that our findings revealed both increased smoothness in some PMs and 
decreased smoothness in others (Promsri et al., 2018), the results of this study corroborate 
the assumptions of the proposed model. 
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Other postural control research, for example on age differences between young and older 
adults (Haid et al., 2018) or adolescents and young adults (Wachholz et al., 2020) or on effects 
of dual tasking (Haid & Federolf, 2019; Wachholz et al., 2019), and investigations into the 
stability of gait (Promsri et al., 2023) collectively demonstrate the model's applicability across 
various contexts and populations.  
  
DISCUSSION: This perspective paper introduces a simplified model for understanding the 
involvement of the OFCT's state estimator in the control and correction of ongoing movements. 
Aligned with established motor control paradigms, such as the Minimum Intervention Principle, 
this model corroborates a wide range of experimental findings, including those from our own 
research on postural control and stability of human walking. The proposed model can serve as 
a foundation for future studies, enabling the formulation of hypotheses regarding variations in 
feedback control across different contexts or in response to specific interventions. 
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