•  
  •  
 

Category

Motor Control

Document Type

Paper

Abstract

Understanding how shoe features affect motor control processes is crucial for designing targeted running shoes. The purpose of this study was to investigate adaptations of coupled movement components, i.e. kinematic synergies (kSYNs), when running with different shoe stack heights (19 mm, 35 mm, and 50 mm). The applied analysis combined a principal component analysis, support vector machine classifiers, and stride-to-stride variability (SSV) calculations. The results showed classification rates ranging from 82.9% to 94.4% across different stack heights. Notably, only the 50 mm stack height demonstrated increased SSV for the kSYNs that highly contribute to separating the two stack heights when compared to the 19 mm condition. The findings suggest that the motor control system adjusts to variations in stack height within certain limits by regulating task-relevant kSYNs.

Share

COinS