Growth and aging

Document Type



Hip fracture is a major public health problem. Thin superolateral cortex of the femoral neck experiences unusually high stress in a sideway fall, contributing to hip fracture risk. The aim of this study is to examine how exercise based loading history, known to affect the femoral neck cortical structure, influences fall-induced fracture risk. For this purpose, finite element models were created from the proximal femur MRI of 91 young athletic and 20 control females. Fall-induced superolateral cortical safety factors (SF) were estimated in the distal volume of femoral neck. Significantly higher (p < 0.05) SFs were observed from femoral necks with high impact (H-I), odd impact (O-I), and repetitive impact (R-I) exercise history, indicating lower fracture risk. The results indicate that it is advisable to include some impact exercise in a fracture preventive exercise program